Закономерности изменения химических свойств элементов. Характеристика элементов

Закономерности изменения химических свойств элементов и их соединений по периодам и группам

Перечислим закономерности изменения свойств, проявляемые в пределах периодов:

— металлические свойства уменьшаются;

— неметаллические свойства усиливаются;

— степень окисления элементов в высших оксидах возрастает от $+1$ до $+7$ ($+8$ для $Os$ и $Ru$);

— степень окисления элементов в летучих водородных соединениях возрастает от $-4$ до $-1$;

— оксиды от основных через амфотерные сменяются кислотными оксидами;

— гидроксиды от щелочей через амфотерные сменяются кислотами.

Д. И. Менделеев в $1869$ г. сделал вывод — сформулировал Периодический закон, который звучит так:

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов.

Систематизируя химические элементы на основе их относительных атомных масс, Менделеев уделял большое внимание также свойствам элементов и образуемых ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы — группы.

Иногда, в нарушение выявленной им закономерности, Менделеев ставил более тяжелые элементы с меньшими значениями относительных атомных масс. Например, он записал в свою таблицу кобальт перед никелем, теллур перед йодом, а когда были открыты инертные (благородные) газы, — аргон перед калием. Такой порядок расположения Менделеев считал необходимым потому, что иначе эти элементы попали бы в группы несходных с ними по свойствам элементов, в частности щелочной металл калий попал бы в группу инертных газов, а инертный газ аргон — в группу щелочных металлов.

Д. И. Менделеев не мог объяснить эти исключения из общего правила, не мог объяснить и причину причину периодичности свойств элементов и образованных ими веществ. Однако он предвидел, что эта причина кроется в сложном строении атома, внутреннее строение которого в то время не было изучено.

В соответствии с современными представлениями о строении атома, основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка периодического закона такова:

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер.

Периодичность в изменении свойств элементов объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в Периодической системе символику, т.е. раскрывают физический смысл номера периода, номера группы и порядкового номера элемента.

Строение атома позволяет объяснить и причины изменения металлических и неметаллических свойств элементов в периодах и группах.

Периодический закон и Периодическая система химических элементов Д. И. Менделеева обобщают сведения о химических элементах и образованных ими веществах и объясняют периодичность в изменении их свойств и причину сходства свойств элементов одной и той же группы. Эти два важнейших значения Периодического закона и Периодической системы дополняет еще одно, которое заключается в возможности прогнозировать, т.е. предсказывать, описывать свойства и указывать пути открытия новых химических элементов.

Общая характеристика металлов главных подгрупп I±III групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов

Химические элементы — металлы

Большинство химических элементов относят к металлам — $92$ из $114$ известных элементов.

Все металлы, кроме ртути, в обычном состоянии — твердые вещества и имеют ряд общих свойств.

Металлы — это ковкие, пластичные, тягучие вещества, имеющие металлический блеск и способны проводить тепло и электрический ток.

Атомы элементов-металлов отдают электроны внешнего (а некоторые и предвнешнего) электронного слоя, превращаясь в положительные ионы.

Это свойство атомов металлов, как вы знаете, определяется тем, что они имеют сравнительно большие радиусы и малое число электронов (в основном от $1$ до $3$ на внешнем слое).

Исключение составляют лишь $6$ металлов: атомы германия, олова, свинца на внешнем слое имеют $4$ электрона, атомы сурьмы и висмута — $5$, атомы полония — $6$.

Для атомов металлов характерны небольшие значения электроотрицательности (от $0.7$ до $1.9$) и исключительно восстановительные свойства, т.е. способность отдавать электроны.

Вы уже знаете, что в Периодической системе химических элементов Д. И. Менделеева металлы находятся ниже диагонали бор — астат, а также выше ее, в побочных подгруппах. В периодах и главных подгруппах действуют известные вам закономерности в изменении металлических, а значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор — астат ($Be, Al, Ti, Ge, Nb, Sb$), обладают двойственными свойствами: в одних своих соединениях ведут себя как металлы, в других проявляют свойства неметаллов.

В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются.

Это можно объяснить тем, что на прочность связи валентных электронов с ядром у атомов этих металлов в большей степени влияет величина заряда ядра, а не радиус атома. Величина заряда ядра значительно увеличивается, притяжение электронов к ядру усиливается. Радиус атома при этом хотя и увеличивается, но не столь значительно, как у металлов главных подгрупп.

Простые вещества, образованные химическими элементами — металлами, и сложные металлосодержащие вещества играют важнейшую роль в минеральной и органической «жизни» Земли. Достаточно вспомнить, что атомы (ионы) элементов металлов являются составной частью соединений, определяющих обмен веществ в организме человека, животных. Например, в крови человека найдено $76$ элементов, из них только $14$ не являются металлами. В организме человека некоторые элементы- металлы (кальций, калий, натрий, магний) присутствуют в большом количестве, т.е. являются макроэлементами. А такие металлы, как хром, марганец, железо, кобальт, медь, цинк, молибден присутствуют в небольших количествах, т.е. это микроэлементы.

Особенности строения металлов главных подгрупп I-III групп.

Щелочные металлы — это металлы главной подгруппы I группы. Их атомы на внешнем энергетическом уровне имеют по одному электрону. Щелочные металлы — сильные восстановители. Их восстановительная способность и химическая активность возрастают с увеличением порядкового номера элемента (т.е. сверху вниз в Периодической таблице). Все они обладают электронной проводимостью. Прочность связи между атомами щелочных металлов уменьшается с увеличением порядкового номера элемента. Также снижаются их температуры плавления и кипения. Щелочные металлы взаимодействуют со многими простыми веществами — окислителями. В реакциях с водой они образуют растворимые в воде основания (щелочи).

Щелочноземельными элементами называются элементы главной подгруппы II группы. Атомы этих элементов содержат на внешнем энергетическом уровне по два электрона. Они являются восстановителями, имеют степень окисления $+2$. В этой главной подгруппе соблюдаются общие закономерности в изменении физических и химических свойств, связанные с увеличением размера атомов по группе сверху вниз, также ослабевает и химическая связь между атомами. С увеличением размера иона ослабевают кислотные и усиливаются основные свойства оксидов и гидроксидов.

Главную подгруппу III группы составляют элементы бор, алюминий, галлий, индий и таллий. Все элементы относятся к $p$-элементам. На внешнем энергетическом уровне они имеют по три $(s^2p^1)$ электрона, чем объясняется сходство свойств. Степень окисления $+3$. Внутри группы с увеличением заряда ядра металлические свойства увеличиваются. Бор — элемент-неметалл, а у алюминия уже металлические свойства. Все элементы образуют оксиды и гидроксиды.

Характеристика переходных элементов ± меди, цинка, хрома, железа по их положению в Периодической системе химических элементов Д. И. Менделеева и особенностям строения их атомов

Большинство элементов-металлов находится в побочных группах Периодической системы.

В четвертом периоде у атомов калия и кальция появляется четвертый электронный слой, заполняется $4s$-подуровень, так как он имеет меньшую энергию, чем $3d$-подуровень. $K, Ca — s$-элементы, входящие в главные подгруппы. У атомов от $Sc$ до $Zn$ заполняется электронами $3d$-подуровень.

Рассмотрим, какие силы действуют на электрон, который добавляется в атом при возрастании заряда ядра. С одной стороны, притяжение атомным ядром, что заставляет электрон занимать самый нижний свободный энергетический уровень. С другой стороны, отталкивание уже имеющимися электронами. Когда на энергетическом уровне оказывается $8$ электронов (заняты $s-$ и $р-$орбитали), их общее отталкивающее действие так сильно, что следующий электрон попадает вместо расположенной по энергии ниже $d-$орбитали на более высокую $s-$орбиталь следующего уровня. Электронное строение внешних энергетических уровней у калия $...3d^{0}4s^1$, у кальция — $...3d^{0}4s^2$.

Последующее прибавление еще одного электрона у скандия приводит к началу заполнения $3d$-орбитали вместо еще более высоких по энергии $4р$-орбиталей. Это оказывается энергетически выгоднее. Заполнение $3d$-орбитали заканчивается у цинка, имеющего электронное строение $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^2$. Следует отметить, что у элементов меди и хрома наблюдается явление «провала » электрона. У атома меди десятый $d$-электрон перемещается на третий $3d$-подуровень.

Электронная формула меди $...3d^{10}4s^1$. У атома хрома на четвертом энергетическом уровне ($s$-орбиталь) должно быть $2$ электрона. Однако один из двух электронов переходит на третий энергетический уровень, на незаполненную $d$-орбиталь, его электронная формула $...3d^{5}4s^1$.

Таким образом, в отличие от элементов главных подгрупп, где происходит постепенное заполнение электронами атомных орбиталей внешнего уровня, у элементов побочных подгрупп заполняются $d$-орбитали предпоследнего энергетического уровня. Отсюда и название: $d$-элементы.

Все простые вещества, образованные элементами подгрупп Периодической системы, являются металлами. Благодаря большему числу атомных орбиталей, чем у элементов-металлов главных подгрупп, атомы $d$-элементов образуют большое число химических связей между собой и потому создают более прочную кристаллическую решетку. Она прочнее и механически, и по отношению к нагреванию. Поэтому металлы побочных подгрупп — самые прочные и тугоплавкие среди всех металлов.

Известно, если атом имеет более трех валентных электронов, то элемент проявляет переменную валентность. Это положение относится к большинству $d$-элементов. Максимальная их валентность, как у элементов главных подгрупп, равна номеру группы (хотя есть и исключения). Элементы с равным числом валентных электронов входят в группу под одним номером $(Fe, Co, Ni)$.

У $d$-элементов изменение свойств их оксидов и гидроксидов в пределах одного периода при движении слева направо, т.е. с увеличением их валентности, происходит от основных свойств через амфотерные к кислотным. Например, хром имеет валентности $+2, +3, +6$; а его оксиды: $CrO$ — основной, $Cr_{2}O_3$ — амфотерный, $CrO_3$ — кислотный.

Общая характеристика неметаллов главных подгрупп IV±VII групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов

Химические элементы - неметаллы

Самой первой научной классификацией химических элементов было деление их на металлы и неметаллы. Эта классификация не утратила своей значимости и в настоящее время.

Неметаллы —это химические элементы, для атомов которых характерна способность принимать электроны до завершения внешнего слоя благодаря наличию, как правило, на внешнем электронном слое четырех и более электронов и малому радиусу атомов по сравнению с атомами металлов.

Это определение оставляет в стороне элементы VIII группы главной подгруппы — инертные, или благородные, газы, атомы которых имеют завершенный внешний электронный слой. Электронная конфигурация атомов этих элементов такова, что их нельзя отнести ни к металлам, ни к неметаллам. Они являются теми объектами, которые разделяют элементы на металлы и неметаллы, занимая между ними пограничное положение. Инертные, или благородные, газы («благородство» выражается в инертности) иногда относят к неметаллам, но формально, по физическим признакам. Эти вещества сохраняют газообразное состояние вплоть до очень низких температур. Так, гелий Не переходит в жидкое состояние при $t°= -268,9 °С$.

Инертность в химическом отношении у этих элементов относительна. Для ксенона и криптона известны соединения с фтором и кислородом: $KrF_2, XeF_2, XeF_4$ и др. Несомненно, в образовании этих соединений инертные газы выступали в роли восстановителей.

Из определения неметаллов следует, что для их атомов характерны высокие значения электроотрицательности. Она изменяется в пределах от $2$ до $4$. Неметаллы — это элементы главных подгрупп, преимущественно $р$-элементы, исключение составляет водород — s-элемент.

Все элементы-неметаллы (кроме водорода) занимают в Периодической системе химических элементов Д. И. Менделеева верхний правый угол, образуя треугольник, вершиной которого является фтор $F$, а основанием — диагональ $B — At$.

Однако следует особо остановиться на двойственном положении водорода в Периодической системе: в главных подгруппах I и VII групп. Это не случайно. С одной стороны, атом водорода, подобно атомам щелочных металлов, имеет на внешнем (и единственном для него) электронном слое один электрон (электронная конфигурация $1s^1$), который он способен отдавать, проявляя свойства восстановителя.

В большинстве своих соединений водород, как и щелочные металлы, проявляет степень окисления $+1$. Но отдача электрона атомом водорода происходит труднее, чем у атомов щелочных металлов. С другой стороны, атому водорода, как и атомам галогенов, до завершения внешнего электронного слоя недостает одного электрона, поэтому атом водорода может принимать один электрон, проявляя свойства окислителя и характерную для галогена степень окисления — $1$ в гидридах (соединениях с металлами, подобных соединениям металлов с галогенами — галогенидам). Но присоединение одного электрона к атому водорода происходит труднее, чем у галогенов.

Свойства атомов элементов - неметаллов

У атомов неметаллов преобладают окислительные свойства, т.е. способность присоединять электроны. Эту способность характеризует значение электроотрицательности, которая закономерно изменяется в периодах и подгруппах.

Фтор — самый сильный окислитель, его атомы в химических реакциях не способны отдавать электроны, т.е. проявлять восстановительные свойства.

Конфигурация внешнего электронного слоя.

Другие неметаллы могут проявлять восстановительные свойства, хотя и в значительно более слабой степени по сравнению с металлами; в периодах и подгруппах их восстановительная способность изменяется в обратном порядке по сравнению с окислительной.

Химических элементов-неметаллов всего $16$! Совсем немного, если учесть, что известно $114$ элементов. Два элемента-неметалла составляют $76%$ массы земной коры. Это кислород ($49%$) и кремний ($27%$). В атмосфере содержится $0.03%$ массы кислорода в земной коре. Неметаллы составляют $98.5%$ массы растений, $97.6%$ массы тела человека. Неметаллы $C, H, O, N, S, Р$ — органогены, которые образуют важнейшие органические вещества живой клетки: белки, жиры, углеводы, нуклеиновые кислоты. В состав воздуха, которым мы дышим, входят простые и сложные вещества, также образованные элементами-неметаллами (кислород $О_2$, азот $N_2$, углекислый газ $СО_2$, водяные пары $Н_2О$ и др.).

Водород — главный элемент Вселенной. Многие космические объекты (газовые облака, звезды, в том числе и Солнце) более чем наполовину состоят из водорода. На Земле его, включая атмосферу, гидросферу и литосферу, только $0.88%$. Но это по массе, а атомная масса водорода очень мала. Поэтому небольшое содержание его только кажущееся, и из каждых $100$ атомов на Земле $17$ — атомы водорода.



1. Что изучает информатика?



компьютерные технологии


информация нематериальна





обрабатывать.
запах
звук
речь человека
вкус
фотографии

шифрование
передача информации
хранение данных
сортировка списка
поиск в базе данных






6. Что такое кодирование?
средство поиска информации

искажение информации
изменение вида информации

Тест по теме: «Информация и информационные процессы»
1. Что изучает информатика?
любые процессы и явления, связанные с информацией
программирование для компьютеров
взаимосвязь явлений в природе
компьютерные технологии
математические методы решения задач
2. Отметьте все верные высказывания.
информация нематериальна
информация - это отражение реального мира
информация характеризует разнообразие
при получении информации уменьшается неопределенность знаний
существует строгое определение информации
3. Отметьте виды информации, которые компьютер пока не умеет
обрабатывать.
запах
звук
речь человека
вкус
фотографии
4. Выберите процессы, которые можно назвать обработкой информации.
шифрование
передача информации
хранение данных
сортировка списка
поиск в базе данных
5. Отметьте все верные высказывания.
информация может существовать только вместе с носителем
хранение информации - это один из информационных процессов
для того, чтобы извлечь информацию из сообщения, человек использует знания
обработка информации - это изменение её содержания
при записи информации изменяются свойства носителя
6. Что такое кодирование?
средство поиска информации
запись информации в другой системе знаков
искажение информации
изменение вида информации
изменение количества информации

выбор нужных элементов


изменение порядка элементов
удаление ненужных элементов

для передачи информации?


принципы?
_______________________________________________________________

решения некоторых задач?
_______________________________________________________________

себе?
_______________________________________________________________







системах?
_______________________________________________________________
7. Какая фраза может служить определением сортировки?
выбор нужных элементов
расстановка элементов списка в заданном порядке
расстановка строк по алфавиту
изменение порядка элементов
удаление ненужных элементов
8. Как называется изменение свойств носителя, которое используется
для передачи информации?
_______________________________________________________________
9. Как называются знания, которые представляют собой факты, законы,
принципы?
_______________________________________________________________
10. Как называются знания, которые представляют собой алгоритмы
решения некоторых задач?
_______________________________________________________________
11. Как называют представления человека о природе, обществе и самом
себе?
_______________________________________________________________
12. Отметьте все верные высказывания.
полученная информация зависит от знаний получателя
полученная информация зависит только от принятого сообщения
получение информации всегда увеличивает знания
знания увеличиваются только тогда, когда полученная информация частично известна
одна и та же информация может быть представлена в разных формах
13. Как называют информацию, зафиксированную (закодированную) внекоторой форме, в частности, в компьютерных информационных
системах?
_______________________________________________________________

Ответ:
1 2 3 4 5 6 7
а, б, га, б, в, га, га, г, д а, в, д б, гб
8 9 10 11 12 13 сигнал декларативные процедурные знания а, г, д данные

Свойства элементов и их соединений определяются : 1 - зарядов ядер атомов, 2 - атомными радиусами.

Малые периоды . Рассмотрим изменение некоторых свойств элементов и их соединений на примере II периода (см. табл. 3). Во втором периоде с увеличением положительного заряда ядер атомов происходит последовательное увеличение числа электронов на внешнем уровне, который наиболее удален от ядра атома и поэтому легко деформируется, что приводит к быстрому уменьшению радиуса атомов. Этим объясняется быстрое ослабление металлических и восстановительных свойств элементов, усиление неметаллических и окислительных свойств, нарастание кислотных свойств оксидов и гидроксидов и уменьшение основных свойств. Завершается период благородным газом (Ne). В третьем периоде свойства элементов и их соединений изменяются так же, как и во втором, так как у атомов элементов данного периода повторяются электронные структуры атомов элементов второго периода (3s- и 3p-подуровни)

Большие периоды (IV, V ). В четных рядах больших периодов (IV, V), начиная с третьего элемента происходит последовательное увеличение числа электронов на предпоследнем уровне, а структура внешнего уровня остается неизменной. Предпоследний уровень расположен ближе к ядру атома и поэтому деформируется в меньшей степени. Это приводит к более медленному ­уменьшению радиуса атомов. Например:

Следствием медленного изменения радиуса атомов и одинакового числа электронов на внешнем уровне является и медленное убывание металлических и восстановительных свойств элементов и их соединений. Так, в четном ряду IV периода K - Mn - активные металлы Fe - Ni - металлы средней активности (сравните с элементами II периода, где третий элемент - бор - уже неметалл).

А начиная с III группы нечетного ряда свойства элементов и их соединений изменяются также, как в малых периодах, т. к. начинает застраиваться внешний уровень. Таким образом, структура энергетического уровня является определяющей в свойствах элементов и их соединений. Завершается каждый рассматриваемый период также благородным газом.

Рассмотрев изменение некоторых свойств элементов и их соединений в периодах, можно сделать следующие выводы:

1. Каждый период начинается щелочным металлом, а заканчивается благородным газом.

2. Свойства элементов и их соединений периодически повторяются потому, что периодически повторяются строения энергетических уровней, В этом физический смысл периодического закона.

В главных подгруппах увеличивается число энергетических уровней, это приводит к возрастанию атомных радиусов. Поэтому в главных подгруппах (сверху вниз) уменьшается электроотрицательность, возрастают мегалитические и восстановительные свойства элементов, а неметаллические и окислительные - убывают, основные свойства оксидов и гидроксидов увеличиваются, а кислотные - уменьшаются. Для примера рассмотрим главную подгруппу II группы.

Таким образом, свойства элемента и его соединений являются промежуточными между двух соседних с ним элементов по периоду и подгруппе.

По координатам (номер периода и номер группы) элемента в периодической системе Д. И. Менделеева можно определить электронную структуру его атома, а, следовательно, предвидеть его главные свойства.

1. число электронных уровней в атоме определяет № периода , в котором находится соответствующий элемент.

2. Суммарное число электронов , находящихся в s- и p-орбиталях внешнего уровня (для элементов главных подгрупп) и в d-орбиталях предвнешнего и s-орбиталях внешнего уровня (для элементов побочных подгрупп; исключения :

определяет № группы .

3. f-элементы располагаются либо в побочной подгруппе III группы (короткопериодный вариант), либо между IIА- и IIIВ-группами (длиннопериодный вариант) - лантаноиды (№ 57-70), актиноиды (№ 89-102).

4. Атомы элементов разных периодов, но одной подгруппы имеют одинаковое строение внешних и предвнешних электронных уровней и, следовательно, обладают близкими химическими свойствами.

5. максимальное окислительное число элемента совпадает с номером группы, в которой элемент находится. Характер образуемых элементом оксидов и гидроксидов зависит от окислительного числа элементов в них. Оксиды и гидроксиды, в которых элемент находится в степени окисления:

Чем больше степень окисления кислотообразующего элемента, тем ярче выражены кислотные свойства оксидов и гидроксидов.

Следовательно: оксиды и гидроксиды элементов I-III групп преимущественно амфотерные. Оксиды и гидроксиды элементов IV-VII групп преимущественно кислотные (при максимальной степени окисления). Оксиды и гидроксиды тех же элементов, но с низшей степенью окисления могут быть разного характера.

6. Соединения элементов с водородом могут быть подразделены на 3 большие группы:

а) солеподобные гидриды активных металлов (LiH - , CaH - и др.);

б) ковалентные водородные соединения р-элементов (B 2 H 6 , CH 4 , NH 3 , H 2 O, HF и др.);

в) металлоподобные фазы, образуемые d- и f-элементами; последние обычно являются нестехиометрическими соединениями и часто трудно решить, относить ли их к индивидуальным соединениям или твердым растворам.

Водородные соединения элементов IV группы (СН 4 -метан, SiН 4 - силан) не взаимодействуют с кислотами и основаниями, практически не растворяются в воде.

Водородные соединения элементов V группы (NН 3 -аммиак) при растворении в воде образуют основания.

Водородные соединения элементов VI и VII групп (Н 2 S, НF) при растворении в воде образуют кислоты.

7. элементы второго периода, в атомах которых заполняется 2-й электронный слой, сильно отличаются от всех других элементов. Это объясняется тем, что энергия электронов во втором слое значительно ниже энергии электронов в последующих слоях, и тем, что во втором слое не может находиться более восьми электронов.

8. d-элементы одного периода меньше отличаются друг от друга, чем элементы главных подгрупп, у которых застраиваются внешние электронные слои.

9. различия в свойствах лантаноидов, в атомах которых застраивается f-оболочка, принадлежащая к третьему с наружи слою, являются незначительными.

Каждый период (за исключением первого) начинается типичным металлом и заканчивается благородным газом, которому предшествует типичный неметалл.

Изменение свойств элементов в пределах периода:


1) ослабление металлических свойств;

2) уменьшение радиуса атома;

3) усиление окислительных свойств;

4) возрастает энергия ионизации;

5) увеличивается сродство к электрону;

6) увеличивается электроотрицательность;

7) нарастают кислотные свойства оксидов и гидроксидов;

8) начиная с IV группы (для р-элементов) увеличивается устойчивость водородных соединений и усиливаются их кислотные свойства.

Изменение свойств элементов в пределах группы:

1) возрастают металлические свойства;

2) увеличивается радиус атома;

3) усиление восстановительных свойств;

4) уменьшается энергия ионизации;

5) уменьшается сродство к электрону;

6) уменьшается электроотрицательность;

7) нарастают основные свойства оксидов и гидроксидов;

8) начиная с IV группы (для р-элементов) уменьшается устойчивость водородных соединений, усиливаются их кислотные и окислительные свойства.

ВАЛЕНТНОСТЬ - способность атомов элементов образовывать химические связи. Количественно валентность определяется числом не спаренных электронов.

В 1852 г. английский химик Эдуард Франкленд ввел понятие о соединительной силе. Это свойство атомов позже стали называть валентностью.

валентность равна 2 , т. к. есть 2 не спаренных электрона.

СТЕПЕНЬ ОКИСЛЕНИЯ - условный заряд атома, который вычисляют исходя из предположения, что молекула состоит только из ионов.

В отличие от валентности степень окисления имеет знак.

Положительная степень окисления равна числу оттянутых (отданных) электронов от данного атома. Атом может отдавать все не спаренные электроны.

Отрицательная степень окисления равна числу притянутых (присоединенных) электронов к данному атому; ее проявляют только неметаллы. Атомы неметаллов присоединяют такое количество электронов, которое необходимо для образования устойчивой восьми электронной конфигурации внешнего уровня.

Например: N -3 ; S -2 ; Cl - ; C -4 .

Лекция: Закономерности изменения свойств элементов и их соединений по периодам и группам


Закон Д.И. Менделеева

Русский ученый Д. И. Менделеев успешно работал во многих областях науки. Однако наибольшую известность ему принесло уникальное открытие периодического закона химических элементов в 1869 г. Изначально, он звучал таким образом: «Свойства всех элементов, а вследствие и качества образуемых ими простых, а также сложных веществ, стоят в периодической зависимости от их атомного веса».

В настоящее время формулировка закона иная. Дело в том, что во времена открытия закона ученые не имели представления о строении атома, а за атомный вес принимался вес химического элемента. Впоследствии активного изучения атома и получения новых сведений о его строении, был выведен закон, имеющий актуальность в наши дни: «Свойства атомов хим. элементов и образованных ими простых веществ в периодической зависимости от зарядов ядер их атомов».

Закон так же выражен графически. Наглядно его изображает таблица:

Периодическая таблица Д.И. Менделеева


На данном уроке мы научимся извлекать из неё важную и нужную для постижения науки информацию. В ней вы видите строки. Это периоды . Всего их семь. Вспомните из предыдущего урока, что номер каждого периода демонстрирует количество энергетических уровней, на которых размещаются электроны атома химического элемента. Например, натрий (Na) и магний (Mg) находятся в третьем периоде, значит их электроны размещены на трех энергетических уровнях. Все периоды, за исключением 1 – го берут начало со щелочного металла, и завершаются благородным газом.

Электронная конфигурация:

    щелочного металла - ns 1 ,

    благородного газа -ns 2 p 6 , за исключением гелия (Не) - 1s 2 .

Где n - является номером периода.

Еще мы видим в таблице вертикальные столбцы – это группы . В одних таблицах вы можете увидеть 18 групп, нумерованных арабскими цифрами. Такая форма таблица называется длинной, она появилась после обнаружения отличий d-элементов от s- и p-элементов. Но традиционной, созданной Менделеевым является короткая форма, где элементы сгруппированы в 8 групп, нумерованных римскими цифрами:


В дальнейшем мы будем пользоваться уже знакомой и привычной для вас короткой таблицей.

Итак, какую информацию нам дают номера групп? Из номера мы узнаем число электронов, образующих химические связи. Они называются валентными . 8 групп подразделены на две подгруппы: главная и побочная.

    В главную входят электроны s- и p-подуровней. Это подгруппы IА, IIА, IIIА, IVА, VА, VIА, VIIА и VIIIА. Например, аллюминий (Al) – элемент главной подгруппы III группы имеет … 3s 2 3p 1 валентных электрона.

    Элементы, располагающиеся в побочных подгруппах, содержат электроны d - подуровня. Побочными являются группы IБ, IIБ, IIIБ, IVБ, VБ, VIБ, VIIБ и VIIIБ. Например, марганец (Mn) – элемент главной подгруппы VII группы имеет …3d 5 4s 2 валентных электрона.

    В короткой таблице s- элементы обозначены красным, p-элементы желтым, d-элементы синим и f-элементы белым цветами.

  • Какую еще информацию мы можем извлечь из таблицы? Вы видите, что каждому элементу присвоен порядковый номер. Тоже не случайно. Судя по номеру элемента, мы можем судить о количестве электронов в атоме данного элемента. К примеру, кальций (Ca) находится под номером 20, значит электронов в его атоме 20.
Но следует помнить, что численность валентных электронов периодически меняется. Связанно это с периодическими изменениями электронных оболочек. Так, при перемещении вниз по подгруппе атомные радиусы всех химических элементов начинают расти. Потому что растет количество электронных слоев. Если же перемещаться горизонтально по одному ряду радиус атома уменьшается. Почему так происходит? А связанно это с тем, что при заполнении одной электронной оболочки атома, происходящем поочередно, ее заряд возрастает. Это приводит к увеличению взаимопритяжения электронов и их сжиманию вокруг ядра.

Еще из таблицы можно сделать и такой вывод, чем выше порядковый номер элемента, тем меньше радиус атома. Почему? Дело в том, что при увеличении общего количества электронов, происходит уменьшение радиуса атома. Чем больше электронов, тем выше энергия их связи с ядром. Например, ядро атома фосфора (Р) намного сильнее удерживает электроны своего внешнего уровня, чем ядро атома натрия (Na), имеющего один электрон на внешнем уровне. И если атомы фосфора и натрия вступят в реакцию, фосфор отберет этот электрон у натрия, потому что фосфор более электроотрицательный. Этот процесс называется электроотрицательностью. Запомните, при движении вправо по одному ряду элементов таблицы их электроотрицательность возрастает, а внутри одной подгруппы она уменьшается. О данном свойстве элементов мы подробнее скажем на следующих уроках.

Запомните:

1. В периодах с увеличением порядкового номера мы можем наблюдать:
  • увеличение ядерного заряда и уменьшение атомного радиуса;
  • увеличение числа внешних электронов;
  • увеличение ионизации и электроотрицательности;
  • возрастание неметаллических окислительных свойств и убывание металлических восстановительных свойств;
  • возрастание кислотности и ослабевание основности гидроксидов и оксидов.
2. В А-группах с увеличением порядкового номера мы можем наблюдать:
  • увеличение ядерного заряда и увеличение атомного радиуса;
  • уменьшение ионизации и электроотрицательности;
  • убывание неметаллических окислительных свойств и возрастание металлических восстановительных свойств;
  • возрастание основности и ослабевание кислотности гидроксидов и оксидов.
Вспомним химическую терминологию:

Ионизация - это процесс превращения атомов в ионы (положительно заряженные катионы или отрицательно заряженные анионы) во время химической реакции.


Электроотрицательность - это способность атома к притягиванию электрона другого атома во время химических реакций.


Окисление - процесс передачи электрона атома восстановителя (донора электрона) атому окислителя (акцептору электрона) и увеличение степени окисления атома вещества.


Существуют три значения степени окисления:
  • при высокой электроотрицательности элемента, он сильнее притягивает к себе электроны и его атомы приобретают отрицательную степень окисления (к примеру, фтор всегда имеет степень окисления - 1);
  • при низкой электроотрицательности, элемент отдает электроны и приобретает положительную степень окисления (все металлы имеют +степень, к примеру, калий +1, кальций +2, алюминий +3);
  • атомы простых веществ, состоящих из одного элемента у атомов с высокими и свободные атому имеют нулевую степень.
Степень окисления ставится над символом элемента:

в периодах слева направо:

· радиус атомов уменьшается;
· электроотрицательность элементов увеличивается;
· количество валентных электронов увеличивается от 1 до 8 (равно номеру группы);
· высшая степень окисления увеличивается (равна номеру группы);
· число электронных слоев атомов не изменяется;
· металлические свойства уменьшается;
· неметаллические свойства элементов увеличивается.

Изменение некоторых характеристик элементов в группе сверху вниз:
· заряд ядер атомов увеличивается;
· радиус атомов увеличивается;
· число энергетических уровней (электронных слоев) атомов увеличивается (равно номеру периода);
· число электронов на внешнем слое атомов одинаково (равно номеру группы);
· прочность связи электронов внешнего слоя с ядром уменьшается;
· электроотрицательность уменьшается;
· металличность элементов увеличивается;
· неметалличность элементов уменьшается.

Элементы, которые находятся в одной подгруппе, являются элементами-аналогами, т.к. они имеют некоторые общие свойства (одинаковую высшую валентность, одинаковые формы оксидов и гидроксидов и др.). Эти общие свойства объясняются строением внешнего электронного слоя.

Подробнее про закономерности изменения свойств элементов по периодам и группам

Кислотно — основные свойства гидроксидов зависят от того, какая из двух связей в цепочке Э −О − Н является менее прочной.
Если менее прочна связь Э−О, то гидроксид проявляет основные свойства, если О−Н − кислотные.
Чем менее прочны эти связи, тем больше сила соответствующего основания или кислоты. Прочность связей Э−О и О−Н в гидроксиде зависит от распределения электронной плотности в цепочке Э−О− H. На последнюю наиболее сильно влияют степень окисления элемента и ионный радиус. Увеличение степени окисления элемента и уменьшение его ионного радиуса, вызывают смещение электронной плотности к атому
элемента в цепочке Э ← О ←Н. Это приводит к ослаблению связи О−Н и усилению связи Э−О. Поэтому основные свойства гидроксида ослабевают, а кислотные − усиливаются.


Поделитесь с друзьями или сохраните для себя:

Загрузка...