Что такое активный транспорт. Активный транспорт веществ

Активным транспортом называют процессы, в которых молекула должна двигаться через мембрану независимо от направления ее концентрационного градиента. Чаще всего это происходит и.ч области с более низкой концентрацией в область с более высокой и сопровождается увеличением свободной энергии, которое составляет 5,71 lgC2/C| кДж-моль-1.

Как указывалось раннее это процесс переноса веществ из мест с меньшим значением электрохимического потенциала в места с его большим значением.

Так как активный транспорт в мембране сопровождается ростом энергии Гиббса, он не может идти самопроизвольно, т. е. для такого процесса необходимо сопряжение с какой-нибудь самопроизвольно протекающей реакцией. В целом, это может осуществляться двумя путями: 1) в сопряжении с процессом гидролиза АТФ, т. е. за счет затраты энергии, запасенной в макроэргических связях; 2) опосредованный мембранным потенциалом и/или градиентом концентрации ионов при наличии и мембране специфических переносчиков.

В первом случае транспорт осуществляется с помощью электрогенных ионных насосов, работающих за счет свободной энергии гидролиза АТФ. Их относят к специальных систем интегральных белков и называют транспортными АТФазами. В настоящее время известны три типа электрогенных ионных насосов, осуществляющих перенос ионов через мембрану: К+ - Na+ - АТФазы, за счет энергии, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносится два иона калия и выкачиваются три иона натрия; в Са2+ - АТФазе за счет энергии гидролиза АТФ переносится два иона кальция; в Н+ - помпе - два протона.

Во втором случае транспорт веществ является вторичным, для которого глубоко исследованы три схемы.

Однонаправленный перенос иона в комплексе со специфическим переносчиком получил название унипорта. При этом через мембрану переносится заряд либо комплексом если молекула переносчика электронейтральна, либо пустым переносчиком, если транспорт обеспечивается заряженным переносчиком. Результатом переноса будет накопление ионов за счет снижения мембранного потенциала. Такой эффект наблюдается при накоплении ионов калия в присутствии валиномицина в энергизированных митохондриях.

Встречный перенос ионов с участием одноместной молекулы - переносчика получил название антипорта. Предполагается при этом, что молекула переносчика образует прочный комплекс с каждым из переносимых ионов. Перенос осуществляется в два этапа: сначала один ион пересекает мембрану слева направо, затем второй ион - в обратном направлении. Мембранный потенциал при этом не меняется. По-видимому, движущей силой в этом процессе является разность концентраций одного из переносимых ионов. Если исходно разность концентрации второго иона отсутствовала, то результатом переноса станет накопление второго иона за счет уменьшения разности концентраций первого. Классическим примером антипорта служит перенос через клеточную мембрану ионов калия и водорода с участием антибиотика нигирицина. Необходимо отметить, что большинство бел- ков-переносчиков функционируют по типу антипорта, т. е. движение вещества через мембрану становится возможным только в обмен на какое-либо довольно специфическое вещество, имеющее тот же заряд, но двигающееся в обратном направлении.

Таким образом, выход какого-либо основного компонента клетки по концентрационному градиенту, может управлять движением идущего навстречу вещества против его градиента и совершать «работу» до тех пор, пока обе движущие силы не уравновесятся.

Совместный однонаправленный перенос веществ с участием двухместного переносчика называеться симпортом. Предполагается, что в мембране могут находится две электронейтраль- ные частицы: переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой системе переноса не изменяется, то причиной транспорта может быть разность концентраций одного из ионов. Считается, что по схеме симпорта следует, что этот процесс должен сопровождаться значительным смещением осмотического равновесия, поскольку в одном цикле переносятся через мембрану две частицы в одном направлении.

Благодаря наличию достаточно хорошо разработанных(теорий, механизмов переноса ионов и эндогенных органических веществ в клетке стало возможным интерпретировать данные, полученные в экспериментах с лекарствами (раздел 6.3.3).

По аналогии с рис. 6.10 активный транспорт можно представить таким образом, как показано на рис. 6.11.

В этом случае переносчик С образует на внешней стороне мембраны с лекарством (Л) комплекс СА. Он проникает в мембрану, отщепляя Л с ее другой стороны. В случае активного транспорта концентрация Л на внутренней стороне мембраны может быть на много больше концентрации на наружной. В отличии от пассивного транспорта (рис. 6.10) комплекс СА используя энергию АТФ, превращается в комплекс С"А, который легко отщепляет Л (рис. 6.11). Учитывая необходимость энергетических затрат для осуществления транспорта СА на противоположную сторону мембраны, можно считать, что /(, (константа расщепления) на внутренней стороне больше К0. Это так называемое ассиметричное расщепление комплекса лекарство-переносчик.

Внешняя водная фаза

Концентрация [Л]0 Активность (Л)0

В живых организмах активные транспортные механизмы широко распространены и их можно рассматривать как одну из фундаментальных функций клетки. Например, в клетках имеется высокая концентрация калия и низкая концентрация натрия в отличии от внеклеточного пространства, где эти ионы находятся в обратном взаимоотношении. Мембраны свободно проходимы для обоих ионов и ассиметрическое распределение поддерживается путем постоянного «накачивания» натрия из клетки наружу и калия внутрь. .Секреция НС1 в желудке является настоящим активным транспортом Н+ и СГ. Йод концентрируется в щитовидной железе по аналогичному механизму. Сахара переносятся против более высокой концентрации в кишках и проксимальных почечных канальцах. Аналогично ведут себя аминокислоты в кишках, почках, мышцах и мозге. Секреция органических кислот (napa-аминобензойной, гиппу- ровой) почечными канальцами является активным транспортным процессом .

Механизм активного транспорта высокоспецифичен, так как он был создан природой для удовлетворения биологической потребности организма в необходимых питательных веществах или выведения из него продуктов их метаболизма. Что касается лекарственных средств, подвергающихся активному транспорту, то они в этом случае должны быть близки по химическому строению к естественным веществам организма. Путем активного транспорта в кишечнике всасывается аналог пиримидина фторафур и железо. С помощью того же механизма леводофа проникает через гематоэнцефалический барьер. В почечных канальцах секретируются лекарства, относящиеся к органическим кислотам и основаниям.

Подводя итог рассмотрению механизмов трансмембранного транспорта веществ необходимо еще раз подчеркнуть, что в процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы.

Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: нысокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три. В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузные процессы. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране - та основа, которая обеспечивает жизнедеятельность клетки.

Транспорт веществ внутрь и наружу клетки, а также между цитоплазмой и различными субклеточными органеллами (митохондриями, ядром и т.д.) обеспечивается мембранами. Если бы мембраны были глухим барьером, то внутриклеточное пространство оказалось бы недоступным для питательных веществ, а продукты жизнедеятельности не могли бы быть удалены из клетки. В то же время при полной проницаемости было бы невозможно накопление определенных веществ в клетке. Транспортные свойства мембраны характеризуются полупроницаемостью : некоторые соединения могут проникать через нее, а другие - нет:

Проницаемость мембран для различных веществ

Одна из главных функций мембран - регуляция переноса веществ. Существуют два способа переноса веществ через мембрану: пассивный и активный транспорт:

Транспорт веществ через мембраны

Пассивный транспорт . Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т.е. по градиенту концентрации этого вещества) без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией . Различают два типа диффузии: простую и облегченную .

Простая диффузия характерна для небольших нейтральных молекул (H2O, CO2, O2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия . Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа ) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт имеет место в том случае, когда перенос осуществляется против градиента концентрации. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТР. Для активного транспорта кроме источника энергии необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na+ и K+ через клеточную мембрану. Эта система называется Na+ - K+ - насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация К+ выше, чем Na+ :

Механизм действия Na+, K+-АТР-азы

Градиент концентрации калия и натрия поддерживается путем переноса К+ внутрь клетки, а Na+ наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na+ ,K+ -насос представляет собой белок - транспортную АТР-азу . Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится три иона Na+, а в обратном направлении - два иона К+. При этом используется энергия молекулы АТР. Существуют транспортные системы для переноса ионов кальция (Са2+ - АТР-азы), протонные насосы (Н+ - АТР-азы) и др. Симпорт это активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества. Транспортная АТР-аза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи. При этом используется энергия градиента концентрации ионов Na+, создаваемого Na+, K+-АТР-азой.

К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными.

[показать]


Классификация[править | править вики-текст]

Мембранные белки могут быть классифицированы по топологическому или биохимическому принципу. Топологическая классификация основана на том, сколько раз белок пересекает липидный бислой. В соответсвии с этим критерием белки подразделяются намонотопические , битопические и политопические :

·монотопические белки взаимодействуют с одной поверхностью мембраны и не пересекаю её;

·битопические пронизывают мембрану насквозь и взаимодействуют с обеими её поверхностями;

·политопические пронизывают мембрану несколько раз (многократное взаимодействие с липидами).

Понятно, что первые относятся к периферическим белкам, а вторые и третьи к интегральным.

Различные категории политопических белков. Связывание с мембраной за счёт (1) единичной трансмембранной альфа-спирали, (2) множественных трансмембранных альфа-спиралей, (3) бета-складчатой структуры.

Различные категории интегральных монотопических белков. Связывание с мембраной за счёт (1) амфипатической альфа-спирали, параллельной плоскости мембраны, (2) гидрофобной петли, (3) ковалентно соединённогожирнокислотного остатка, (4) электростатического взаимодействия (прямого или кальций-опосредованного).

Топологическая классификация[править | править вики-текст]

По отношению к мембране мембранные белки делятся на поли- и монотопические.

·Политопические, или трансмембранные, белки полностью пронизывают мембрану и, таким образом, взаимодействуют с обеими сторонами липидного бислоя. Как правило, трансмембранный фрагмент белка является альфа-спиралью, состоящей из гидрофобных аминокислот (возможно от 1 до 20 таких фрагментов). Только у бактерий, а также вмитохондриях и хлоропластах трансмембранные фрагменты могут быть организованы как бета-складчатая структура(от 8 до 22 поворотов полипептидной цепи).

·Интегральные монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную сторону.

Биохимическая классификация[править | править вики-текст]

По биохимической классификации мембранные белки делятся на интегральные и периферические .

·Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентов или неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.

·Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либогликозилфосфатидилинозитола, присоединённых к белку в процессе их посттрансляционной модификации.

7)Углеводная часть гликолипидов и гликопротеинов плазматической мембраны всегда находится на наружной поверхности мембраны, контактируя с межклеточным веществом. Углеводы плазматической мембраны выполняют роль специфических лигандов для белков. Они образуют участки узнавания, к которым присоединяются определенные белки; присоединившийся белок может изменить функциональное состояние клетки.

Функции углеводов.

В наружной мембране эритроцитов некоторые полисахариды содержат N-аце-тилнейраминовую кислоту на концах цепей. Если эритроциты выделить из крови, обработать in vitro нейраминидазой, отщепляющей N-ацетилнейраминовую кислоту от мембранных углеводов, и вновь ввести в кровь тому же животному, то обнаруживается, что время полужизни таких эритроцитов в крови уменьшается в несколько раз: они задерживаются в селезенке и разрушаются. Как выяснилось, в клетках селезенки есть рецептор, узнающий углевод, который утратил концевые остатки нейраминовой кислоты. Возможно, что такой механизм обеспечивает отбор селезенкой «состарившихся» эритроцитов и их разрушение.
Известно, что в суспензии клеток, выделенных из какой-либо ткани, через некоторое время образуются агрегаты клеток, причем в каждом агрегате, как правило, оказываются клетки одного типа. Например, в суспензии клеток, полученных из гаструлы, образуется три вида агрегатов: каждый из них содержит клетки, принадлежащие одному и тому же зародышевому листку - эктодерме, мезодерме или эндодерме. Узнавание между клетками обеспечивается, в частности, взаимодействием мембранных углеводов одной клетки с белками-рецепторами другой клетки (рис. 9.39). Эти механизмы узнавания могут участвовать в таких процессах, как гистогенез и морфогенез. Однако есть и другие механизмы, обеспечивающие межклеточные контакты.
Полисахариды клеточной мембраны наряду с белками выполняют роль антигенов при развитии клеточного иммунитета, в том числе при реакции отторжения трансплантата. Они также служат местами узнавания при заражении патогенными вирусами и микроорганизмами. Например, вирус гриппа при проникновении в клетку сначала присоединяется к ее мембране, взаимодействуя с полисахаридом определенной структуры.

8)леточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия

Активный транспорт веществ осуществляется против суммарного (обобщенного) градиента. Это означает, что перенос вещества идет из мест с меньшим значением электрохимического потенциала в места с его большим значением.

Активный транспорт не может идти самопроизвольно, а только в сопряжении с процессом гидролиза аденозинтрифосфорной кислоты (АТФ), то есть за счет затраты энергии, запасенной в макроэргических связях молекулы АТФ.

Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., поддерживающие жизненные процессы, то есть с точки зрения термодинамики активный перенос удерживает организм в неравновесном состоянии, обеспечивая нормальное протекание жизненных процессов.

Для осуществления активного переноса помимо источника энергии необходимо существование определенных структур. Согласно современным представлениям, в биологических мембранах имеются ионные насосы, работающие за счет энергии гидролиза АТФ или так называемые транспортные АТФ-азы, представленные белковыми комплексами.

В настоящее время известны три типа электрогенных ионных насосов, осуществляющих активный перенос ионов через мембрану. Это К + -Nа + -АТФаза в цитоплазматических мембранах (К + -Nа + -насос), Са 2+ - АТФаза (Са 2+ -насос) и Н + - АТФаза в энергосопрягающих мембранах митохондрий (Н + - насос или протонная помпа).

Перенос ионов транспортными АТФазами происходит вследствие сопряжения процессов переноса с химическими реакциями, за счет энергии метаболизма клеток.

При работе К + -Nа + -АТФазы за счет энергии, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносится два иона калия и одновременно из клетки выкачиваются три иона натрия. Таким образом, создается повышенная по сравнению с межклеточной средой концентрация в клетке ионов калия и пониженная натрия, что имеет большое физиологическое значение.

В Са 2+ -АТФазе за счет энергии гидролиза АТФ переносятся два иона кальция, а в Н + - помпе – два протона.

Молекулярный механизм работы ионных АТФаз до конца не изучен. Тем не менее, прослеживаются основные этапы этого сложного ферментативного процесса. В случае К + -Nа + -АТФазы (обозначим ее для краткости Е) насчитывается семь этапов переноса ионов, сопряженных с гидролизом АТФ. Обозначения Е 1 и Е 2 соответствуют расположению активного центра фермента на внутренней и внешней поверхностях мембраны (АДФ- аденозиндифосфат, Р – неорганический фосфат, звездочкой обозначен активированный комплекс):

1) Е + АТФ à Е*АТФ,

2) Е*АТФ + 3Nаà [Е*АТФ]*Nа 3 ,

3) [Е*АТФ]*Nа 3 à *Na 3 + АДФ,

4) *Na 3 à *Na 3 ,

5) *Na 3 + 2K à *K 2 + 3Na,

6) *K 2 à *K 2,

7) *K 2 à E + P + 2K.

На схеме видно, что ключевыми этапами работы фермента являются: 1) образование комплекса фермента с АТФ на внутренней поверхности мембраны (эта реакция активируется ионами магния); 2) связывание комплексом трех ионов натрия; 3) фосфорилирование фермента с образованием аденозиндифосфата; 4) изменение конформации фермента внутри мембраны; 5) реакция ионного обмена натрия на калий, происходящая на внешней поверхности мембраны; 6) обратное изменение конформации ферментного комплекса с переносом ионов калия внутрь клетки, и 7) возвращение фермента в исходное состояние с освобождением ионов калия и неорганического фосфата. Таким образом, за полный цикл происходят выброс из клетки трех ионов натрия, обогащение цитоплазмы двумя ионами калия и гидролиз одной молекулы АТФ.

Помимо ионных насосов, рассмотренных выше, известны сходные системы, в которых накопление веществ сопряжено не с гидролизом АТФ, а с работой окислительно-восстановительных ферментов или фотосинтезом. Транспорт веществ в этом случае является вторичным, опосредованным мембранным потенциалом и (или) градиентом концентрации ионов при наличии в мембране специфических переносчиков. Такой механизм переноса получил название вторичного активного транспорта. В плазматических и субклеточных мембранах живых клеток возможно одновременное функционирование первичного и вторичного активного транспорта. Такой механизм переноса особенно важен для тех метаболитов, насосы для которых отсутствуют (сахара, аминокислоты).

Совместный однонаправленный перенос ионов с участием двухместного переносчика называется симпортом. Предполагается, что в мембране могут находиться переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой схеме переноса не изменяется, то причиной переноса может быть разность концентраций одного из ионов. Считается, что по схеме симпорта осуществляется накопление клетками аминокислот.

Выводы и заключение.

В процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы.

Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: высокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три. В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузные процессы. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране – это та основа, которая обеспечивает жизнедеятельность клетки.

Разработала заведующая кафедрой биологической и медицинской физики кандидат физико-математических наук доцент Новикова Н.Г.

Активный транспорт - это перенос вещества из мест с меньшим значением электрохимического потенциала в места с его большим значением.

Активный транспорт в мембране сопровождается ростом энергии Гиббса, он не может идти самопроизвольно, а только в сопряжении с процессом гидролиза аденозинтрифосфорной кислоты (АТФ), то есть за счет затраты энергии, запасенной в макроэргических связях АТФ.

Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., поддерживающие жизненные процессы, т.е. с точки зрения термодинамики активный перенос удерживает организм в неравновесном состоянии, поддерживает жизнь.

Существование активного транспорта веществ через биологические мембраны впервые было доказано в опытах Уссинга (1949 г.) на примере переноса ионов натрия через кожу лягушки (рис. 12).

Рис. 12. Схема опытов Уссинга (А - амперметр, V - вольтметр, Б - батарейка, П - потенциометр)

Экспериментальная камера Уссинга, заполненная нормальным раствором Рингера, была разделена на две части свежеизолированной кожей лягушки. На рис. 12, слева - наружная мукозная поверхность кожи, справа - внутренняя серозная. Наблюдались потоки ионов натрия через кожу лягушки: слева направо от наружной к внутренней поверхности и справа налево от внутренней к наружной поверхности.

Из уравнения Теорелла, описывающего пассивный транспорт, следует уравнение Уссинга- Теорелла для отношения этих потоков в случае пассивного транспорта:

J m ,вн /j m ,нар = (С нар /С вн)×е ZF j / RT

На коже лягушки, разделяющей раствор Рингера, возникает разность потенциалов (j вн -j нар) -внутренняя сторона кожи имеет положительный потенциал по отношению к наружной. В установке Уссинга (рис. 12) имелся блок компенсации напряжения, с помощью которого устанавливалась разность потенциалов на коже лягушки, равная нулю, что контролировалось вольтметром. Поддерживалась одинаковая концентрация ионов с наружной и внутренней стороны С нар = С вн.

При этих условиях, если бы перенос натрия через кожу лягушки определялся только пассивным транспортом, то согласно уравнению Уссинга-Теорелла потоки j m ,вн и j m ,нар были равны друг другу: j m ,вн = j m ,нар

Суммарный поток через мембрану был бы равен нулю.

С помощью амперметра обнаружено, что в условиях опыта (отсутствие градиентов электрического потенциала и концентрации) через кожу лягушки течет электрический ток I, следовательно происходит односторонний перенос заряженных частиц. Установлено, что ток через кожу течет от внешней среды к внутренней.

Экспериментальные данные неопровержимо свидетельствовали о том, что перенос ионов натрия через кожу лягушки не подчиняется уравнению пассивного транспорта. Следовательно, имеет место активный перенос.

Электрогенные ионные насосы

Согласно современным представлениям, в биологических мембранах имеются ионные насосы, работающие за счет свободной энергии гидролиза АТФ, - специальные системы интегральных белков (транспортные АТФазы).

В настоящее время известны три типа электрогенных ионных насосов, осуществляющих активный перенос ионов через мембрану (рис.13).

Перенос ионов транспортными АТФазами происходит вследствие сопряжения процессов переноса с химическими реакциями, за счет энергии метаболизма клеток.

При работе К + -Na + -АТФазы за счет энергии, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносится два иона калия и одновременно из клетки выкачиваются три иона натрия. Таким образом, создается повышенная по сравнению с межклеточной средой концентрация в клетке ионов калия и пониженная натрия, что имеет огромное физиологическое значение.

В Са 2+ -АТФазе за счет энергии гидролиза АТФ переносятся два иона кальция, а в Н + -помпе - два протона.

Рис.13 . Виды ионных насосов: а) К + -Na + - АТФаза в цитоплазматических мембранах

(К + -Nа + -насос); б) - Са 2+ -АТФаза (Са 2+ -насос); в) - Н + -АТФаза в энергосопрягающих мембранах митохондрий, хлоропластов (Н + -насос, или протонная помпа)

Молекулярный механизм работы ионных АТФаз до конца не изучен. Тем не менее прослеживаются основные этапы этого сложного ферментативного процесса. В случае К + -Nа + -АТФазы насчитывается семь этапов переноса ионов, сопряженных с гидролизом АТФ.

На схеме видно, что ключевыми этапами работы фермента являются:

1) образование комплекса фермента с АТФ на внутренней поверхности мембраны (эта реакция активируется ионами магния);

2) связывание комплексом трех ионов натрия;

3) фосфорилирование фермента с образованием аденозиндифосфата;

4) переворот (флип-флоп) фермента внутри мембраны;

5) реакция ионного обмена натрия на калий, происходящая на внешней поверхности мембраны;

6) обратный переворот ферментного комплекса с переносом ионов калия внутрь клетки;

7) возвращение фермента в исходное состояние с освобождением ионов калия и неорганического фосфата (Р).

Таким образом, за полный цикл происходят выброс из клетки трех ионов натрия, обогащение цитоплазмы двумя ионами калия и гидролиз одной молекулы АТФ.

Вторичный активный транспорт ионов .

Помимо ионных насосов, рассмотренных выше, известны сходные системы, в которых накопление веществ сопряжено не с гидролизом АТФ, а с работой окислительно-восстановительных ферментов или фотосинтезом. Транспорт веществ в этом случае является вторичным, опосредованным мембранным потенциалом и/или градиентом концентрации ионов при наличии в мембране специфических переносчиков. Такой механизм переноса получил название вторичного активного транспорта. Наиболее детально этот механизм рассмотрен Питером Митчелом (1966 г.) в хемиосмотической теории окислительного фосфорилирования. В плазматических и субклеточных мембранах живых клеток возможно одновременное функционирование первичного и вторичного активного транспорта. Примером может служить внутренняя мембрана митохондрий. Ингибирование АТФазы в ней не лишает частицу способности накапливать вещества за счет вторичного активного транспорта. Такой способ накопления особенно важен для тех метаболитов, насосы для которых отсутствуют (сахара, аминокислоты).

В настоящее время достаточно глубоко исследованы три схемы вторичного активного транспорта. Рассмотрим транспорт одновалентных ионов с участием молекул-переносчиков. При этом подразумевается, что переносчик в нагруженном или ненагруженном состоянии одинаково хорошо пересекает мембрану. Источником энергии служит мембранный потенциал и/или градиент концентрации одного из ионов. Схемы показаны на рис.14. Однонаправленный перенос иона в комплексе со специфическим переносчиком получил название унипорта . При этом через мембрану переносится заряд либо комплексом, если молекула переносчика электронейтральна, либо пустым переносчиком, если перенос обеспечивается заряженным переносчиком. Результатом переноса будет накопление ионов за счет снижения мембранного потенциала. Такой эффект наблюдается при накоплении ионов калия в присутствии валиномицина в энергизированных митохондриях.

Встречный перенос ионов с участием одноместной молекулы-переносчика получил название антипорта . Предполагается при этом, что молекула-переносчик образует прочный комплекс с каждым из переносимых ионов. Перенос осуществляется в два этапа: сначала один ион пересекает мембрану слева направо, затем второй ион - в обратном направлении. Мембранный потенциал при этом не меняется. Что же является движущей силой этого процесса? Очевидно, разность концентраций одного из переносимых ионов. Если исходно разность концентрации второго иона отсутствовала, то результатом переноса станет накопление второго иона за счет уменьшения разности концентраций первого. Классическим примером антипорта служит перенос через клеточную мембрану ионов калия и водорода с участием молекулы антибиотика нигерицина.

Совместный однонаправленный перенос ионов с участием двухместного переносчика называется симпортом . Предполагается, что в мембране могут находиться две электронейтральные частицы: переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой схеме переноса не изменяется, то причиной переноса может быть разность концентраций одного из ионов. Считается, что по схеме симпорта осуществляется накопление клетками аминокислот. Калий-натриевый насос (рис.13) создает начальный градиент концентрации ионов натрия, которые затем по схеме симпорта способствуют накоплению аминокислот. Из схемы симпорта следует, что этот процесс должен сопровождаться значительным смещением осмотического равновесия, поскольку в одном цикле через мембрану переносятся две частицы в одном направлении.

Рис.14. Основные схемы вторичного активного транспорта ионов

В процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы.

Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: высокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три. В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузные процессы. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране обеспечивает жизнедеятельность клетки.

Клетка - структурная единица всего живого на нашей планете и открытая система. Это значит, что для ее жизнедеятельности необходим постоянный обмен веществами и энергией с окружающей средой. Этот обмен осуществляется через мембрану - главную границу клетки, которая призвана сохранить ее целостность. Именно через мембрану осуществляется клеточный обмен и идет он либо по градиенту концентрации какого-либо вещества, либо против. Активный транспорт через цитоплазматическую мембрану - процесс сложный и энергозатратный.

Мембрана - барьер и шлюз

Цитоплазматическая мембрана входит в состав многих клеточных органелл, пластид и включений. Современная наука основана на жидкостно-мозаичной модели структуры мембран. Активный транспорт веществ через мембрану возможен благодаря ее специфическому строению. Основу мембран образует липидный бислой - в основном это фосфолипиды, расположенные в соответствии со своими Главные свойства липидного бислоя - это текучесть (способность встраивать и терять участки), самосборка и ассиметричность. Второй компонент мембран - белки. Их функции многообразны: активный транспорт, рецепция, ферментация, узнавание.

Располагаются белки как на поверхности мембран, так и внутри, а некоторые по несколько раз пронизывают ее. Свойство белков в мембране - способность к переходу с одной стороны мембраны на другую («флип-флоп» перескок). И последний компонент - сахаридные и полисахаридные цепочки углеводов на поверхности мембран. Функции их и сегодня спорны.

Виды активного транспорта веществ через мембрану

Активным будет такой перенос веществ через мембрану клетки, который является контролируемым, происходит с затратами энергии и идет против градиента концентрации (вещества переносятся из области с низкой концентрацией в область с высокой концентрацией). В зависимости от того, какой источник энергии используется, выделяют следующие виды транспорта:

  • Первично активный (источник энергии - гидролиз до аденозиндифосфорной АДФ).
  • Вторично активный (обеспечивается вторичной энергией, созданной в результате работы механизмов первично активного транспорта веществ).

Белки-помощники

И в первом, и во втором случае транспорт невозможен без белков-переносчиков. Эти транспортные белки очень специфичны и предназначаются для переноса определенных молекул, а иногда даже определенной разновидности молекул. Это было доказано экспериментально на мутировавших генах бактерий, что приводило к невозможности активного транспорта через мембрану определенного углевода. Трансмембранные белки-переносчики могут быть собственно переносчиками (они взаимодействуют с молекулами и непосредственно проносят ее через мембрану) или каналообразующими (формируют поры в мембранах, которые открыты для специфичных веществ).

Насос для натрия и калия

Наиболее изученным примером первичного активного транспорта веществ через мембрану является Na+ -, К+ -насос. Этот механизм обеспечивает разность концентраций ионов Na+ и К+ по обеим сторонам мембраны, что необходимо для поддержания осмотического давления в клетке и других обменных процессов. Трансмембранный белок-переносчик - натрий-калиевая АТФ-аза - состоит из трех частей:

  • На наружной стороне мембраны у белка расположены два рецептора для ионов калия.
  • На внутренней стороне мембраны - три рецептора для ионов натрия.
  • Внутренней части белка свойственна АТФ активность.

Когда два иона калия и три иона натрия связываются с рецепторами белка по обе стороны мембраны, включается АТФ активность. Молекула АТФ гидролизируется до АДФ с выделением энергии, которая затрачивается на перенос ионов калия внутрь, а ионов натрия наружу цитоплазматической мембраны. Подсчитано, что коэффициент полезного действия такого насоса составляет более 90%, что само по себе довольно удивительно.

Для справки: КПД двигателя внутреннего сгорания - порядка 40%, электрического - до 80%. Интересно, что насос может работать и в обратном направлении и служить донором фосфатов для синтеза АТФ. Для некоторых клеток (например, нейронов) характерны траты до 70% всей энергии на вынос натрия из клетки и накачивание внутрь ионов калия. По такому же принципу активного транспорта работают насосы для кальция, хлора, водорода и некоторых других катионов (ионов с положительным зарядом). Для анионов (отрицательно заряженных ионов) таких насосов не обнаружено.

Котранспорт углеводов и аминокислот

Примером вторичного активного транспорта может служить перенос в клетки глюкозы, аминокислот, йода, железа и мочевой кислоты. В результате работы калий-натриевого насоса создается градиент концентраций натрия: снаружи концентрация высокая, а внутри - низкая (иногда в 10-20 раз). Натрий стремится диффундировать в клетку и энергия этой диффузии может быть использована для транспорта веществ наружу. Это механизм называют котранспортом или сопряженным активным транспортом. В этом случае у белка-переносчика имеется два рецепторных центра с наружной части: один для натрия, а другой - для транспортируемого элемента. Только после активации обоих рецепторов белок подвергается конформационным изменениям, и энергия диффузии натрия вводит в клетку транспортируемое вещество против градиента концентрации.

Значение активного транспорта для клетки

Если бы обычная диффузия веществ через мембрану протекала сколь угодно долго, концентрации их снаружи и внутри клетки выровнялись бы. А это для клеток гибель. Ведь все биохимические процессы должны протекать в среде электрической разности потенциалов. Без активного, против транспорта веществ нейроны не смогли бы передавать нервный импульс. А мышечные клетки утратили бы возможность сокращаться. Клетка бы не смогла поддерживать осмотическое давление и сплющилась бы. А продукты метаболизма не выводились бы наружу. Да и гормоны никогда не попали бы в кровяное русло. Ведь даже амеба тратит энергию и создает разность потенциалов на своей мембране при помощи все тех же ионных насосов.

Поделитесь с друзьями или сохраните для себя:

Загрузка...