Свойства кислорода, уксусной кислоты и алюминия. Вода: электропроводность и теплопроводность

Аллотропия

Из \(118\) известных на данный момент химических элементов \(22\) элемента образуют простые вещества, обладающие неметаллическими свойствами. Неметаллических простых веществ намного больше, чем самих неметаллических химических элементов. Причиной тому служит существование явления, называемого аллотропией.

Аллотропия - это способность атомов данного химического элемента образовывать несколько простых веществ, называемых аллотропными видоизменениями , или аллотропными модификациями .

Например , химический элемент кислород \(O\) образует простое вещество кислород O 2 , молекула которого состоит из двух атомов, и простое вещество озон O 3 , молекула которого состоит из трёх атомов данного элемента.

Химический элемент фосфор \(P\) образует множество аллотропных видоизменений, важнейшими из которых являются красный фосфор и белый фосфор.

Химический элемент углерод \(C\) образует встречающиеся в природе модификации - алмаз и графит.

Аллотропные видоизменения, образуемые одним и тем же химическим элементом, существенно отличаются между собой как по строению, так и по свойствам.

Аллотропия присуща не всем неметаллических химическим элементам.

Например , водород, азот, элементы \(VII\)A и \(VIII\)A групп не имеют аллотропных модификаций, т. е. каждый из упомянутых элементов образует только одно простое вещество.

Кристаллическая решетка неметаллов

Причина большого разнообразия физических свойств неметаллов кроется в различном строении кристаллических решёток этих веществ.

Часть неметаллов имеет атомную кристаллическую решетку . Кристаллы таких веществ состоят из атомов, соединённых между собой прочными ковалентными связями. Такие неметаллы находятся в твёрдом агрегатном состоянии и являются нелетучими. Примерами таких веществ служат алмаз, графит, красный фосфор и кремний.

Модели кристаллических решёток алмаза (слева) и графита. Кристаллы этих аллотропных видоизменений состоят из атомов углерода, соединённых между собой ковалентными связями. Кристаллы графита, в отличие от кристаллов алмаза, сложены из отдельных слоёв, которые располагаются друг по отношению к другу подобно тому, как листы бумаги - в книге

Другая часть неметаллов имеет молекулярную кристаллическую решетку . В этом случае в каждой молекуле атомы соединены достаточно прочно ковалентной связью, а вот отдельные молекулы друг с другом в кристаллах вещества связаны очень слабо. Поэтому вещества молекулярного строения при обычных условиях могут быть газами, жидкостями или легкоплавкими твёрдыми веществами.

Кислород O 2 , озон O 3 , азот N 2 , водород H 2 , фтор F 2 , хлор Cl 2 , бром Br 2 , иод I 2 , белый фосфор P 4 , кристаллическая сера S 8 и инертные газы - это всё вещества, кристаллы которых состоят из отдельных молекул (а в случае инертных газов - из отдельных атомов, как бы выполняющих роль молекул).

Модель молекулы серы (слева) и кристалл серы. Кристалл серы состоит из отдельных молекул \(S_8\)

Физические свойства неметаллов

Свойства неметаллических простых веществ отличаются большим разнообразием. Собственно говоря, их объединяет только то, что они, как правило, не обладают теми физическими свойствами, которые типичны для металлов, т. е. не обладают характерным металлическим блеском, ковкостью, пластичностью, высокой тепло- и электропроводностью.

Агрегатное состояние

Неметаллы при обычных условиях могут быть газообразными, жидкими и твёрдыми веществами.

Газообразными неметаллами я вляются гелий \(He\), неон \(Ne\), аргон \(Ar\), криптон \(Kr\), ксенон \(Xe\) и радон \(Rn\). Их называют инертными (или благородными ) газами . Каждая «молекула» инертного газа состоит только из одного атома.

Такие химические элементы, как водород \(H\), кислород \(O\), азот \(N\), хлор \(Cl\), фтор \(F\) образуют газообразные вещества, состоящие из двухатомных молекул, соответственно - H 2 , O 2 , N 2 , Cl 2 , F 2 .

Из неметаллических простых веществ при обычных условиях жидкостью является только бром, молекулы которого двухатомны - Br 2 .

Остальные неметаллические химические элементы при обычных условиях находятся в твёрдом агрегатном состоянии. Например, химический элемент углерод образует такие твёрдые вещества, как алмаз и графит. Твёрдыми являются кристаллическая сера S 8 , фосфор красный и фосфор белый P 4 , кристаллический иод I 2 .

Цвет и блеск

Только некоторые неметаллы в отличие от металлов имеют блеск. Например, кристаллический иод, кремний и графит не похожи на остальные неметаллы - они имеют блеск, несколько напоминающий блеск металлов.

Если для подавляющего большинства металлов характерны серебристо-серый или серебристо-белый цвета, то окраска неметаллов очень разнообразна. Белый цвет имеет белый фосфор, красный - красный фосфор, жёлтый - сера и фтор, красно-бурый - жидкий бром, жёлто-зелёный - хлор, фиолетовый цвет имеют пары иода, синий - жидкий кислород, серый - графит и кремний. Бесцветным является алмаз, окраски не имеют также инертные газы, азот, кислород и водород.

Красный фосфор

Цель урока. Конкретизировать знания о химическом элементе и простом веществе. Изучить физические свойства кислорода. Сформировать представления о способах получения и собирания кислорода в лаборатории.

Задачи:

  1. Образовательные:
    – Уметь различать понятия “химический элемент” и “простое вещество”
    на примере кислорода.
    – Уметь характеризовать физические свойства кислорода и способы
    собирания кислорода.
    – Уметь расставлять коэффициенты в уравнениях реакций.
  2. Воспитательные:
    формирование аккуратности при выполнении лабораторного опыта;
    внимательности, бережного отношения.
  3. Развивающие:
    – Формирование выстраивания логических цепочек, владеть химической
    терминологией, познавательной активности, умозаключений и суждений.

Основные понятия. Химический элемент, простое вещество, физические свойства, катализаторы.

Планируемые результаты обучения. Уметь различать понятия “химический элемент” и “простое вещество” на примере кислорода. Уметь характеризовать физические свойства кислорода и способы собирания кислорода. Уметь расставлять коэффициенты в уравнениях реакций.

Опыт: Получение кислорода из пероксида водорода и подтверждение его наличия.

Демонстрации. Получение кислорода из перманганата калия. Собирание кислорода методом вытеснения воздуха и подтверждение его наличия.

Оборудование и реактивы: Таблица Д.И.Менделеева, раздаточный материал (тест), прибор для получения кислорода из пермангата калия (коническая колба с резиновой пробкой, газоотводная трубка, ПХ-12, штатив, лапка, вата), пероксид водорода 20 мл (15 флаконов), оксид марганца (IV) (15 склянок), ложка-дозатор (15 шт.), спиртовка (15 шт.), спички (15 шт.), лучина (15 шт.), перманганат калия (5 г),.

Тип урока: Урок усвоения новых знаний.

Методы обучения:

  • Объяснительно-иллюстративный (словесные: беседа, изложение; словесно-наглядные: самостоятельная работа учащихся с наглядными пособиями; словесно-наглядно-практические: работа учащихся с раздаточным материалом, выполнение химического опыта, выполнение письменной самостоятельная работы).
  • Частично-поисковый (эвристический) метод (словесные: беседа-дискуссия; словесно-наглядные: дискуссия с демонстрацией средств наглядности, самостоятельная работа учащихся с наглядным пособием; словесно-наглядно-практические: работа учащихся с раздаточным материалом, выполнение химического опыта, выполнение письменной самостоятельная работы).
  • Исследовательский метод (словесно-наглядно-практический: выполнение исследовательского химического опыта).

Формы организации деятельности: фронтальная, групповая (парная).

I. Организационный этап.

  1. Приветствие.
  2. Определение отсутствующих.
  3. Проверка готовности к уроку.

Наличие дневника, классной тетрадки, учебника по химии, ручки.

II. Подготовка учащихся к активному и сознательному усвоению нового материала.

Учитель: Для того чтобы определить тему сегодняшнего урока нам с вами необходимо разгадать ребус?

Слайд 1

Разгадайте ребус и мы узнаем тему сегодняшнего урока.

Рис. 1

(КИСТИ) КИ + (СЛОН) СЛО + РОД

КИСЛОРОД

Учитель: Тема сегодняшнего урока: “Кислород, его общая характеристика и нахождение в природе. Физические свойства кислорода. Получение”.

Слайд 2

Тема сегодняшнего урока: “Кислород, его общая характеристика и нахождение в природе. Физические свойства кислорода. Получение”.

Слайд 3

“Кислород” – это вещество, вокруг которого вращается земная химия.

Я. Берцелиус

Учитель: С помощью языка химии необходимо на доске записать: кислород как химический элемент и как простое вещество.

Кислород – как элемент – О.

Кислород – как простое вещество – О 2 .

Учитель: Сейчас на экране появится несколько фраз (изречений), вам нужно определить в каком значении упоминается в них кислород – как химический элемент или как простое вещество.

Слайд 4

Задание: Определите кислород как химический элемент или простое вещество.

  1. Кислород входит в состав жизненно важных органических веществ: белков, жиров, углеводов.
  2. Все живые вещества на Земле дышат кислородом.
  3. В состав ржавчины входят железо и кислород.
  4. Рыбы дышат кислородом, растворенным в воде.
  5. При фотосинтезе зеленые растения выделяют кислород.

Учитель: Вам необходимо с помощью ПСХЭ им. Д.И.Менделеева дать характеристику химическому элементу “Кислород”, по следующему плану:

Слайд 5:

  1. Порядковый номер –
  2. Относительная атомная масса –
  3. Период –
  4. Группа –
  5. Подгруппа –
  6. Валентность –

Учитель: Проверим, внимание на экран

Слайд 6

  1. Порядковый номер – 8
  2. Относительная атомная масса – Ar(О) = 16
  3. Период – второй
  4. Группа – VI
  5. Подгруппа – а (главная)
  6. Валентность – II

Слайд 7

Распространение кислорода в природе:

Первое место по распространенности в земной коре, т.е. литосфере, занимает кислород – 49%, далее следуют кремний – 26%, алюминий – 7%, железо – 5%, кальций – 4%, натрий – 2%, калий – 2%, магний – 2%, водород – 1%.

В биосфере около 65% от массы живых организмов приходится на кислород.

В гидросфере на его долю приходится 89%.

В атмосфере: 23% по массе, 21% по объему.


Рис. 2

Учитель: Вам необходимо с помощью ПСХЭ им. Д.И.Менделеева дать характеристику простому веществу “Кислород”.

Итак, какова же химическая формула простого вещества – 0 2

Относительная молекулярная масса Мг(0 2) = 32

Слайд 8

История открытия кислорода.

Рис. 3

Рис 5

Рис. 4

Рис. 6

Учитель комментирует: В 1750 году М.В. Ломоносов провел опыты и доказал, что в состав воздуха входит вещество, окисляющее металл. Он назвал его флогистоном.

Получил кислород в 1771 году Карл Шееле. Независимо от него кислород был получен Дж. Пристли в 1774 году.

А история простая…
Джозеф Пристли как-то раз,
Окись ртути нагревая,
Обнаружил странный газ.
Газ без цвета, без названья,
Ярче в нем горит свеча.
А не вреден для дыханья?
Не узнаешь у врача!
Новый газ из колбы вышел –
Никому он не знаком.
Этим газом дышат мыши
Под стеклянным колпаком.
Человек им тоже дышит…

В 1775 году А. Лавуазье установил, что кислород – составная часть воздуха и содержится во многих веществах.

Из атомов мир создавала природа:
Два атома легких взяла водорода,
Прибавила атом один кислорода –
И получилась частица воды,
Море воды, океаны и льды…
Стал кислород
Чуть не всюду начинкой.
С кремнием он обернулся песчинкой.
В воздух попал кислород,
Как ни странно,
Из голубой глубины океана.
И на Земле появились растения.
Жизнь появилась:
Дыханье, горенье…
Первые птицы и первые звери,
Первые люди, что жили в пещере…
Огонь добывали при помощи трения,
Хотя и не знали причины горения.
Роль кислорода на нашей Земле
Понял великий Лавуазье.

Учитель: Теперь познакомимся с кислородом на опыте. Так как мы будем использовать нагревательный прибор (спиртовку), необходимо вспомнить ТБ при работе со спиртовкой:

  1. Пользуясь спиртовкой, нельзя ее зажигать от другой спиртовки, так как может пролиться спирт и возникнет пожар.
  2. Чтобы погасить пламя спиртовки, ее следует закрыть колпачком.

Налейте в химический стакан раствор Н 2 О 2 (пероксида водорода).

Зажгите спиртовку, поднесите лучину в пламя и затушите лучину. Потом добавьте оксид марганца (IV) в химический стакан и поднесите тлеющую лучину к стакану – что наблюдается?

Ученик: Лучина – вспыхивает. Таким способом мы определили, что в химическом стакане находится кислород.

Учитель: В данном опыте оксид марганца (IV) является катализатором – веществом, которое ускоряет процесс химической реакции, но сам при этом не расходуется.

Демонстрационный эксперимент: “Получение кислорода из перманганата калия”.

Собираем прибор.

Собираем кислород методом вытеснения воздуха в коническую колбу, через некоторое время проверяем на наличие кислорода, с помощью тлеющей лучины, если она вспыхивает, то кислорода собрано достаточное количество.

Закрываем резиновой пробкой и выставляем на подъемный столик.

И предлагаем учащимся охарактеризовать физические свойства кислорода по следующим критериям.

Слайд 9

  1. Агрегатное состояние -...
  2. Цвет – ...
  3. Запах – ...
  4. Растворимость в воде – ...
  5. t o кип. –...
  6. Электропроводность – ...
  7. Теплопроводность – ...
  8. Тяжелее или легче воздуха

Учитель: Проверим, внимание на экран.

Слайд 10

  1. Агрегатное состояние – газ.
  2. Цвет – без цвета
  3. Запах – без запаха
  4. Растворимость в воде – плохо растворим
  5. t° кип. – 183°С
  6. Электропроводность – неэлектропроводен
  7. Теплопроводность – плохо проводит тепло (плохая)
  8. Тяжелее воздуха

Учитель: Ставим перед учащимися проблемный вопрос: Почему на картинке кислород в виде жидкости голубого цвета?

Слайд 11


Рис. 7

Ответ учащихся (дополняет учитель): Этот кислород в сжиженном состоянии, а жидкий кислород голубого цвета.

Теперь давайте обобщим и запишем в тетрадь разные способы получения кислорода, которые мы сегодня с вами наблюдали.
Рис. 8


Рис. 9

Учитель: В завершении урока, проверим свои знания.

Вы начинаете знакомиться с новым учебным предметом - химией. А что изучает химия?

Как вам известно из курса физики, многие вещества состоят из молекул, а молекулы - из атомов. Атомы так малы, что на острие иглы их может поместиться многие миллиарды. Тем не менее различают всего 114 видов атомов.

Из отдельных изолированных атомов состоят такие вещества, как неон, аргон, криптон, гелий. Их ещё называют благородными или инертными газами, потому что их атомы не соединяются друг с другом и почти не соединяются с атомами других химических элементов. Совсем другое дело - атомы водорода. Они могут существовать поодиночке (рис. 4, а), как на Солнце, которое более чем наполовину состоит из отдельных атомов водорода. Могут соединяться в молекулы по два атома (рис. 4, б), образуя молекулы самого лёгкого газа, который, как и химический элемент, называют водородом. Атомы водорода могут также соединяться с атомами других химических элементов. Например, два атома водорода, соединяясь с одним атомом кислорода (рис. 4, в), образуют молекулы хорошо известного вам вещества - воды.

Рис. 4.
Формы существования химического элемента водорода:
а - атомы водорода; б - молекулы водорода; в - атомы водорода в молекуле воды

Аналогично, понятие «химический элемент кислород» объединяет изолированные атомы кислорода, кислород - простое вещество, молекулы которого состоят из двух атомов кислорода, и атомы кислорода, входящие в состав сложных веществ. Так, в состав молекул углекислого газа входят атомы кислорода и углерода, в состав молекул сахара - атомы углерода, водорода и кислорода.

Следовательно, каждый химический элемент существует в трёх формах: свободные атомы, простые вещества и сложные вещества (см. рис. 4).

Понятие «химический элемент» более широкое, и его не нужно путать с понятием «простое вещество», особенно если названия их совпадают. Например, когда говорят о том, что в состав воды входит водород, то имеют в виду химический элемент, а когда говорят о том, что водород - экологически чистый вид топлива, то имеют в виду простое вещество.

Различные вещества отличаются друг от друга своими свойствами. Так, водород - это газ, очень лёгкий, без цвета, запаха, вкуса, имеет плотность 0,00009 г/см 3 , кипит при температуре -253 °С, а плавится при температуре -259 °С и т. д. Эти свойства вещества называют физическими.

Описать физические свойства вещества можно, воспользовавшись следующим планом:

  1. В каком агрегатном состоянии (газообразном, жидком, твёрдом) находится вещество при данных условиях?
  2. Какого цвета вещество? Имеет ли оно блеск?
  3. Имеет ли вещество запах?
  4. Какова твёрдость вещества по относительной шкале твёрдости (шкале Мооса) (рис. 5)? (См. справочники.)

Рис. 5.
Шкала твёрдости

  1. Проявляет ли вещество пластичность, хрупкость, эластичность?
  2. Растворяется ли вещество в воде?
  3. Какова температура плавления и температура кипения вещества? (См. справочники.)
  4. Какова плотность вещества? (См. справочники.)
  5. Обладает ли вещество тепло- и электропроводностью? (См. справочники.)

Лабораторный опыт № 1
Сравнение свойств твёрдых кристаллических веществ и растворов

Сравните, используя приведённый на с. 10 план, свойства выданных вам в стаканчиках образцов веществ:

  • вариант 1 - кристаллических сахара и поваренной соли;
  • вариант 2 - глюкозы и лимонной кислоты.

Зная свойства веществ, человек может использовать их с большей пользой для себя. Например, рассмотрим свойства и применение алюминия (рис. 6).

Рис. 6.
Применение алюминия:
1 - самолётостроение; 2 - ракетостроение; 3 - изготовление ЛЭП; 4 - производство посуды, столовых приборов и упаковочной фольги

Благодаря лёгкости и прочности алюминий и его сплавы применяют в самолёто- и ракетостроении, недаром алюминий называют «крылатым металлом».

Лёгкость и хорошую электропроводность алюминия используют при изготовлении электрических проводов для линий электропередачи (ЛЭП).

Теплопроводность и неядовитость важны при изготовлении алюминиевой посуды.

Неядовитость и пластичность позволяют широко применять тоненькие листы алюминия - фольгу - в качестве упаковочного материала для шоколадных плиток, чая, маргарина, молока, соков, других продуктов, а также для лекарственных средств, помещённых в контурные ячейки.

Внедрение алюминиевых сплавов в строительстве повышает долговечность и надёжность конструкций.

Эти примеры иллюстрируют то, что из одного вещества - материала (алюминия) можно изготовить различные физические тела.

Алюминий способен гореть ослепительным пламенем (рис. 7), поэтому его используют при проведении красочных фейерверков и изготовлении бенгальских огней (вспомните рассказ Н. Носова «Бенгальские огни»). При горении алюминий превращается в другое вещество - оксид алюминия.

Рис. 7.
Горение алюминия - основа бенгальских огней и фейерверков

Ключевые слова и словосочетания

  1. Предмет химии.
  2. Вещества простые и сложные.
  3. Свойства веществ.
  4. Химический элемент и формы его существования: свободные атомы, простые вещества и сложные вещества, или соединения.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Филео (греч.) означает «люблю», фобос - «боюсь». Дайте объяснение терминов «хемофилия» и «хемофобия», отражающих резко противоположное отношение групп людей к химии. Кто из них прав? Обоснуйте свою точку зрения.
  2. Обязательный атрибут бесконечного множества шпионских и прочих детективных произведений - цианистый калий, точнее, цианид калия, который обладает свойством парализовывать нервную систему, приводя тем самым жертву к мгновенной смерти. Приведите примеры свойств других веществ, которые используются в литературных произведениях.
  3. Выпишите отдельно названия веществ и названия тел из приведённого перечня: медь, монета, стекло, стакан, ваза, керамика, проволока, алюминий. Воспользуйтесь подсказкой: к названию тела - существительному - можно подобрать относительное прилагательное, образованное от названия вещества, например: железо и гвоздь - железный гвоздь.
  4. Выпишите качественные прилагательные: лёгкий, круглый, длинный, тяжёлый, твёрдый, пахучий, растворимый, увесистый, вогнутый, мягкий, жидкий, прозрачный, - которые могут быть отнесены: а) к веществам; б) к телам; в) и к телам, и к веществам.
  5. Сравните понятия «простое вещество» и «сложное вещество». Найдите сходство и различие.
  6. Определите, какие из веществ, модели молекул которых изображены на рисунке 2, относят: а) к простым веществам; б) к сложным веществам.
  7. Какое понятие более широкое - «химический элемент» или «простое вещество»? Дайте доказательный ответ.
  8. Укажите, где о кислороде говорится как о химическом элементе, а где - как о простом веществе:

    а) кислород мало растворим в воде;

    б) молекулы воды состоят из двух атомов водорода и одного атома кислорода;

    в) в воздухе содержится 21% кислорода (по объёму);

    г) кислород входит в состав углекислого газа.

  9. Укажите, где о водороде говорится как о простом веществе, а где - как о химическом элементе:

    а) водород входит в состав большинства органических соединений;

    б) водород - самый лёгкий газ;

    в) водородом заполняют воздушные шары;

    г) молекула метана содержит четыре атома водорода.

  10. Рассмотрите связь между свойствами вещества и его применением на примере: а) стекла; б) полиэтилена; в) сахара; г) железа.

Кто знает формулу воды еще со времен школьной поры? Конечно же, все. Вероятно, что из всего курса химии у многих, кто потом не изучает ее специализированно, только и остается знание того, что обозначает формула H 2 O. Но сейчас мы максимально подробно и глубоко постараемся разобраться, Какие ее главные свойства и почему именно без нее жизнь на планете Земля невозможна.

Вода как вещество

Молекула воды, как мы знаем, состоит из одного атома кислорода и двух атомов водорода. Ее формула записывается так: H 2 O. Данное вещество может иметь три состояния: твердое - в виде льда, газообразное - в виде пара, и жидкое - как субстанция без цвета, вкуса и запаха. Кстати, это единственное вещество на планете, которое может существовать во всех трех состояниях одновременно в естественных условиях. Например: на полюсах Земли - лед, в океанах - вода, а испарения под солнечными лучами - это пар. В этом смысле вода аномальна.

Еще вода - это самое распространенное вещество на нашей планете. Она покрывает поверхность планеты Земля почти на семьдесят процентов - это и океаны, и многочисленные реки с озерами, и ледники. Большая часть воды на планете соленая. Она непригодна для питья и для ведения сельского хозяйства. Пресная вода составляет всего два с половиной процента от всего количества воды на планете.

Вода - это очень сильный и качественный растворитель. Благодаря этому химические реакции в воде проходят с огромной скоростью. Это же ее свойство влияет на обмен веществ в человеческом организме. что тело взрослого человека на семьдесят процентов состоит из воды. У ребенка этот процент еще выше. К старости этот показатель падает с семидесяти до шестидесяти процентов. Кстати, эта особенность воды наглядно демонстрирует, что основой жизни человека есть именно она. Чем воды в организме больше - тем он здоровее, активнее и моложе. Потому ученые и медики всех стран неустанно твердят, что пить нужно много. Именно воду в чистом виде, а не заменители в виде чая, кофе или других напитков.

Вода формирует климат на планете, и это не преувеличение. Теплые течения в океане обогревают целые континенты. Это происходит за счет того, что вода поглощает очень много солнечного тепла, а потом отдает его, когда начинает остывать. Так она регулирует температуру на планете. Многие ученые говорят, что Земля давно бы остыла и стала камнем, если бы не наличие такого количества воды на зеленой планете.

Свойства воды

У воды есть много очень интересных свойств.

Например, вода - это самое подвижное вещество после воздуха. Из школьного курса многие, наверняка, помнят такое понятие, как круговорот воды в природе. Например: ручеек испаряется под воздействием прямых солнечных лучей, превращается в водяной пар. Далее, этот пар посредством ветра, переносится куда-либо, собирается в облака, а то и в и выпадает в горах в виде снега, града или дождя. Далее, с гор ручеек вновь сбегает вниз, частично испаряясь. И так - по кругу - цикл повторяется миллионы раз.

Также у воды очень высокая теплоемкость. Именно из-за этого водоемы, тем более океаны, очень медленно остывают при переходе от теплого сезона или времени суток к холодному. И наоборот, при повышении температуры воздуха вода очень медленно нагревается. За счет этого, как и упоминалось выше, вода стабилизирует температуру воздуха на всей нашей планете.

После ртути вода обладает самым высоким значением поверхностного натяжения. Нельзя не заметить, что случайно пролитая на ровной поверхности капля иногда становится внушительным пятнышком. В этом проявляется тягучесть воды. Еще одно свойство проявляется у нее при понижении температуры до четырех градусов. Как только вода остывает до этой отметки, она становится легче. Поэтому лед всегда плавает на поверхности воды и застывает корочкой, покрывая собой реки и озера. Благодаря этому в водоемах, замерзающих зимой, не вымерзает рыба.

Вода, как проводник электроэнергии

Вначале стоит узнать о том, что такое электропроводность (воды в том числе). Электропроводность - это способность какого-либо вещества проводить через себя электрический ток. Соответственно, электропроводность воды - это возможность воды проводить ток. Эта способность непосредственно зависит от количества солей и иных примесей в жидкости. Например, электропроводность дистиллированной воды почти сведена к минимуму из-за того, что такая вода очищена от различных добавок, которые так нужны для хорошей электропроводности. Отличный проводник тока - это вода морская, где концентрация солей очень велика. Еще электропроводность зависит от температуры воды. Чем значение температуры выше - тем большая электропроводность у воды. Эта закономерность выявлена благодаря множественным опытам ученых-физиков.

Измерение электропроводности воды

Есть такой термин - кондуктометрия. Так называют один из методов электрохимического анализа, основанного на электрической проводимости растворов. Применяют этот метод для определения концентрации в растворах солей или кислот, а также для контроля состава некоторых промышленных растворов. Вода обладает амфотерными свойствами. То есть в зависимости от условий она способна проявлять как кислотные, так и основные свойства - выступать и в роли кислоты, и в роли основания.

Прибор, который используют для этого анализа, имеет очень сходное название - кондуктометр. С помощью кондуктометра измеряется электропроводность электролитов, находящихся в растворе, анализ которого ведется. Пожалуй, стоит объяснить еще один термин - электролит. Это вещество, которое при растворении или плавлении распадается на ионы, за счет чего впоследствии проводится электрический ток. Ион - это электрически заряженная частица. Собственно, кондуктометр, взяв за основу определенные единицы электропроводности воды, определяет ее удельную электропроводность. То есть он определяет электропроводность конкретного объема воды, взятого за начальную единицу.

Еще до начала семидесятых годов прошлого столетия для обозначения проводимости электричества использовали единицу измерения "мо", это была производная от другой величины - Ома, являющейся основной единицей сопротивления. Электропроводимость - это величина, обратно пропорциональная сопротивлению. Сейчас же она измеряется в Сименсах. Получила свое название данная величина в честь ученого-физика из Германии - Вернера фон Сименса.

Сименс

Сименс (обозначаться может как См, так и S) - это величина, обратная Ому, являющаяся единицей измерения электрической проводимости. Один См равен любого проводника, сопротивление которого равно 1 Ом. Выражается Сименс через формулу:

  • 1 См = 1: Ом = А: В = кг −1 ·м −2 ·с³А², где
    А - ампер,
    В - вольт.

Теплопроводность воды

Теперь поговорим о том, - это способность какого-либо вещества переносить тепловую энергию. Суть явления заключается в том, что кинетическая энергия атомов и молекул, что определяют температуру данного тела или вещества, передается другому телу или веществу при их взаимодействии. Иначе говоря, теплопроводность - это теплообмен между телами, веществами, а также между телом и веществом.

Теплопроводность у воды также очень высока. Люди ежедневно используют это свойство воды, сами того не замечая. Например, наливая холодную воду в тару и остужая в ней напитки или продукты. Холодная вода забирает тепло у бутылки, контейнера, взамен отдавая холод, возможна и обратная реакция.

Теперь это же явление легко можно представить в масштабе планеты. Океан нагревается в течение лета, а потом - с наступлением холодов, медленно остывает и отдает свое тепло воздуху, тем самым обогревая материки. Остыв за зиму, океан начинает очень медленно нагреваться по сравнению с землей и отдает свою прохладу изнывающим от летнего солнца материкам.

Плотность воды

Выше рассказывалось о том, что рыба живет зимой в водоеме благодаря тому, что вода застывает корочкой по всей их поверхности. Мы знаем, что в лед вода начинает превращаться при температуре в ноль градусов. Из-за того, что плотность воды больше, чем плотность всплывает и застывает по поверхности.

свойства воды

Также вода при разных условиях способна быть и окислителем, и восстановителем. То есть вода, отдавая свои электроны, заряжается положительно и окисляется. Или же приобретает электроны и заряжается отрицательно, значит, восстанавливается. В первом случае вода окисляется и называется мертвой. Она обладает очень мощными бактерицидными свойствами, только вот пить ее не надо. Во втором случае вода живая. Она бодрит, стимулирует организм на восстановление, несет энергию клеткам. Разница между этими двумя свойствами воды выражается в термине "окислительно-восстановительный потенциал".

С чем вода способна реагировать

Вода способна реагировать почти со всеми веществами, которые существуют на Земле. Единственное, что для возникновения этих реакций нужно обеспечить подходящую температуру и микроклимат.

Например, при комнатной температуре вода отлично реагирует с такими металлами, как натрий, калий, барий - их называют активными. С галогенами - это фтор, хлор. При нагревании вода отлично реагирует с железом, магнием, углем, метаном.

При помощи различных катализаторов вода вступает в реакцию с амидами, эфирами карбоновых кислот. Катализатор - это вещество, словно бы подталкивающее компоненты к взаимной реакции, ускоряющее ее.

Есть ли вода где-либо еще, кроме Земли?

Пока ни на одной планете Солнечной системы, кроме Земли, воды не обнаружено. Да, предполагают о ее присутствии на спутниках таких планет-гигантов, как Юпитер, Сатурн, Нептун и Уран, но пока точных данных у ученых нет. Существует еще одна гипотеза, пока не проверенная окончательно, о подземных водах на планете Марс и на спутнике Земли - Луне. Касательно Марса вообще выдвинуто ряд теорий о том, что когда-то на этой планете был океан, и его возможная модель даже проектировалась учеными.

Вне Солнечной системы существует множество больших и малых планет, где, по догадкам ученых, может быть вода. Но пока нет ни малейшей возможности убедиться в этом наверняка.

Как используют тепло- и электропроводность воды в практических целях

Ввиду того, что вода обладает высоким значением теплоемкости, ее используют в теплотрассах в качестве теплоносителя. Она обеспечивает передачу тепла от производителя к потребителю. Как отличный теплоноситель воду используют и многие атомные электростанции.

В медицине лед используют для охлаждения, а пар - для дезинфекции. Так же лед используют в системе общественного питания.

Во многих ядерных реакторах воду используют как замедлитель, для успешного протекания цепной ядерной реакции.

Воду под давлением используют для раскалывания, проламывания и даже для резки горных пород. Это активно используется при строительстве туннелей, подземных помещений, складов, метро.

Заключение

Из статьи следует, что вода по своим свойствам и функциям - самое незаменимое и поразительное вещество на Земле. Зависит ли жизнь человека или любого другого живого существа на Земле от воды? Безусловно, да. Способствует ли это вещество ведению научной деятельности человеком? Да. Обладает ли вода электропроводностью, теплопроводностью и иными полезными свойствами? Ответ тоже "да". Иное дело, что воды на Земле, а тем более воды чистой, все меньше и меньше. И наша задача - сохранить и обезопасить ее (а значит, и всех нас) от исчезновения.

Плотность, теплоемкость, свойства кислорода O 2

В таблице представлены теплофизические свойства кислорода такие, как плотность, энтальпия, энтропия, удельная теплоемкость, динамическая вязкость, коэффициент теплопроводности. Свойства в таблице даны для газообразного кислорода, находящегося при атмосферном давлении, в зависимости от температуры в интервале от 100 до 1300 К.

Плотность кислорода равна 1,329 кг/м 3 при комнатной температуре. При нагревании кислорода, его плотность уменьшается. Теплопроводность кислорода равна 0,0258 Вт/(м·град) при комнатной температуре и при повышении температуры этого газа увеличивается.

Удельная теплоемкость кислорода при комнатной температуре равна 919 Дж/(кг·град). Теплоемкость кислорода увеличивается при росте его температуры. Также при нагревании кислорода увеличиваются значения таких его свойств, как энтальпия, энтропия и вязкость.

Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100.

Теплопроводность кислорода в жидком и газообразном состояниях

В таблице приведены значения коэффициента теплопроводности кислорода в жидком и газообразном состояниях при различных температурах и давлениях. Теплопроводность указана в интервале температуры от 80 до 1400 К и давления от 1 до 600 атм.

Значения теплопроводности в таблице, находящиеся выше черты, относятся к жидкому кислороду, а ниже ее — к газообразному. По данным таблицы видно, что теплопроводность жидкого кислорода выше, чем газообразного и при росте давления увеличивается.

Размерность Вт/(м·град).

Теплопроводность кислорода при высоких температурах

В таблице даны значения коэффициента теплопроводности кислорода при высоких температурах (от 1600 до 6000 К) и давлении от 0,001 до 100 атм.

При температурах выше 1300°С кислород начинает диссоциировать, и при некотором давлении его теплопроводность достигает максимальных значений. По данным таблицы видно, что теплопроводность диссоциированного кислорода при высоких температурах может достигать величин до 3,73 Вт/(м·град).

Примечание: Будьте внимательны! Теплопроводность в таблице дана в степени 10 3 . Не забудьте разделить на 1000.

Теплопроводность жидкого кислорода на линии насыщения

В таблице указаны значения коэффициента теплопроводности жидкого кислорода на линии насыщения. Теплопроводность дана в диапазоне температуры от 90 до 150 К. Следует отметить, что теплопроводность жидкого кислорода при увеличении температуры снижается.

Примечание: Будьте внимательны! Теплопроводность в таблице дана в степени 10 3 . Не забудьте разделить на 1000.

Источники:
1.
2. .

Поделитесь с друзьями или сохраните для себя:

Загрузка...