SA. Твердые тела

Природные и рукотворные тела. Вы уже зна-ете, что различают природу живую и неживую. Используя рис. 9, назовите тела живой и неживой природы.

Кроме природных тел, существуют также руко-творные тела, созданные человеком. Например, днём комнату освещает природное тело Солнце, а ве-чером мы пользуемся рукотворными телами — на-стольной лампой либо люстрой. Моря и реки — при-родные тела, а бассейн и пруд — рукотворные. Они отличаются по форме, размерам, массе, объёму.

Рис. 9. Живая и неживая природа

Характеристики тел. Указанные характеристи-ки дают возможность различать тела. Согласитесь, сложно перепутать школьный учебник и куриное яйцо, поскольку они имеют разную форму. Учеб-ник — тело правильной формы. Можно измерить его длину, ширину и высоту. Измерить размеры куриного яйца невозможно, поскольку это тело не-правильной формы.

Описывая горы, мы говорим, что эти тела нежи-вой природы имеют крупные размеры, чего не ска-жешь о колоске пшеницы.

Вода в твёрдом, жидком и газообразном состояниях

Нет необходимости взвешивать арбуз и вишню, чтобы безошибочно определить, что арбуз гораздо тяжелее. Масса — это ещё одна характеристика тел.

Охарактеризовать тела можно и по объёму. Вед-ро имеет значительно больший объём, чем чашка. Объём тела прямоугольной формы определяют, умножив значение его длины, ширины и высоты. Чтобы измерить объём тела неправильной формы, надо погрузить его в воду. Объём тела равен объё-му вытесненной телом воды.

Характеристики тел — это признаки, по которым они различаются. К характеристикам тел относят-ся форма, размеры, масса, объём. Линейные раз-меры, массу и объём тел измеряют с помощью приборов.

Характеризуя тела, обращают внимание на их агрегатное состояние. Различают твёрдое тело , жидкость, газ. Копейка — это твёрдое тело, роса — жидкое, а воздух — газообразное. Тела природы преимущественно твёрдые.

Форма тел воспринимается визуально, то есть посредством зрения. Используя рис. 10, по-пытайтесь сравнить тела по форме и размерам. Материал с сайта

Описание тела по плану. Используя характеристики, тела можно описывать по пла-ну: 1) форма; 2) размеры; 3) масса; 4) объём. Опишем по этому плану морковь, предваритель-но измерив её длину (12 см) и массу (100 г). Что-бы определить объём, необходимо погрузить морковь в мерный цилиндр с водой (рис. 11). Предварительно запомним показатели объёма воды на шкале цилиндра до погружения моркови, а затем — после погружения. Разни-ца объёмов и будет объёмом моркови. В указанном примере она составляет приблизительно 30 мл.

Данные измерения дают возможность охаракте-ризовать морковь следующим образом: тело непра-вильной формы длиной 12 см, массой 100 г и объ-ёмом 30 мл.

По этим же признакам вы можете самостоятельно сравнивать разные природные и рукотворные тела.

С помощью размеров, массы, формы и объёма тел можно не только описать тело, но и сравнить его с другими.

Не нашли то, что искали? Воспользуйтесь поиском

Цели урока:

  1. Обобщить и систематизировать знания о телах природы и сформировать знания учащихся о свойствах тел.
  2. Развивать память, мышление.

Задачи:

  1. Научить различать естественные и искусственные тела, разнообразные формы тел.
  2. Научить измерять массу тел при помощи электронных весов.

Оборудование: мяч, кубик-Рубика, коробка, цветок, кубик из пенопласта, колба, электронные весы, алюминиевые пластинки, геометрические фигуры, магниты.

Ход урока

I. Организационный момент:

а) взаимное приветствие;

б) отметка отсутствующих;

Вступительное слово.

Здравствуйте, ребята. На предыдущих уроках мы говорили с вами о природе и сегодня продолжим разговор о ней.

Вопрос: Вспомните, что такое природа?

Ответ: Природа – это всё многообразие окружающего нас мира, всё, что возникло естественным путём.

Человеку всегда было присуще замечательное свойство – любознательность, непреодолимая тяга познавать окружающий мир, исследовать его, постигать суть явлений, в нём происходящих. И это ему удавалось и удаётся при помощи различных научных методов.

Вопрос: Какие методы изучения природы вам известны?

Ответ: Наблюдение и эксперимент.

Вы знаете, что наблюдение и эксперимент взаимосвязаны. В ходе наблюдения за каким-либо явлением или событием, человек тщательно записывает все изменения, происходящие с телами, затем высказывает гипотезу о том, как происходит явление, о причинах, его вызывающих. Правильность гипотезы проверяет экспериментально. Потом делает выводы. При этом использует специальные слова – термины. Что же такое «термин»?

Термин – это слово или сочетание слов, точно обозначающее определённое понятие. (В листочках записывают определение термина). (Приложение 1, слайд № 2).

Вопрос: Посмотрите вокруг и скажите, что вас окружает?

Ответ: Вокруг нас расположены парты, стулья, книги, ребята и т. д.

Вопрос: Правильно, нас окружают различные предметы. Каким термином учёные называют все предметы?

Ответ: Телами.

Вопрос: Когда вы читаете или слышите слово «тело», что вы представляете?

Ответ: Тело человека, животного.

В словаре Ожегова есть такое значение: «Тело - организм человека или животного в его внешних и физических формах». Но у этого слова есть и другое значение.

Телами называют все предметы, окружающие нас.

II. Изучение нового материала.

Природа состоит из огромного количества разнообразных тел. Сегодня на уроке мы продолжим изучать тела.

Цель нашего урока – выяснить, какими свойствами обладают тела? Что такое свойства тел?

Ответ: Свойства тела – это признаки, по которым тела отличают друг от друга.

Вы знаете, что среди бесчисленных и разнообразных тел природы есть тела естественные , которые созданы природой, и ещё есть тела, сделанные человеком. Их называют искусственными .

Вопрос: Посмотрите на картинки и назовите тела, которые относятся к первой группе.

Ответ: Дерево, трава, камень, Солнце, бабочка и другие.

Вопрос: Назовите тела, которые относятся ко второй группе.

Ответ: Карандаш, книга, ручка, стол, сумка и другие.

Вопрос: Посмотрите на картинкии скажите, на какие ещё две группы делятся тела?

Ответ: Тела делятся на живые и неживые.

Вопрос: Приведите примеры живых и неживых тел природы.

Ответ: Живые: растения, животные. Неживые: камень, Луна.

Первое свойство тел – это деление на живые – неживые.

На доске записана тема урока, затем при помощи магнита прикрепляем листочки со свойствами тел (слайд № 3).

На доске:

Другие свойства тел попробуем узнать, отгадав загадки (слайд № 4).

Загадки.

  1. Чудо-юдо – великан
    На спине везёт фонтан.
    (кит )
  2. Чернокожий карапуз
    Не по росту тянет груз.
    (муравей )

Вопрос: Как вы думаете, о каком свойстве тела говорится в этих загадках?

Ответ: О размере, длине тела? Что же такое размер тела?

Размер – величина предмета, масштаб какого-нибудь явления (слайд № 5).

Размер тела находят при помощи линейки, сантиметровой ленты. Итак, второе свойство тела – это размер.

На доске:

А теперь послушайте другие загадки (слайд № 6).

  1. Блинчик плавает живой –
    Он с хвостом и с головой.
    (камбала )
  2. Шар воздушный, золотой
    Над рекой остановился,
    Покачался над водой,
    А потом … за лесом скрылся!
    (солнце)

Вопрос: О каком ещё свойстве тела говорится в загадках?

Ответ: О форме тела (слайд № 7).

Форма (лат. forma) – внешнее очертание, наружный вид, контуры предмета.

Посмотрите на предметы, находящиеся на столе. С одной стороны расположены геометрические фигуры, с другой – тела. Какой они формы? (На столе находятся футбольный мяч (шар), гранит (без формы), карандаш (цилиндр), коробка от мела (прямоугольный параллелепипед), книга (прямоугольный параллелепипед), кубик-Рубика (куб), треугольная пирамидка-Рубика (тетраэдр), колба (конус), гайка (шестиугольная призма), цветок (без формы)).

Обратите внимание на то, что одни тела имеют правильную геометрическую форму, другие неправильной формы.

Ребята, вспомните, какие тела правильной геометрической формы вы уже видели?

(На слайде № 7 фотографии или рисунки предметов с разнообразными формами).

(В листочках записывают примеры тел с правильной геометрической формой и неправильной).

На доске:

А теперь посмотрите ещё раз на предметы, лежащие на столе и скажите, какое ещё свойство тела мы с вами не назвали? Опишите мяч. Какой он?

Ответ: Круглый, синий или голубой (или другого цвета).

Четвёртое свойство тел – это цвет.

На доске:

Кроме размера, формы, цвета тела обладают и другими характеристиками. Поговорим об одной из них. Посмотрите внимательно на стол. На столе лежат два кубика. Один из пенопласта, а другой сделан из пластмассы. Они одинаковые по размеру и форме, но между ними есть отличие.

Вопрос: Как вы думаете, чем друг от друга отличаются данные кубики?

Ответ: Они отличаются массой.

Правильно, каждое тело обладает массой. А знаете ли вы, в каких единицах измеряется масса? За единицу массы принят килограмм. Международный образец (эталон) килограмма хранится во Франции в городе Севре. С этого образца с большой точностью изготовлены копии для других стран. За единицу массы (килограмм) была принята платиноиридиевая гиря в форме цилиндра диаметром и высотой 39 мм. Она храниться под двумя стеклянными куполами, из которых выкачан воздух. Это делается для того, чтобы сплав не соединился с воздухом. В противном случае масса гири может значительно увеличиться.

Для измерения массы любого тела используют весы (слайд № 8).

Вопрос: Какие весы вам известны?

Ответ: Механические, электронные.

Посмотрите на экран (фотографии различных весов).

У нас тоже есть весы. Одни электронные, другие рычажные. На столе у вас лежат электронные весы. Они могут измерить только массу тел до 200 грамм. В синих штативах (коробочках) находятся пластинки из пенопласта и алюминия. Вам нужно будет измерить массу этих пластинок. Для этого необходимо достать весы из коробочки, поставить на стол, затем нажать на красную кнопку и подождать, пока не появиться два нуля. Потом взять поочерёдно пластинки и измерить их массу, результаты занести в листочек. Сформулируем цель лабораторной работы: определить массу пенопластовой и алюминиевой пластинок и сделать вывод о том, какое тел больше весит. Выполняйте работу, а затем полученные данные впишите в таблицу, сделайте вывод.

На следующем уроке мы с вами будем учиться измерять массу тел при помощи рычажных весов.

Итак, подведём итог. О каких свойствах тел вы узнали на этом уроке?

Ответ: Мы узнали, что тела бывают живыми и неживыми, естественными и искусственными, обладают разной формой, цветом, размером и массой.

На доске:

Вопрос: Ребята, как вы думаете, мы изучили все свойства тел?

Мы с вами сегодня не вспомнили ещё об одном свойстве. Как вы думаете, о каком свойстве мы не сказали? Это свойство тела всегда очень интересует врача. Когда мы заболевшие приходим на приём к врачу, то он всегда интересуется температурой тела заболевшего. Вы знаете, какая температура тела человека считается нормальной? (36,6 ºC) Температура измеряется в градусах по Цельсию (по фамилии шведского астронома и физика Андерса Цельсия).

Шкала Цельсия, температурная шкала, в которой 1 градус (1 °С) равен 1/100 разности температур кипения воды и таяния льда при атмосферном давлении, точка таяния льда принята за 0 °С, кипения воды - за 100 °С. Предложена в 1742 году А. Цельсием.

Как человеческое тело и другие тела обладают температурой. Например, какая может быть температура у кусочка льда? Нуль градусов или меньше. Для измерения температуры тела человека используют ртутный или электронный термометр (слайд № 9).

На доске:

Все написанные на доске свойства являются неотъемлемыми признаками тела как научного понятия. Теперь с вами мы можем дать полное определение тела (слайд № 10).

Тело - объект природы или рукотворного мира, обладающий определенной формой, цветом, массой, размером, температурой.

В науке чаще используется понятие «физическое тело».

III. Закрепление материала

1. Дидактическая игра «Внимание - физическое тело!».

Учитель произносит различные слова, обозначающие тела и явления. Ребятам нужно хлопать, услышав название тела.

Слова: закат, радуга, дождь, дерево, извержение вулкана, книга, медведь, линейка, восход солнца, часы, шкаф, гром, мяч, молния, Солнце, землетрясение, лягушка.

2. Работа с художественным текстом «Василий Прекрасный» .

Задача детей - выделить признаки кота Василия как физического тела (написана текст на листочках).

Кот Василий (для близких и родных просто Васяня) был очень упитанным и по форме напоминал пирамиду Хеопса , если сидел, и бочонок для меда, если стоял. От кончика носа до кончика хвоста в нем было 92 см . Его полосатая спина плавно переходила в оранжево-жёлтый живот.

Василий был ласковым, терпеливым, любвеобильным, чистоплотным, умел поднимать настроение и улучшать самочувствие хозяина. Славился он и тем, что только однажды поймал мышь. Но когда вес его перевалил за 7 кг, охотничьи инстинкты в нем уснули навсегда, и не стало для него занятия лучше, чем вздремнуть на руках хозяина. От спящего на руках кота исходит такое тепло и рождается такое умиление. Это потому, что нормальная кошачья температура +38-39,5 °С .

IV. Выставление оценок за урок.

V. Задание на дом. § 11 (нарисовать на альбомных листах разные по форме и размерам тела или придумать ребусы о телах, заполнить рабочую тетрадь при помощи листочков.)

Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами - сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул - ближний порядок. Наглядный пример представлен ниже.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть - одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.

  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 - 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой - метеоритное стекло или молдавит.

До сих пор мы рассматривали перемещение тел в зависимости от времени без выяснения причин, вызывающих эти перемещения. Законы динамики устанавливают связь между движением тел и причинами, которые вызвали или изменили то или иное движение.

Рассмотрим поступательное движение материальной точки, для этого введем динамические характеристики, с помощью которых будем описывать такое движение. К таким характеристикам относятся понятие силы, массы, импульса . Начнем рассмотрение с движений тел в системах отсчета, которые называются инерциальными , и определение которых будет дано позднее.

1. Движение любого тела в инерциальной системе отсчета вызывается или изменяется только при взаимодействии с другими телами. Для описания взаимодействия между телами вводится понятие силы, которая дает количественную меру этого взаимодействия.

Физическая природа взаимодействия может быть различной, существуют гравитационные, электрические, магнитные и другие взаимодействия (см. Таблицу 1). В механике физическая природа сил несущественна, вопрос об их происхождении не выясняется. Но для всех видов взаимодействий их количественная мера должна быть выбрана единым образом. Измерять силы различной природы надо с помощью одних и тех же эталонов и единиц измерений. Законы механики универсальны , т.е. они описывают движение тел под действием силы любой природы. Для взаимодействий, которые рассматриваются в механике, сила может быть определена следующим образом.

Силой называется векторная величина F , являющаяся мерой механического воздействия одного тела на другое.

Механическое взаимодействие может осуществляться как между непосредственно контактирующими телами (сила трения, сила реакции опоры и т.д.), так и между удаленными телами.

Особая форма материи, связывающая частицы вещества в единые системы и передающая с конечной скоростью действие одних частиц на другие, называется физическим полем, или просто полем .

Взаимодействия между удаленными телами осуществляется посредством гравитационных (сила тяжести) или электромагнитных полей.

Механическое действие силы может вызвать ускорение тела или его деформацию. Сила - результат взаимодействия двух тел . Для правильного определения сил, действующих на тело, можно воспользоваться литературой , где приведены многочисленные примеры.

Сила F - вектор - полностью определена, если заданы ее модуль (величина), направление в пространстве и точка приложения. Прямая, вдоль которой направлен вектор F , называется линией действия силы.

Если говорить о силе, приложенной не к материальной точке, а к твердому телу и вызывающей его поступательное движение, то воздействие на тело не изменится при переносе точки действия силы вдоль линии ее действия.

Одновременное действие на материальную точку С нескольких сил F 1 ,F 2 ..... F n эквивалентно действию одной силы, равной их геометрической (векторной) сумме и называемой результирующей или равнодействующей силой (см. Рисунок 7):

F рез. = F 1 +F 2 + ..... +F n .

Рисунок 7 - Векторное сложение сил.

Силы, действующие на тело или систему тел, можно разделить на внешние и внутренние . Тела, не входящие в состав исследуемой механической системы, называются внешними и силы , действующие с их стороны, - внешние . Внутренние силы - силы, действующие на точку или тело со стороны точек или тел, входящих в рассматриваемую систему.

Система, на которую не действуют внешние силы , называется изолированной или замкнутой.

2. Основополагающим понятием в динамике является понятие массы m , о котором в кинематике даже не упоминалось, не было необходимости. Любой материальный объект (тела, элементарные частицы, поля) обладает массой. Масса выступает как многосторонняя характеристика тела.

Она определяет его гравитационные свойства, т.е. силы, с которыми тело притягивается к другим телам, в частности, к Земле.

Масса характеризует инерционные свойства тела, т.е. способность тела сохранить состояние покоя или равномерного прямолинейного движения, или изменить скорость.

Масса тела m определяет количество вещества в данном теле и равна произведению плотности вещества ρ на объем V тела:

Масса тела вместе с его скоростью определяет импульс и кинетическую энергию тела.

В классической механике для понятия массы характерно следующее:

  • m = const, она не зависит от состояния движения тела,
  • масса - величина аддитивная , т.е. масса системы равна арифметической сумме масс тел, входящих в систему,
  • масса замкнутой системы остается неизменной при любых процессах, происходящих внутри системы (закон сохранения массы) .

Итак, для массы можно дать следующее определение.

Масса - мера инертности тела или мера гравитационного взаимодействия .

3. Импульсом материальной точки называется векторная величина, равная произведению ее массы на ее скорость P = mv .

Импульсом системы материальных точек называется вектор, равный геометрической (векторной) сумме импульсов всех материальных точек системы:

P = P 1 +P 2 +.....+ P n = P i

Используя понятие массы, импульс системы равен произведению массы всей системы на скорость ее центра масс P = mv ц.

Импульс P - вектор, по направлению совпадающий с направлением скорости.

Импульс - одна из фундаментальных характеристик физической системы. И масса, и скорость были определены ранее, но только импульс обладает уникальным свойством. Для него сформулирован закон сохранения импульса , который является универсальным законом. Он выполняется и в микромире (на уровне элементарных частиц, атомов и молекул), и в макромире (мир вокруг нас), и в мегамире (на уровне планет, Вселенной, Галактики). До сих пор не открыто явлений, в которых бы нарушался закон сохранения импульса.

Твердыми являются кристаллические и аморфные тела. Кристалл — так в древности называли лед. А потом стали называть кристаллом кварц и считая эти минералы окаменевшим льдом. Кристаллы бывают природными и Они используются в ювелирной промышленности, оптике, радиотехнике и электронике, в качестве опор для элементов в сверхточных приборах, как сверхтвердый абразивный материал.

Кристаллические тела характеризуются твердостью, имеют строго закономерное положение в пространстве молекул, ионов или атомов, в результате чего образуется трехмерная периодическая кристаллическая решетка (структура). Внешне это выражается определенной симметрией формы твердого тела и его определенными физическими свойствами. Во внешней форме кристаллические тела отражают симметрию, свойственную внутренней "упаковке" частиц. Это определяет равенство углов между гранями всех кристаллов, состоящих из одного и того же вещества.

В них равными будут и расстояния от центра до центра между соседствующими атомами (если они расположены на одной прямой, то это расстояние будет одинаковым на всей протяженности линии). Но для атомов, лежащих на прямой с другим направлением, расстояние между центрами атомов будет уже иным. Этим обстоятельством объясняется анизотропия. Анизотропность - главное, чем отличаются кристаллические тела от аморфных.

Более 90% твердых тел можно отнести к кристаллам. В природе они существуют в виде монокристаллов и поликристаллов. Монокристаллы — одиночные, грани которых представлены правильными многоугольниками; для них характерно наличие непрерывной кристаллической решетки и анизотропии физических свойств.

Поликристаллы — тела, состоящие из множества мелких кристаллов, "сросшихся" между собой несколько хаотично. Поликристаллами являются металлы, сахар, камни, песок. В таких телах (например, фрагмент металла) анизотропия обычно не проявляется из-за беспорядочного расположения элементов, хотя отдельно взятому кристаллу этого тела свойственна анизотропия.

Другие свойства кристаллических тел: строго определенная температура (наличие критических точек), прочность, упругость, электропроводность, магнитопроводность, теплопроводность.

Аморфные - не имеющие формы. Так дословно переводится это слово с греческого. Аморфные тела созданы природой. Например, янтарь, воск, К созданию искусственных аморфных тел причастен человек - стекло и смолы (искусственные), парафин, пластмассы (полимеры), канифоль, нафталин, вар. не имеют вследствие хаотичного расположения молекул (атомов, ионов) в структуре тела. Поэтому для какого-либо аморфного тела изотропны - одинаковы во всех направлениях. Для аморфных тел не существует критической точки температуры плавления, они постепенно размягчаются при нагревании и переходят в вязкие жидкости. Аморфным телам отведено промежуточное (переходное) положение между жидкостями и кристаллическими телами: при низких температурах они твердеют и становятся упругими, кроме того, могут раскалываться при ударе на бесформенные куски. При высоких температурах эти же элементы проявляют пластичность, становясь вязкими жидкостями.

Теперь вы знаете, что такое кристаллические тела!

Поделитесь с друзьями или сохраните для себя:

Загрузка...