Ток и напряжение диссоциация воды. Диссоциация воды

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы):

Водородный показатель (рН) величина, характеризующая активность или концентрацию ионов водорода в растворах. Водородный показатель обозначается рН. Водородный показатель численно равен отрицательному десятичному логарифму активности или концентрации ионов водорода, выраженной в молях на литр: pH=-lg[ H+ ] Если [ H+ ]>10-7моль/л, [ OH-]<10-7моль/л -среда кислая; рН<7.Если [ H+ ]<10-7 моль/л, [ OH-]>10-7моль/л -среда щелочная; рН>7. Гидролиз солей - это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита. 1). Гидролиз не возможенСоль, образованная сильным основанием и сильной кислотой (KBr , NaCl , NaNO3 ), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется.рН таких растворов = 7. Реакция среды остается нейтральной. 2). Гидролиз по катиону (в реакцию с водой вступает только катион). В соли, образованной слабым основанием и сильной кислотой

(FeCl2 , NH4Cl , Al2(SO4)3 ,MgSO4 )

гидролизу подвергается катион:

FeCl2 + HOH <=>Fe(OH)Cl + HCl Fe2+ + 2Cl- + H+ + OH- <=> FeOH+ + 2Cl- + Н+

В результате гидролиза образуется слабый электролит, ион H+ и другие ионы. рН раствора < 7 (раствор приобретает кислую реакцию). 3). Гидролиз по аниону (в реакцию с водой вступает только анион). Соль, образованная сильным основанием и слабой кислотой

(КClO , K2SiO3 , Na2CO3 ,CH3COONa )

подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид-ион ОН- и другие ионы.

K2SiO3 + НОH <=>KHSiO3 + KОН 2K+ +SiO32- + Н+ + ОH-<=> НSiO3- + 2K+ + ОН-

рН таких растворов > 7 (раствор приобретает щелочную реакцию).4). Совместный гидролиз (в реакцию с водой вступает и катион и анион). Соль, образованная слабым основанием и слабой кислотой

(СН 3СООNН 4 , (NН 4)2СО 3 , Al2S3 ),

гидролизуется и по катиону, и по аниону. В результате образуются малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания. Мерой силы кислоты и основания является константа диссоциации соответствующего реактива. Реакция среды этих растворов может быть нейтральной, слабокислой или слабощелочной:

Al2S3 + 6H2O =>2Al(OH)3v+ 3H2S^

Гидролиз - процесс обратимый. Гидролиз протекает необратимо, если в результате реакции образуется нерастворимое основание и (или) летучая кислота

Чистая вода очень плохо проводит электрический ток, но все же обладает измеримой электрической проводимостью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы:

По величине электрической проводимости чистой воды можно вычислить концентрацию ионов водорода и гидроксид-ионов в воде. При она равна моль/л.

Напишем выражение для константы диссоциации воды:

Перепишем это уравнение следующим образом:

Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул в воде практически равно общей концентрации воды, т. е. 55,55 моль/л (1 л. содержит 1000 г. воды, т. е. моль). В разбавленных водных растворах концентрацию зоды можно считать такой же. Поэтому, заменив в последнем уравнении произведение новой константой будем иметь:

Полученное уравнение показывает, что для воды и разбавленных водных растворов при неизменной температуре произведение концентрата ионов водорода и гидроксид-ионов есть величина постоянная, Эта постоянная величина называется ионным произведением воды. Численное значение ее нетрудно получить, подставив в последнее уравнение концентрации ионов водорода и гидроксид-ионов. В чистой воде при моль/л. Поэтому для указанной температуры:

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами. При , как уже сказано, в нейтральных растворах концентрация как ионов водорода, так и гидроксид-ионов равна моль/л. В кислых растзорах больше концентрация ионов водорода, в щелочных - концентрация гидроксид-ионов. Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным.

Если, например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода повысилась до моль/л, то концентрация гидроксид-ионов понизится так, что произведение останется равным . Следовательно, в этом растворе концентрация гидроксид-ионов будет:

Наоборот, если добавить к воде щелочи и тем повысить концентрацию гидроксид-ионов, например, до моль/л, то концентрация ионов водорода составит:

Эти примеры показывают, что если концентрация ионов водорода в водном растворе известна, то тем самым определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щелочности раствора можно количественно охарактеризовать концентрацией ионов водорода:

Кислотность или щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается через :

Например, если моль/л, то ; если моль/л, то и т. д. Отсюда ясно, что в нейтральном растворе ( моль/л) . В кислых растворах и тем меньше, чем кислее раствор. Наоборот, в щелочных растворах и тем больше, чем больше щелочность раствора.

Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.

Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.

При изготовлении файла, использован сайт http://alnam.ru/book_chem.php

Книга:

<<< Назад
Вперед >>>

Чистая вода очень плохо проводит электрический ток, но все же обладает измеримой электрической проводимостью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы:

По величине электрической проводимости чистой воды можно вычислить концентрацию ионов водорода и гидроксид-ионов в воде. При 25°C она равна 10 -7 моль/л.

Напишем выражение для константы диссоциации воды:

Перепишем это уравнение следующим образом:

Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул H 2 O в воде практически равна общей концентрации воды, т. е. 55,55 моль/л (1 л. содержит 1000 г. воды, т. е. 1000:18.02=55.55 моль). В разбавленных водных растворах концентрацию воды можно считать такой же. Поэтому, заменив в последнем уравнении произведение новой константой K H 2 O будем иметь:

Полученное уравнение показывает, что для воды и разбавленных водных растворов при неизменной температуре произведение концентрата ионов водорода и гидроксид-ионов есть величина постоянная, Эта постоянная величина называется ионным произведением воды. Численное значение ее нетрудно получить, подставив в последнее уравнение концентрации ионов водорода и гидроксид-ионов. В чистой воде при 25°C ==1·10 -7 моль/л. Поэтому для указанной температуры:

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами. При 25°C, как уже сказано, в нейтральных растворах концентрация как ионов водорода, так и гидроксид-ионов равна 10 -7 моль/л. В кислых растворах больше концентрация ионов водорода, в щелочных - концентрация гидроксид-ионов. Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным.

Если, например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода повысилась до 10 -3 моль/л, то концентрация гидроксид-ионов понизится так, что произведение останется равным 10 -14 . Следовательно, в этом растворе концентрация гидроксид-ионов будет:

10 -14 /10 -3 =10 -11 моль/л

Наоборот, если добавить к воде щелочи и тем повысить концентрацию гидроксид-ионов, например, до 10 -5 моль/л, то концентрация ионов водорода составит:

10 -14 /10 -5 =10 -9 моль/л

Эти примеры показывают, что если концентрация ионов водорода в водном растворе известна, то тем самым определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щелочности раствора можно количественно охарактеризовать концентрацией ионов водорода:

Кислотность или щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается через pH:

Например, если =10 -5 моль/л, то pH=5 ; если =10 -9 моль/л, то pH=9 и т. д. Отсюда ясно, что в нейтральном растворе (=10 -7 моль/л) pH=7. В кислых растворах pH<7 и тем меньше, чем кислее раствор. Наоборот, в щелочных растворах pH>7 и тем больше, чем больше щелочность раствора.

Для измерения pH существуют различные методы. Приближенно реакцию раствора можно определить с помощью специальных реактивов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространенные индикаторы - метиловый оранжевый, метиловый красный, фенолфталеин. В табл. 17 дана характеристика некоторых индикаторов.

Для многих процессов значение pH играет важную роль. Так, pH крови человека и животных имеет строго постоянное значение. Растения могут нормально произрастать лишь при значениях pH почвенного раствора, лежащих в определенном интервале, характерном для данного вида растения. Свойства природных вод, в частности их коррозионная активность, сильно зависят от их pH.

Таблица 17. Важнейшие индикаторы

<<< Назад
Вперед >>>

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы): H 2 O ↔ H + + OH -

Примерно на 556 000 000 не диссоциированных молекул воды диссоциирует только 1 молекула, однако это 60 000 000 000 диссоциированных молекул в 1мм 3 . Диссоциация обратима, то есть ионы H + и OH - могут снова образовать молекулу воды. В итоге наступает динамическое равновесие при котором количество распавшихся молекул равно количеству образовавшихся из H + и OH - ионов. Другими словами скорости обоих процессов будут равны. Для нашего случая, уравнение скорости химической реакции можно написать так:

υ 1 = κ 1 (для диссоциации воды)

υ 2 = κ 2 (для обратного процесса)

где υ - скорость реакции; κ - константа скорости реакции (зависящая от природы реагирующих веществ и температуры); , и - концентрации (моль/л).

В состоянии равновесия υ 1 = υ 2 , следовательно: κ 1 = κ 2

Так как, при определенной температуре, величины используемые в расчете ионного произведения воды (K, ) постоянны, значение ионного произведения воды так же постоянно. А поскольку при диссоциации молекулы воды образуется одинаковое количество ионов и , получается что для чистой воды концентрации и будут равны 10 -7 моль/л. Из постоянства ионного произведения воды следует, что если количество ионов H + становится больше, то количество ионов HO - становится меньше. Например, если к чистой воде добавить сильную кислоту HCl, она как сильный электролит вся продиссоциирует на H + и Cl - , в результате концентрация ионов H + резко увеличится, и это приведет к увеличению скорости процесса противоположного диссоциации, так как она зависит от концентраций ионов H + и OH - : υ 2 = κ 2

В ходе ускорившегося процесса противоположного диссоциации, концентрация ионов HO - уменьшится до величины соответствующей новому равновесию, при котором их будет так мало, что скорости диссоциации воды и обратного процесса снова будут равны. Если концентрация получившегося раствора HCl равна 0,1моль/л, равновесная концентрация будет равна: = 10 -14 /0,1 = 10 -13 моль/л

Ионное произведение воды ́ - произведение концентраций ионов водорода Н + и ионов гидроксила OH − в воде или в водныхрастворах, константа автопротолиза воды.



Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле:

· - концентрация ионов гидроксония (протонов);

· - концентрация гидроксид-ионов;

· - концентрация воды (в молекулярной форме) в воде;

Концентрация воды в воде, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.

При 25 °C константа диссоциации воды равна 1,8·10 −16 моль/л. Уравнение (1) можно переписать как:

Константа K в, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды . Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и K в, при понижении температуры - наоборот. Практическое значение ионного произведения воды велико, так как оно позволяет при известной кислотности (щёлочности) любого раствора (то есть при известной концентрации или ) найти соответственно концентрации или . Хотя в большинстве случаев для удобства представления пользуются не абсолютными значениями концентраций, а взятыми с обратными знаком их десятичными логарифмами - соответственно, водородным показателем (pH) и гидроксильным показателем (pOH).

Так как K в - константа, при добавлении к раствору кислоты (ионов H +), концентрация гидроксид-ионов OH − будет падать и наоборот. В нейтральной среде = = моль/л. При концентрации > 10 −7 моль/л (соответственно, концентрации < 10 −7 моль/л) среда будет кислой ; При концентрации > 10 −7 моль/л (соответственно, концентрации < 10 −7 моль/л) - щелочной .

27. Буферные растворы: их состав, свойства, механизм действия. Буферная емкость

Буферные растворы - это растворы, содержащие буферные системы. Буферными системами называются смеси, в составе которых содержатся в определенном количественном соотношении слабые кислоты и их соли с сильными основаниями или слабые основания и их соли с сильными кислотами. Такие растворы обладают устойчивой концентрацией ионов Н+ при разбавлении нейтральным растворителем (водой) и добавлении к ним определенного количества сильных кислот или оснований.

Буферные растворы находятся в водах мирового океана, почвенных растворах и живых организмах. Эти системы выполняют функции регуляторов, поддерживающих активную реакцию среды при определенном значении, необходимом для успешного протекания реакций обмена веществ. Буферные растворы классифицируются на кислотные и основные. Примером первых может быть ацетатная буферная система, вторых - аммонийная. Различают естественные и искусственные буферные растворы. Естественным буферным раствором является кровь, содержащая гидрокарбонатную, фосфатную, белковую, гемоглобиновую и кислотную буферные системы. Искусственным буферным раствором может быть ацетатный буфер, состоящий из СН3СООН.

Особенности внутреннего состава и механизма действия буферных систем рассмотрим на примере ацетатной буферной системы: ацетатная кислота/ацетат натрия. В водной среде компоненты буферной системы подвергаются электролитической диссоциации. Ацетат натрия как соль слабой кислоты и сильного основания целиком диссоциирует на ионы. Наличие анионов в такой буферной смеси зависит от концентрации в ней соли и степени ее диссоциации. Концентрация ионов Н+ в буферной системе прямо пропорциональна концентрации в ней кислоты и обратно пропорциональна содержанию в ней соли этой кислоты.

Таким образом, концентрация ионов Н+ в основном буфере прямо пропорциональна концентрации в нем соли и обратно пропорциональна концентрации основания.

примеру, необходимо приготовить ацетатный буфер с несколькими значениями pH. Вначале приготовляют 5М растворы ацетатной кислоты и ацетата натрия. Для приготовления первого раствора берут по 50 мл каждого из компонентов. Руководствуясь формулой, определяют концентрацию ионов Н+ в полученном растворе.

Для следующего буферного раствора берут 80 мл раствора кислоты и 20 мл раствора соли, приготовленных ранее. Существует ряд прописей различных буферных растворов, применяемых в химическом анализе и лабораторной практике.

Для буферных растворов характерны некоторое свойства. К таковым, в первую очередь, относится буферность – способность сохранять постоянство концентрации ионов Н+ при добавлении в буферный раствор определенного количества сильной кислоты или сильного основания. Например, если к ацетатному буферу добавить небольшое количество хлоридной кислоты, сдвига рН в кислую сторону не произойдет, так как хлоридная кислота вступит в реакцию обменного разложения с солью слабой кислоты. В результате реакции сильная кислота, способная сдвинуть рН в кислую сторону, заменяется слабой кислотой и нейтральной солью. Степень диссоциации раствора слабого электролита при увеличении его концентрации уменьшается, стремится к нулю, и сдвиг рН не происходит.

Буферная ёмкость раствора (от англ. buffer - амортизатор, англ. buff - смягчать толчки) - такое количество кислоты или основания, нужное для изменения pH буферного раствора ровно на 1.

Буферная смесь, буферный раствор, буферная система - сочетание веществ, система, поддерживающая постоянство pH.

Чистая вода плохо проводит электрический ток, но всё же обладает измеримой электропроводностью, которая объясняется частичной диссоциацией молекул Н 2 О на ионы водорода и гидроксид-ионы:

Н 2 О Н + + ОН –

По величине электропроводности чистой воды можно вычислить концентрацию в ней ионов Н + и ОН – . При 25 о С она равна 10 –7 моль/л.

Константа диссоциации Н 2 О рассчитывается следующим образом:

Перепишем это уравнение:

Следует подчеркнуть, что данная формула содержит равновесные концентрации молекул Н 2 О, ионов Н + и ОН – , которые установились на момент наступления равновесия в реакции диссоциации Н 2 О.

Но, поскольку степень диссоциации Н 2 О очень мала, можно считать, что концентрация недиссоциированных молекул Н 2 О в момент наступления равновесия практически равна общей начальной концентрации воды, т.е. 55,56 моль/дм 3 (1 дм 3 Н 2 О содержит 1000 г Н 2 О или 1000: 18 ≈ 55,56 (молей). В разбавленных водных растворах можно считать, что концентрация Н 2 О будет такой же. Поэтому, заменив в уравнении (42) произведение двух постоянных величин новой константой (или K W ), будем иметь:

Полученное уравнение показывает, что для воды и разбавленных водных растворов при неизменной температуре произведение молярных концентраций ионов водорода и гидроксид-ионов есть величина постоянная. Она называется иначе ионным произведением воды .

В чистой воде при 25 о С .
Поэтому для указанной температуры:

При увеличении температуры значении возрастает. При 100 о С оно достигает 5,5 ∙ 10 –13 (рис. 34).

Рис. 34. Зависимость константы диссоциации воды K w
от температуры t(°С)

Растворы, в которых концентрации ионов Н + и ОН – одинаковы, называются нейтральными растворами . В кислых растворах больше содержится ионов водорода, а в щелочных – гидроксид-ионов. Но какова бы ни была реакция среды в растворе, произведение молярных концентраций ионов Н + и ОН – останется постоянным.

Если, например, к чистой Н 2 О добавить некоторое количество кислоты и концентрация ионов Н + при этом увеличится до 10 -4 моль/дм 3 , то концентрация ионов ОН – , соответственно, понизится так, что произведение останется равным 10 -14 . Следовательно, в этом растворе концентрация гидроксид-ионов будет равна 10 -14: 10 -4 = 10 -10 моль/дм 3 . Этот пример показывает, что если концентрация ионов водорода в водном растворе известна, то тем самым определена и концентрация гидроксид-ионов. Поэтому реакцию раствора можно количественно охарактеризовать концентрацией ионов Н + :

нейтральный раствор ®

кислый раствор ®

щелочной раствор ®

На практике для количественной характеристики кислотности или щёлочности раствора используют не молярную концентрацию в нём ионов Н + , а её отрицательный десятичный логарифм. Эта величина называется водородным показателем и обозначается через рН :


рН = –lg

Например, если , то рН = 2; если , то рН = 10. В нейтральном растворе рН = 7. В кислых растворах рН < 7 (и тем меньше, чем «кислее» раствор, т.е., чем больше в нём концентрация ионов Н +). В щёлочных растворах рН > 7 (и тем больше, чем «щелочнее» раствор, т.е., чем меньше в нём концентрация ионов Н +).

Для измерения рН раствора существуют различные методы. Очень удобно приблизительно оценивать реакцию раствора с помощью специальных реактивов, называемых кислотно-основными индикаторами . Окраска этих веществ в растворе меняется в зависимости от концентрации в нём ионов Н + . Характеристика некоторых наиболее распространённых индикаторов представлена в таблице 12.

Таблица 12. Важнейшие кислотно-основные индикаторы

Поделитесь с друзьями или сохраните для себя:

Загрузка...