Найти длину стороны ab онлайн. Уравнение прямой с угловым коэффициентом

Численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой линией.

Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему. k всегда равен , то есть производной уравнения прямой по x .

При положительных значениях углового коэффициента k и нулевом значении коэффициента сдвига b прямая будет лежать в первом и третьем квадрантах (в которых x и y одновременно положительны и отрицательны). При этом большим значениям углового коэффициента k будет соответствовать более крутая прямая, а меньшим - более пологая.

Прямые и перпендикулярны, если , а параллельны при .

Примечания


Wikimedia Foundation . 2010 .

  • Ифит (царь Элиды)
  • Список Указов Президента РФ «О награждении государственными наградами» за 2001 год

Смотреть что такое "Угловой коэффициент прямой" в других словарях:

    угловой коэффициент (прямой) - — Тематики нефтегазовая промышленность EN slope … Справочник технического переводчика

    Угловой коэффициент - (математическое) число k в уравнении прямой линии на плоскости у = kx+b (см. Аналитическая геометрия), характеризующее наклон прямой относительно оси абсцисс. В прямоугольной системе координат У. к. k = tg φ, где φ угол между… … Большая советская энциклопедия

    Уравнения прямой

    АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ - раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего… … Энциклопедия Кольера

    Время реакции (reaction time) - Измерение времени реакции (ВР), вероятно, самый почтенный предмет в эмпирической психологии. Оно зародилось в области астрономии, в 1823 г., с измерением индивидуальных различий в скорости восприятия пересечения звездой линии риски телескопа. Эти … Психологическая энциклопедия

    МАТЕМАТИЧЕСКИЙ АНАЛИЗ - раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и … Энциклопедия Кольера

    Прямая - У этого термина существуют и другие значения, см. Прямая (значения). Прямая одно из основных понятий геометрии, то есть точного универсального определения не имеет. При систематическом изложении геометрии прямая линия обычно принимается за одно… … Википедия

    Прямая линия - Изображение прямых в прямоугольной системе координат Прямая одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется… … Википедия

    Прямые - Изображение прямых в прямоугольной системе координат Прямая одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется… … Википедия

    Малая полуось - Не следует путать с термином «Эллипсис». Эллипс и его фокусы Эллипс (др. греч. ἔλλειψις недостаток, в смысле недостатка эксцентриситета до 1) геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний от двух данных точек F1… … Википедия

Пусть на плоскости, где имеется прямоугольная декартова система координат, прямая l проходит через точку М 0 параллельно направляющему вектору а (рис. 96).

Если прямая l пересекает ось Ох (в точке N), то под углом прямой l с осью Ох будем понимать угол α, на который необходимо повернуть ось Ох вокруг точки N в направлении, обратном вращению часовой стрелки, чтобы ось Ох совпала с прямой l . (Имеется в виду угол, меньший 180°.)

Этот угол называют углом наклона прямой. Если прямая l параллельна оси Ох , то угол наклона принимается равным нулю (рис. 97).

Тангенс угла наклона прямой называется угловым коэффициентом прямой и обычно обозначается буквой k :

tg α = k . (1)

Если α = 0, то и k = 0; это означает, что прямая параллельна оси Ох и ее угловой коэффициент равен нулю.

Если α = 90°, то k = tg α не имеет смысла: это означает, что прямая, перпендикулярная оси Ох (т. е. параллельная оси Оу ), не имеет углового коэффициента.

Угловой коэффициент прямой можно вычислить, если известны координаты двух каких-либо точек этой прямой. Пусть даны две точки прямой: M 1 (x 1 ; у 1) и M 2 (x 2 ; у 2) и пусть, например, 0 < α < 90°, а x 2 > x 1 , у 2 > у 1 (рис. 98).

Тогда из прямоугольного треугольника M 1 РM 2 находим

$$ k=tga = \frac{|M_2 P|}{|M_1 P|} = \frac{y_2 - y_1}{x_2 - x_1} $$

$$ k=\frac{y_2 - y_1}{x_2 - x_1} \;\; (2)$$

Аналогично доказывается, что формула (2) верна и в случае 90° < α < 180°.

Формула (2) теряет смысл, если x 2 - x 1 = 0, т. е. если прямая l параллельна оси Оу . Для таких прямых угловой коэффициент не существует.

Задача 1. Определить угловой коэффициент примой, проходящей через точки

M 1 (3; -5) и М 2 (5; -7).

Подставляя координаты точек M 1 и М 2 в формулу (2), получим

\(k=\frac{-7-(-5)}{5-3} \) или k = -1

Задача 2. Определить угловой коэффициент прямой, проходящей через точки M 1 (3; 5) и M 2 (3; -2).

Так как x 2 - x 1 = 0, то равенство (2) теряет смысл. Для этой прямой угловой коэффициент не существует. Прямая M 1 M 2 параллельна оси Оу .

Задача 3. Определить угловой коэффициент прямой, проходящей через начало координат и точку M 1 (3; -5)

В этом случае точка M 2 совпадает с началом координат. Применяя формулу (2), получим

$$ k=\frac{y_2 - y_1}{x_2 - x_1}=\frac{0-(-5)}{0-3}= -\frac{5}{3}; \;\; k= -\frac{5}{3} $$

Составим уравнение прямой с угловым коэффициентом k , проходящей через точку

M 1 (x 1 ; у 1). По формуле (2) угловой коэффициент прямой находится по координатам двух ее точек. В нашем случае точка M 1 задана, а в качестве второй точки можно взять любую точку М(х; у ) искомой прямой.

Если точка М лежит на прямой, которая проходит через точку M 1 и имеет угловой коэффициент k , то в силу формулы (2) имеем

$$ \frac{y-y_1}{x-x_1}=k \;\; (3) $$

Если же точка М не лежит на прямой, то равенство (3) не выполняется. Следовательно, равенствo (3) и есть уравнение прямой, проходящей через точку M 1 (x 1 ; у 1) с угловым коэффициентом k ; это уравнение обычно записывают в виде

y - y 1 = k (x - x 1). (4)

Если прямая пересекает ось Оу в некоторой точке (0; b ), то уравнение (4) принимает вид

у - b = k (х - 0),

y = kx + b . (5)

Это уравнение называется уравнением прямой с угловым коэффициентом k и начальной ординатой b.

Задача 4. Найти угол наклона прямой √3 х + 3у - 7 = 0.

Приведем данное уравнение к виду

$$ y= =\frac{1}{\sqrt3}x + \frac{7}{3} $$

Следовательно, k = tg α = - 1 / √ 3 , откуда α = 150°

Задача 5. Составить уравнение прямой, проходящей через точку Р(3; -4), с угловым коэффициентом k = 2 / 5

Подставив k = 2 / 5 , x 1 = 3, y 1 = - 4 в уравнение (4), получим

у - (- 4) = 2 / 5 (х - 3) или 2х - 5у - 26 = 0.

Задача 6. Составить уравнение прямой, проходящей через точку Q (-3; 4) и составляющей с положительным направлением оси Ох угол 30°.

Если α = 30°, то k = tg 30° = √ 3 / 3 . Подставив в уравнение (4) значения x 1 , y 1 и k , получим

у -4 = √ 3 / 3 (x + 3) или √3 x -3y + 12 + 3√3 = 0.

В математике одним из параметров, описывающих положение прямой на декартовой плоскости координат, является угловой коэффициент этой прямой. Этот параметр характеризует наклон прямой к оси абцисс. Чтобы понять, как найти угловой коэффициент, сначала вспомним общий вид уравнения прямой в системе координат XY.

В общем виде любую прямую можно представить выражением ax+by=c, где a, b и c - произвольные действительные числа, но обязательно a 2 + b 2 ≠ 0.

Подобное уравнение с помощью несложных преобразований можно довести до вида y=kx+d, в котором k и d - действительные числа. Число k является угловым коэффициентом, а само уравнение прямой подобного вида называется уравнением с угловым коэффициентом. Получается, что для нахождения углового коэффициента, необходимо просто привести исходное уравнение к указанному выше виду. Для более полного понимания рассмотрим конкретный пример:

Задача: Найти угловой коэффициент линии, заданной уравнением 36x - 18y = 108

Решение: Преобразуем исходное уравнение.

Ответ: Искомый угловой коэффициент данной прямой равен 2.

В случае, если в ходе преобразований уравнения мы получили выражение типа x = const и не можем в результате представить y в виде функции x, то мы имеем дело с прямой, параллельной оси Х. Угловой коэффициент подобной прямой равен бесконечности.

Для прямых, которых выражены уравнением типа y = const, угловой коэффициент равняется нулю. Это характерно для прямых, параллельных оси абцисс. Например:

Задача: Найти угловой коэффициент линии, заданной уравнением 24x + 12y - 4(3y + 7) = 4

Решение: Приведем исходное уравнение к общему виду

24x + 12y - 12y + 28 = 4

Из полученного выражения выразить y невозможно, следовательно угловой коэффициент данной прямой равен бесконечности, а сама прямая будет параллельна оси Y.

Геометрический смысл

Для лучшего понимания обратимся к картинке:

На рисунке мы видим график функции типа y = kx. Для упрощения примем коэффициент с = 0. В треугольнике ОАВ отношение стороны ВА к АО будет равно угловому коэффициенту k. Вместе с тем отношение ВА/АО - это тангенс острого угла α в прямоугольном треугольнике ОАВ. Получается, что угловой коэффициент прямой равняется тангенсу угла, который составляет эта прямая с осью абцисс координатной сетки.

Решая задачу, как найти угловой коэффициент прямой, мы находим тангенс угла между ней и осью Х сетки координат. Граничные случаи, когда рассматриваемая прямая параллельна осям координат, подтверждают вышенаписанное. Действительно для прямой, описанной уравнением y=const, угол между ней и осью абцисс равен нулю. Тангенс нулевого угла также равен нулю и угловой коэффициент тоже равен нулю.

Для прямых, перпендикулярных оси абцисс и описываемых уравнением х=const, угол между ними и осью Х равен 90 градусов. Тангенс прямого угла равен бесконечности, так же и угловой коэффициент подобных прямых равен бесконечности, что подтверждает написанное выше.

Угловой коэффициент касательной

Распространенной, часто встречающейся на практике, задачей является также нахождение углового коэффициента касательной к графику функции в некоторой точке. Касательная - это прямая, следовательно к ней также применимо понятие углового коэффициента.

Чтобы разобраться, как найти угловой коэффициент касательной, нам будет необходимо вспомнить понятие производной. Производная от любой функции в некоторой точке - это константа, численно равная тангенсу угла, который образуется между касательной в указанной точке к графику этой функции и осью абцисс. Получается, что для определения углового коэффициента касательной в точке x 0 , нам необходимо рассчитать значение производной исходной функции в этой точке k = f"(x 0). Рассмотрим на примере:

Задача: Найти угловой коэффициент линии, касательной к функции y = 12x 2 + 2xe x при х = 0,1.

Решение: Найдем производную от исходной функции в общем виде

y"(0,1) = 24 . 0,1 + 2 . 0,1 . e 0,1 + 2 . e 0,1

Ответ: Искомый угловой коэффициент в точке х = 0,1 равен 4,831


На рисунке показан угол наклона прямой и указано значение углового коэффициента при различных вариантах расположения прямой относительно прямоугольной системы координат.

Нахождение углового коэффициента прямой при известном угле наклона к оси Ox не представляет никаких сложностей. Для этого достаточно вспомнить определение углового коэффициента и вычислить тангенс угла наклона.

Пример.

Найдите угловой коэффициент прямой, если угол ее наклона к оси абсцисс равен .

Решение.

По условию . Тогда по определению углового коэффициента прямой вычисляем .

Ответ:

Задача нахождения угла наклона прямой к оси абсцисс при известном угловом коэффициенте немного сложнее. Здесь необходимо учитывать знак углового коэффициента. При угол наклона прямой является острым и находится как . При угол наклона прямой является тупым и его можно определить по формуле .

Пример.

Определите угол наклона прямой к оси абсцисс, если ее угловой коэффициент равен 3 .

Решение.

Так как по условию угловой коэффициент положителен, то угол наклона прямой к оси Ox острый. Его вычисляем по формуле .

Ответ:

Пример.

Угловой коэффициент прямой равен . Определите угол наклона прямой к оси Ox .

Решение.

Обозначим k – угловой коэффициент прямой, - угол наклона этой прямой к положительному направлению оси Ox . Так как , то используем формулу для нахождения угла наклона прямой следующего вида . Подставляем в нее данные из условия: .

Ответ:

Уравнение прямой с угловым коэффициентом.

Уравнение прямой с угловым коэффициентом имеет вид , где k - угловой коэффициент прямой, b – некоторое действительное число. Уравнением прямой с угловым коэффициентом можно задать любую прямую, не параллельную оси Oy (для прямой параллельно оси ординат угловой коэффициент не определен).

Давайте разберемся со смыслом фразы: «прямая на плоскости в фиксированной системе координат задана уравнением с угловым коэффициентом вида ». Это означает, что уравнению удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точкек плоскости. Таким образом, если при подстановке координат точки получается верное равенство, то прямая проходит через эту точку. В противном случае точка не лежит на прямой.

Пример.

Прямая задана уравнением с угловым коэффициентом . Принадлежат ли точки и этой прямой?

Решение.

Подставим координаты точки в исходное уравнение прямой с угловым коэффициентом: . Мы получили верное равенство, следовательно, точка М 1 лежит на прямой.

При подстановке координат точки получаем неверное равенство: . Таким образом, точка М 2 не лежит на прямой.

Ответ:

Точка М 1 принадлежит прямой, М 2 – не принадлежит.

Следует отметить, что прямая, определенная уравнением прямой с угловым коэффициентом , проходит через точку , так как при подстановке ее координат в уравнение мы получаем верное равенство: .

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением прямой с угловым коэффициентом вида . Эта прямая проходит через точку и имеет наклон радиан (60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку.

Сейчас решим очень важную задачу: получим уравнение прямой с заданным угловым коэффициентом k и проходящую через точку .

Так как прямая проходит через точку , то справедливо равенство . Число b нам неизвестно. Чтобы избавиться от него, вычтем из левой и правой частей уравнения прямой с угловым коэффициентом соответственно левую и правую части последнего равенства. При этом получим . Это равенство представляет собой уравнение прямой с заданным угловым коэффициентом k , которая проходит через заданную точку .

Рассмотрим пример.

Пример.

Напишите уравнение прямой, проходящей через точку , угловой коэффициент этой прямой равен -2 .

Решение.

Из условия имеем . Тогда уравнение прямой с угловым коэффициентом примет вид .

Ответ:

Пример.

Напишите уравнение прямой, если известно, что она проходит через точку и угол наклона к положительному направлению оси Ox равен .

Решение.

Сначала вычислим угловой коэффициент прямой, уравнение которой мы ищем (такую задачу мы решали в предыдущем пункте этой статьи). По определению . Теперь мы располагаем всеми данными, чтобы записать уравнение прямой с угловым коэффициентом:

Ответ:

Пример.

Напишите уравнение прямой с угловым коэффициентом, проходящую через точку параллельно прямой .

Решение.

Очевидно, что углы наклона параллельных прямых к оси Ox совпадают (при необходимости смотрите статью параллельность прямых), следовательно, угловые коэффициенты у параллельных прямых равны. Тогда угловой коэффициент прямой, уравнение которой нам нужно получить, равен 2 , так как угловой коэффициент прямой равен 2 . Теперь мы можем составить требуемое уравнение прямой с угловым коэффициентом:

Ответ:

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнения прямой и обратно.

При всей привычности уравнение прямой с угловым коэффициентом далеко не всегда удобно использовать при решении задач. В некоторых случаях задачи проще решаются, когда уравнение прямой представлено в другом виде. К примеру, уравнение прямой с угловым коэффициентом не позволяет сразу записать координаты направляющего вектора прямой или координаты нормального вектора прямой . Поэтому следует научиться переходить от уравнения прямой с угловым коэффициентом к другим видам уравнения этой прямой.

Из уравнения прямой с угловым коэффициентом легко получить каноническое уравнение прямой на плоскости вида . Для этого из правой части уравнения переносим слагаемое b в левую часть с противоположным знаком, затем делим обе части полученного равенства на угловой коэффициент k : . Эти действия приводят нас от уравнения прямой с угловым коэффициентом к каноническому уравнению прямой.

Пример.

Приведите уравнение прямой с угловым коэффициентом к каноническому виду.

Решение.

Выполним необходимые преобразования: .

Ответ:

Пример.

Прямая задана уравнением прямой с угловым коэффициентом . Является ли вектор нормальным вектором этой прямой?

Решение.

Для решения этой задачи перейдем от уравнения прямой с угловым коэффициентом к общему уравнению этой прямой: . Нам известно, что коэффициенты перед переменными x и y в общем уравнении прямой являются соответствующими координатами нормального вектора этой прямой, то есть, - нормальный вектор прямой . Очевидно, что вектор коллинеарен вектору , так как справедливо соотношение (при необходимости смотрите статью ). Таким образом, исходный вектор также является нормальным вектором прямой , а, следовательно, является нормальным вектором и исходной прямой .

Ответ:

Да, является.

А сейчас будем решать обратную задачу – задачу приведения уравнения прямой на плоскости к уравнению прямой с угловым коэффициентом.

От общего уравнения прямой вида , в котором , очень легко перейти к уравнению с угловым коэффициентом. Для этого нужно общее уравнение прямой разрешить относительно y . При этом получаем . Полученное равенство представляет собой уравнение прямой с угловым коэффициентом, равным .

Задачи на нахождение производной касательной включены в ЕГЭ по математике и встречаются там ежегодно. При этом статистика последних лет показывает, что подобные задания вызывают у выпускников определенные затруднения. Поэтому, если учащийся рассчитывает получить достойные баллы по итогам прохождения ЕГЭ, то ему непременно стоит научиться справляться с задачами из раздела «Угловой коэффициент касательной как значение производной в точке касания», подготовленными специалистами образовательного портала «Школково». Разобравшись с алгоритмом их решения, ученик сможет успешно преодолеть аттестационное испытание.

Основные моменты

Приступая к решению задач ЕГЭ по данной теме, необходимо вспомнить основное определение: производная функции в точке равна угловому коэффициенту касательной к графику функции в этой точке. В этом и состоит геометрический смысл производной.

Необходимо освежить в памяти и другое важное определение. Оно звучит следующим образом: угловой коэффициент равняется тангенсу угла наклона касательной к оси абсцисс.

Какие еще важные моменты стоит отметить в этой теме? При решении задач на нахождение производной в ЕГЭ необходимо помнить, что угол, который образует касательная, может быть меньше, больше 90 градусов или равняться нулю.

Как подготовиться к экзамену?

Для того, чтобы задания в ЕГЭ на тему «Угловой коэффициент касательной как значение производной в точке касания» давались вам достаточно легко, воспользуйтесь при подготовке к выпускному испытанию информацией по этому разделу на образовательном портале «Школково». Здесь вы найдете необходимый теоретический материал, собранный и понятно изложенный нашими специалистами, а также сможете попрактиковаться в выполнении упражнений.

Для каждого задания, например, задач на тему «Угловой коэффициент касательной как тангенс угла наклона» , мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут выполнять упражнения различного уровня сложности в режиме онлайн. В случае необходимости задачу можно сохранить в разделе «Избранное», чтобы потом обсудить ее решение с преподавателем.

Поделитесь с друзьями или сохраните для себя:

Загрузка...