Анализ и синтез механизмов. Структурный синтез и анализ механизмов

ПРАКТИЧЕСКАЯ РАБОТА № 1

Тема: Структурный синтез механизмов

Цель занятия: знакомство с элементами структуры механизма, расчетом подвижности, устранением избыточных связей.

Оснащение : методические указания по выполнению практической работы .

Работа рассчитана на 4 академических часа.

1. Общие теоретические сведения.

Для изучения строения механизма используется его структурная схема. Часто эту схему механизма совмещают с его кинематической схемой. Так как основными структурными составляющими механизма являются звенья и образуемые ими кинематические пары, то под структурным анализом понимается анализ самих звеньев, характер их соединения в кинематические пары, возможность проворачиваемости, анализ углов давления. Поэтому в работе даются определения механизма, звеньев, кинематических пар. В связи с выбором способа исследования механизма рассматривается вопрос о его классификации. Приводится классификация, предложенная. При выполнении лабораторной работы используются модели плоских рычажных механизмов, имеющихся на кафедре.

Механизм - это система взаимосвязанных твердых тел с определенными относительными движениями. В теории механизмов упомянутые твердые тела называют звеньями.

Звено - это то, что движется в механизме как одно целое. Оно может состоять из одной детали, но может включать в себя и несколько деталей, жестко связанных между собой.

Основные звенья механизма - это кривошип, ползун, коромысло, шатун, кулиса, камень. Указанные подвижные звенья монтируются на неподвижной стойке.


Кинематическая пара - это подвижное соединение двух звеньев. Кинематические пары классифицируются по ряду признаков - характеру соприкосновения звеньев, виду их относительного движения, относительной подвижности звеньев, по расположению траекторий движения точек звеньев в пространстве.

Для исследования механизма (кинематического, силового) строится его кинематическая схема. Для конкретного механизма - в стандартном машиностроительном масштабе. Элементами кинематической схемы являются звенья: входное, выходное, промежуточные, а также обобщенная координата. Число обобщенных координат и, следовательно, входных звеньев, равно подвижности механизма относительно стойки –W3.

Подвижность плоского механизма определяется по структурной формуле Чебышева (1):

https://pandia.ru/text/78/483/images/image002_46.jpg" width="324" height="28 src="> (2)

В механизме без избыточных связей q ≤ 0 Устранение их достигается изменением подвижности отдельных кинематических пар.

Присоединение структурных групп Ассура к ведущему звену является наиболее удобным методом построения схемы механизма. Группой Ассура называется кинематическая цепь, которая при соединении внешних пар к стойке получает нулевую степень подвижности. Простейшая группа Ассура образуется двумя звеньями, соединенными кинематической парой. Стойка в группу не входит. Группа имеет класс и порядок. Порядок определяется количеством элементов внешних кинематических пар, которыми группа присоединяется к схеме механизма. Класс определяется числом К, которое должно удовлетворять соотношению:

https://pandia.ru/text/78/483/images/image004_45.gif" width="488" height="312 src=">

Рисунок 1- Виды механизмов

Учитывая возможность условного превращения практически любого механизма с высшими парами в рычажный, в дальнейшем наиболее подробно рассматривается именно эти механизмы.

2. Оформление отчета

Отчет должен содержать:

1. Наименование работы.

2. Цель работы.

3. Основные формулы.

4. Решение задачи.

5. Вывод по решенной задаче.

Пример структурного анализа механизма

Выполните структурный анализ рычажного механизма.

Задана кинематическая схема рычажного механизма в стандартном машиностроительном масштабе в определенном углом α положении (рис.2).

Определите количество звеньев и кинематических пар, классифицируйте звенья и кинематические пары, определите степень подвижности механизма по формуле Чебышева, установите класс и порядок механизма. Выявите и устраните избыточные связи.

Последовательность действий:


1. Классифицируйте звенья: 1- кривошип, 2- шатун, 3- коромысло, 4- стойка. Всего 4 звена.

Рисунок 2 - Кинематическая схема механизма

2. Классифицируйте кинематические пары: О, А, В, С – одноподвижные, плоские, вращательные, низшие; 4-кинематические пары.

3. Определите подвижность механизма по формуле:

W3=3(n-1)-(2P1+1P2)=3(4-1)-(2*4+1*0)=1 (4)

4. Установите класс и порядок механизма по Ассуру:

Наметьте и мысленно выделите из схемы ведущую часть - механизм 1 класса (М 1К - звенья 1,4, соединение кривошипа со стойкой, рис.3). Их количество равно подвижности механизма (определена в пункте 3).

Рисунок 3 – Схема механизма

Оставшуюся (ведомую) часть схемы механизма разложите на группы Ассура. (В рассматриваемом примере оставшуюся часть представляют лишь два звена 2,3.)

Первой выделяется группа, наиболее удаленная от механизма 1 класса, простейшая (звенья 2,3, рис.3). В этой группе число звеньев n’=2, а число целых кинематических пар и элементов кинематических пар в сумме Р =3 (В –кинематическая пара, А, С – элементы кинематических пар). При выделении каждой очередной группы подвижность оставшейся части не должна изменяться. Степень подвижности группы Ассура 2-3 равна

https://pandia.ru/text/78/483/images/image008_7.jpg" width="261" height="63 src="> (7)

Всему механизму присваивается класс и порядок наивысший, т. е. - М1К 2П.

5. Выявите и устраните избыточные связи.

Количество избыточных связей в механизме определяется выражением:

https://pandia.ru/text/78/483/images/image010_8.jpg" width="222" height="30 src="> (9)

Устраняем избыточные связи. Заменяем одноподвижную пару А, например, на вращательную двухподвижную (рис.1), а одноподвижную пару В на трехподвижную (сферическую рис.1). Тогда число избыточных связей определится следующим образом:

Структурный синтез и анализ механизмов

Основные виды механизмов

Исходя из кинœематических, конструктивных и функциональных свойств, механизмы подразделяют на:

1. Рычажные (рис. 2 а, б) - предназначенные для преобразования вращательного движения входного звена в возвратно-поступательное движение выходного звена. Могут передавать большие усилия и мощности.

2. Кулачковые (рис.2 в, г) - предназначенные для преобразования вращательного или возвратно-поступательного движения входного звена в возвратно-поступательное или возвратно-вращательное движение выходного звена. Придавая профилям кулачка и толкателя соответствующие очертания всœегда можно осуществить любой желательный закон движения толкателя.

3. Зубчатые (рис. 2 е) - образованные с помощью зубчатых колес. Служат для передачи вращения между неподвижными и подвижными осями. Зубчатые передачи с параллельными осями реализуются при помощи цилиндрических зубчатых колес, с пересекающимися осями - при помощи конических зубчатых колес, а со скрещивающимися осями - при помощи червяка и червячного колеса.

4. Фрикционные (рис. 2 д) - движение от ведущего звена к ведомому передается за счет сил трения, возникающих в результате контакта этих звеньев.

Структурным синтезом механизма принято называть проектирование структурной схемы механизма, которая состоит из неподвижного и подвижных звеньев и кинœематических пар. Он является начальной стадией составления схемы механизма, удовлетворяющего заданным условиям. Исходными данными обычно являются виды движения ведущего и рабочего звеньев механизма, взаимное расположение осœей вращения и направления поступательного движения звеньев, их угловые и линœейные перемещения, скорости и ускорения. Наиболее удобным методом нахождения структурной схемы является метод присоединœения структурных групп Ассура к ведущему звену или основному механизму.

Под структурным анализом механизма принято понимать определœение количества звеньев и кинœематических пар, определœение степени подвижности механизма, а также установление класса и порядка механизма.

Степень подвижности пространственного механизма определяется по формуле Сомова - Малышева:

W = 6n-(5P 1 +4P 2 + 3P 3 + 2P 4 + P 5) (1)

где Р 1 , Р 2 , Р 3 , Р 4 , P 5 - число одно-, двух-,трех-, четырех- и пятиподвижных кинœематических пар; n - число подвижных звеньев.

Степень подвижности плоского механизма определяется по формуле Чебышева:

W=3n-2P H - P B (2)

где рн - число низших, а Р в - число высших кинœематических пар.

В качестве примера рассмотрим четырехзвенный механизм рулевого управления автопилота (рис. 3.3): звенья 1 и 2 образуют цилиндрическую пару четвертого класса, имеющую две степени свободы; звенья 2-3 и 4-1 образуют вращательные пары пятого класса, имеющие одну степень свободы; звенья 3-4 образуют шаровую пару третьего класса, имеющую три степени свободы; число подвижных звеньев равно трем, тогда

W = 6 3-2 5-1 4-1 3 = 1

Степень подвижности данного механизма равна 1.

Кинœематическая цепь, число степеней свободы которой относительно элементов ее внешних кинœематических пар равно нулю, называют структурной группой Ассура, по имени Л.В. Ассура, который впервые фундаментально исследовал и предложил структурную классификацию плоских стержневых механизмов. Пример образования плоского шестизвенного механизма дан на рис. 4.

Структурные группы подразделяют по классу и порядку. Класс группы определяется максимальным числом кинœематических пар входящих в одно звено (рис. 5).

Порядок группы определяется числом элементов, которыми группа присоединяется к основному механизму (рис. 6).

Класс и порядок механизма зависят от того, какое звено является ведущим.

Механизмы с незамкнутой кинематической цепью собираются без натягов, поэтому они статически определимые, без избыточных связей (q =0).

Структурная группа – кинематическая цепь, присоединение которой к механизму не изменяет числа его степеней свободы и которая не распадается на более простые кинематические цепи с нулевой степенью свободы.

Первичный механизм (по И. И. Артоболевскому – механизм I класса, начальный механизм), представляет собой простейший двухзвенный механизм, состоящий из подвижного звена и стойки. Эти звенья образуют либо вращательную кинематическую пару (кривошип – стойка), либо поступательную пару (ползун – направляющие). Начальный механизм имеет одну степень подвижности. Число первичных механизмов равно числу степеней свободы механизма.

Для структурных групп Ассура, согласно определению и формуле Чебышева (при р вг =0, n = n пг и q п =0), справедливо равенство:

W пг =3n пг –2р нг =0, (1.5)

где W пг – число степеней свободы структурной (поводковой) группы относительно тех звеньев, к которым она присоединяется; n пг, р нг – число звеньев и низших пар структурной группы Ассура.

Рисунок 1.5 – Расчленение кривошипно-ползунного механизма на первичный механизм (4,А,1) и структурную группу (B,2,C,3,С")

Первая группа присоединяется к первичному механизму, каждая последующая – к полученному механизму, при этом нельзя присоединять группу к одному звену. Порядок структурной группы определяется числом элементов звеньев, которыми она присоединяется к имеющемуся механизму (т. е. числом её внешних кинематических пар).

Класс структурной группы (по И. И. Артоболевскому) определяется числом кинематических пар, образующих наиболее сложный замкнутый контур группы.



Класс механизма определяется наивысшим классом входящей в него структурной группы; при структурном анализе заданного механизма класс его зависит и от выбора первичных механизмов.

Структурный анализ заданного механизма следует проводить путем расчленения его на структурные группы и первичные механизмы в порядке, обратном образованию механизма. После отделения каждой группы степень подвижности механизма должна оставаться неизменной, а каждое звено и кинематическая пара могут входить только в одну структурную группу.

Структурный синтез плоских механизмов следует проводить, применяя метод Ассура, который обеспечивает статически-определимую плоскую схему механизма (q п =0), и формулу Малышева, поскольку вследствие неточностей изготовления плоский механизм в какой-то мере получается пространственным.

Для кривошипно-ползунного механизма, рассматриваемого как пространственный (рисунок 1.6), по формуле Малышева (1.2):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×4-6×3=3

Рисунок 1.6 – Кривошипно-ползунный механизм с низшими парами

Для кривошипно-ползунного механизма, рассматриваемого как пространственный, в котором одну вращательную пару заменили на цилиндрическую двухподвижную пару, а другую – на сферическую трёхподвижную (рисунок 1.7), по формуле Малышева (1.2):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×2+4×1+3×1-6×3=0

Рисунок 1.7 – Кривошипно-ползунный механизм без избыточных связей (статически определимый)

Такой же результат получим, поменяв местами цилиндрическую и сферическую пары (рисунок 1.8):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×2+4×1+3×1-6×3=0

Рисунок 1.8 – Вариант исполнения кривошипно-ползунного механизма без избыточных связей (статически определимого)

Если установим в этом механизме две сферические пары вместо вращательных, получим механизм без избыточных связей, но с местной подвижностью (W м =1) – вращением шатуна вокруг своей оси (рисунок 1.9):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×2+3×2-6×3= -1

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n +W м =1+5×2+3×2-6×3+1=0

Рисунок 1.9 – Кривошипно-ползунный механизм с местной подвижностью

Раздел 4. Детали машин

Особенности проектирования изделий

Классификация изделий

Деталь – изделие, изготовленное из однородного материала, без применения сборочных операций, например: валик из одного куска металла; литой корпус; пластина из биметаллического листа и т.д.

Сборочная единица – изделие, составные части которого подлежат соединению между собой сборочными операциями (свинчиванием, сочленением, пайкой, опрессовкой и т.д.)

Узел – сборочная единица, которую можно собирать отдельно от других составных частей изделия или изделия в целом, выполняющая определенную функцию в изделиях одного назначения только совместно с другими составными частями. Характерным примером узлов являются опоры валов - подшипниковые узлы.

ПРАКТИЧЕСКАЯ РАБОТА № 1

Тема: Структурный синтез механизмов

Цель занятия: знакомство с элементами структуры механизма, расчетом подвижности, устранением избыточных связей.

Оснащение : методические указания по выполнению практической работы.

Работа рассчитана на 4 академических часа.

бщие теоретические сведения.

Для изучения строения механизма используется его структурная схема. Часто эту схему механизма совмещают с его кинематической схемой. Так как основными структурными составляющими механизма являются звенья и образуемые ими кинематические пары, то под структурным анализом понимается анализ самих звеньев, характер их соединения в кинематические пары, возможность проворачиваемости, анализ углов давления. Поэтому в работе даются определения механизма, звеньев, кинематических пар. В связи с выбором способа исследования механизма рассматривается вопрос о его классификации. Приводится классификация, предложенная Л.В.Ассуром. При выполнении лабораторной работы используются модели плоских рычажных механизмов, имеющихся на кафедре.

Механизм - это система взаимосвязанных твердых тел с определенными относительными движениями. В теории механизмов упомянутые твердые тела называют звеньями.

Звено - это то, что движется в механизме как одно целое. Оно может состоять из одной детали, но может включать в себя и несколько деталей, жестко связанных между собой.

Основные звенья механизма - это кривошип, ползун, коромысло, шатун, кулиса, камень. Указанные подвижные звенья монтируются на неподвижной стойке.

Кинематическая пара - это подвижное соединение двух звеньев. Кинематические пары классифицируются по ряду признаков - характеру соприкосновения звеньев, виду их относительного движения, относительной подвижности звеньев, по расположению траекторий движения точек звеньев в пространстве.

Для исследования механизма (кинематического, силового) строится его кинематическая схема. Для конкретного механизма - в стандартном машиностроительном масштабе. Элементами кинематической схемы являются звенья: входное, выходное, промежуточные, а также обобщенная координата. Число обобщенных координат и, следовательно, входных звеньев, равно подвижности механизма относительно стойки –W 3 .

Подвижность плоского механизма определяется по структурной формуле Чебышева (1):

где n- количество всех звеньев механизма;

P 1 , P 2 - число одно и двухподвижных кинематических пар в механизме.

Из-за погрешностей при изготовлении механизмов возникают вредные пассивные связи q - (избыточные), которые приводят к дополнительным деформациям и потерям энергии на эти деформации. При конструировании они должны быть выявлены и устранены. Количество их выявляется по структурной формуле Сомова – Малышева (2):

В механизме без избыточных связей q ≤ 0 Устранение их достигается изменением подвижности отдельных кинематических пар.

Присоединение структурных групп Ассура к ведущему звену является наиболее удобным методом построения схемы механизма. Группой Ассура называется кинематическая цепь, которая при соединении внешних пар к стойке получает нулевую степень подвижности. Простейшая группа Ассура образуется двумя звеньями, соединенными кинематической парой. Стойка в группу не входит. Группа имеет класс и порядок. Порядок определяется количеством элементов внешних кинематических пар, которыми группа присоединяется к схеме механизма. Класс определяется числом К, которое должно удовлетворять соотношению:

(3)

где P- количество кинематических пар, включая элементы пар, Q 1 количество звеньев в группе Ассура.

Класс и порядок данного механизма соответствует классу и порядку старшей группы Ассура в этом механизме. Цель классификации – выбор способа исследования механизма.

Среди всего многообразия конструкций механизмов различают: стержневые (рычажные), кулачковые, фрикционные, зубчатые механизмы, механизмы с гибкими звеньями (например, ременные передачи) и др. виды (рис. 1).

Менее распространенные классификации подразумевают наличие механизмов с низшими или высшими парами в плоском или пространственном исполнении и т.д.



Рисунок 1- Виды механизмов

Учитывая возможность условного превращения практически любого механизма с высшими парами в рычажный, в дальнейшем наиболее подробно рассматривается именно эти механизмы.

формление отчета

Отчет должен содержать:

1. Наименование работы.

2. Цель работы.

3. Основные формулы.

4. Решение задачи.

5. Вывод по решенной задаче.

Пример структурного анализа механизма

Выполните структурный анализ рычажного механизма.

Задана кинематическая схема рычажного механизма в стандартном машиностроительном масштабе в определенном углом α положении (рис.1г).

Определите количество звеньев и кинематических пар, классифицируйте звенья и кинематические пары, определите степень подвижности механизма по формуле Чебышева, установите класс и порядок механизма. Выявите и устраните избыточные связи.

Последовательность действий:

1.Классифицируйте звенья: 1- кривошип, 2- шатун, 3- коромысло, 4- стойка. Всего 4 звена

2. Классифицируйте кинематические пары: О, А, В, С – одноподвижные, плоские, вращательные, низшие; 4-кинематические пары.

3. Определите подвижность механизма по формуле:

W3=3(n-1)-(2P1+1P2)=3(4-1)-(2*4+1*0)=1 (4)

4. Установите класс и порядок механизма по Ассуру:

Наметьте и мысленно выделите из схемы ведущую часть - механизм 1 класса (М 1К - звенья 1,4, соединение кривошипа со стойкой, рис.2). Их количество равно подвижности механизма (определена в пункте 3).

Рисунок 2 . Схема механизма

Оставшуюся (ведомую) часть схемы механизма разложите на группы Ассура. (В рассматриваемом примере оставшуюся часть представляют лишь два звена 2,3.)

Первой выделяется группа, наиболее удаленная от механизма 1 класса, простейшая (звенья 2,3, рис.3). В этой группе число звеньев n’=2, а число целых кинематических пар и элементов кинематических пар в сумме Р =3 (В –кинематическая пара, А,С – элементы кинематических пар). При выделении каждой очередной группы подвижность оставшейся части не должна изменяться. Степень подвижности группы Ассура 2-3 равна

Класс группы определяем из простейшей системы двух уравнений:

откуда Класс группы равен 1.

Порядок группы равен 2, т. к. группа присоединяется к основному механизму двумя элементами кинематических пар А, С.

Следовательно, рассматриваемая группа Ассура является группой 1 Класса 2 Порядка.

Формула строения механизма:

(7)

Всему механизму присваивается класс и порядок наивысший, т.е. - М1К 2П.

5. Выявите и устраните избыточные связи.

Количество избыточных связей в механизме определяется выражением:

В механизме все пары одноподвижные P 1 =4 а число звеньев n равно 4. Количество избыточных связей:

Устраняем избыточные связи. Заменяем одноподвижную пару А, например, на вращательную двухподвижную (рис.1), а одноподвижную пару В на трехподвижную (сферическую рис.1). Тогда число избыточных связей определится следующим образом.

Имеют одни и те же методы исследования независимо от области их применения или функционального назначения.

Необходимо знать, что представляет собой структурная группа (группа Ассура), как определяется ее класс, порядок, вид. Желательно запомнить таблицу, показывающую сочетание звеньев и кинематических пар пятого класса в группе:

n группы 2 4 6 8
P 5 группы 3 6 9 12

Решение задачи начинается с определения числа степеней свободы кинематической цепи , положенной в основу данного механизма. В соответствии с числом степеней свободы назначается число начальных звеньев (или входных звеньев), после чего цепь становится механизмом .

После присоединения каждой группы Ассура должен получаться промежуточный механизм , с тем же числом степеней свободы, что и заданный. После присоединения последней группы должен получиться первоначально заданный механизм.

Обратите внимание на то, что класс механизма (а значит и методы его решения) определяются не только схемой механизма, но и тем, какое звено принято в качестве входного. При одной и той же схеме, но при разных входных звеньях, могут получаться разные по классу механизмы, а, значит, и методы их исследования будут различны.

Необходимо отметить также, что наличие в схеме механизма замкнутых контуров не определяет класс механизма, т.к. при разбивке на группы Ассура эти контуры могут распадаться. Но если какой-то контур сохранился в группе Ассура, то он определяет класс этой группы, и через класс группы – класс механизма.

В механизмах могут встретиться двойные и более сложные шарниры , поэтому надо быть внимательным при определении числа степеней свободы, а также при разбивке механизма на группы Аcсура.

Надо иметь в виду следующее:

  • при одной и той же схеме можно получить разные механизмы с точки зрения методов исследования, если задавать в качестве входных различные звенья;
  • из одних и тех же групп Ассура можно составить разные механизмы, с различным функциональным назначением;
  • структурная группа (группа Ассура) обладает одними и теми же свойствами и методами исследования независимо от того, в каком механизме она находится. Это очень важное свойство позволяет разрабатывать методы исследования только для групп Ассура, а не для каждого механизма из их огромного количества;
  • рассматриваемая структурная классификация применима не только для анализа существующих механизмов, но и для целенаправленного синтеза механизмов с предсказуемыми свойствами (путем присоединения к начальному или к начальным механизмам групп Ассура и дальнейшего их наслоения).

При наличии у механизма двух степеней свободы необходимо задать два начальных звена.

Если механизм имеет высшие кинематические пары IV класса, то прежде, чем разбивать механизм на структурные группы, надо произвести замену высших пар цепями с низшими парами , т.к. в группы Ассура входят только пары V класса.

Для последующего анализа целесообразно сравнить число степеней свободы заданного механизма и механизма, полученного после замены высших пар.

В механизме могут встретиться лишние степени свободы. Формула для определения числа степеней свободы дает правильный результат для общего случая, но в частном случае, при определенных размерах звеньев, фактическое число степеней свободы может отличаться от определенного по формуле.

Обычно наличие круглого ролика дает лишнюю степень свободы (его вращение вокруг собственной оси дает механизму дополнительную степень свободы, но это движение не влияет на характер работы остальных звеньев и всего механизма в целом). Поэтому число начальных механизмов надо задавать по действующему числу степеней свободы (W действ. =W расчетн. – W лишн.).

При замене высшей пары лишняя степень свободы автоматически исчезает (поэтому после замены высшей пары новое расчетное значение числа степеней свободы будет равно действующему числу степеней свободы). Это удобно для контроля правильности установления наличия или отсутствия лишних степеней свободы.

В некоторых случаях сложно определить класс групп Ассура, а, соответственно, и механизма по кинематической схеме, т.к. некоторые треугольники вырождаются в прямые линии, стороны контуров могут быть представлены ползунами и т.д. В результате довольно сложно определить наличие замкнутого контура в группе и число его сторон. В таком случае удобно воспользоваться построением структурной схемы механизма (или отдельной группы).

Структурная схема вычерчивается без масштаба, все звенья, входящие в три кинематические пары, изображаются в виде жестких треугольников, звенья, входящие в четыре кинематические пары, – в виде жестких четырехугольников и т.д., все ползуны условно заменяются шарнирами. Таким образом, формируется другой механизм с такой же структурой, но с более наглядной для решения данной задачи схемой. Естественно, что при дальнейшем исследовании рассматривается первоначально заданный механизм.

Поделитесь с друзьями или сохраните для себя:

Загрузка...