Ковалентная связь: полярная и неполярная, свойства и примеры. Ковалентная химическая связь Ковалентная химическая связь образуется

Рис. 2.1. Образование молекул из атомов сопровождается перераспределением электронов валентных орбиталей и приводит к выигрышу в энергии, так как энергия молекул оказывается меньше энергии невзаимодействующих атомов. На рисунке представлена схема образования неполярной ковалентной химической связи между атомами водорода.

§2 Химическая связь

В обычных условиях молекулярное состояние устойчивее, чем атомное (рис.2.1).Образование молекул из атомов сопровождается перераспределением электронов валентных орбиталей и приводит к выигрышу в энергии, так как энергия молекул оказывается меньше энергии невзаимодействующих атомов (приложение 3). Силы, удерживающие атомы в молекулах, получили обобщенное названиехимической связи .

Химическая связь между атомами осуществляется валентными электронами и имеет электрическую природу . При этом различают четыре основных типа химической связи:ковалентную ,ионную, металлическую иводородную .

1 Ковалентная связь

Химическая связь, осуществляемая электронными парами, называется атомной, или ковалентной . Соединения с ковалентными связями называются атомными, или ковалентными .

При возникновении ковалентной связи происходит сопровождающееся выделением энергии перекрытие электронных облаков взаимодействующих атомов (рис.2.1). При этом между положительно заряженными атомными ядрами возникает облако с повышенной плотностью отрицательного заряда. Благодаря действию кулоновских сил притяжения между разноименными зарядами увеличение плотности отрицательного заряда благоприятствует сближению ядер.

Ковалентная связь образуется за счет непарных электронов внешних оболочек атомов . При этом электроны с противоположными спинами образуютэлектронную пару (рис.2.2), общую для взаимодействующих атомов. Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной, две- двойной и т.д.

Мерой прочности химической связи служит энергия E св, затрачиваемая на разрушение связи (выигрыш в энергии при образовании соединения из отдельных атомов). Обычно эту энергию измеряют в расчете на 1 мольвещества и выражают в килоджоулях на моль (кДж∙моль –1). Энергия одинарной ковалентной связи лежит в пределах 200–2000 кДжмоль –1 .

Рис. 2.2. Ковалентная связь – наиболее общий вид химической связи, возникающей за счет обобществления электронной пары посредством обменного механизма (а) , когда каждый из взаимодействующих атомов поставляет по одному электрону, или посредством донорно-акцепторного механизма (б) , когда электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору).

Ковалентная связь обладает свойствами насыщаемости и направленности . Под насыщаемостью ковалентной связи понимается способность атомов образовывать с соседями ограниченное число связей, определяемое числом их неспаренных ва­лентных электронов. Направленность ковалентной связи отражает тот факт, что силы,удерживающие атомы друг возле друга, направлены вдоль прямой, соединяющей атомные ядра. Кроме того, ковалентная связь может быть полярной или неполярной .

В случае неполярной ковалентной связи электронное облако, образованное общей парой электронов, распределяется в пространстве симметрично относительно ядер обоих атомов. Неполярная ковалентная связь образуется между атомами простых веществ, например, между одинаковыми атомами газов, образующих двухатомные молекулы (О 2 , Н 2 , N 2 ,Cl 2 и т.д.).

В случае полярной ковалентной связи электронное облако связи смещено к одному из атомов. Образование полярной ковалентной связи между атомами характерно для сложных веществ. Примером могут служить молекулы летучих неорганических соединений: HCl, H 2 O, NH 3 и др.

Степень смещения общего электронного облака к одному из атомов при образовании ковалентной связи (степень полярности связи ) определяется, главным образом, зарядом атомных ядер и радиусом взаимодействующих атомов .

Чем больше заряд атомного ядра, тем сильнее оно притягивает к себе облако электронов. В то же время чем больше радиус атома, тем слабее внешние электроны удерживаются вблизи атомного ядра. Совокупное действие двух этих факторов и выражается в различной способности разных атомов «оттягивать» к себе облако ковалентной связи.

Способность атома в молекуле притягивать к себе электроны получила название электроотрицательности . Таким образом, электроотрицательность характеризует способность атома к поляризации ковалентной связи:чем больше электроотрицательность атома, тем сильнее смещено к нему электронное облако ковалентной связи .

Для количественной оценки электроотрицательности предложен ряд методов. При этом наиболее ясный физический смысл имеет метод, предложенный американским химиком Робертом С. Малликеном, который определил электроотрицательность атома как полусумму его энергииE e сродства к электрону и энергииE i ионизации атома:

. (2.1)

Энергией ионизации атома называется та энергия, которую нужно затратить, чтобы «оторвать» от него электрон и удалить его на бесконечное расстояние. Энергию ионизации определяют при помощи фотоионизации атомов или путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее значение энергии фотонов или электронов, которое становится достаточным для ионизации атомов, и называют их энергией ионизацииE i . Обычно эта энергия выражается в электрон-вольтах (эВ): 1 эВ = 1,610 –19 Дж.

Охотнее всего отдают внешние электроны атомы металлов , которые содержат на внешней оболочке небольшое число непарных электронов (1, 2 или 3). Эти атомы обладают наименьшей энергией ионизации. Таким образом, величина энергии ионизации может служить мерой большей или меньшей «металличности» элемента: чем меньше энергия ионизации, тем сильнее должны быть выраженыметаллические свойства элемента.

В одной и той же подгруппе периодической системы элементов Д.И.Менделе­ева с увеличением порядкового номера элемента его энергия ионизации уменьшается (табл.2.1), что связано с увеличением атомного радиуса (табл.1.2), а, следовательно, с ослаблением связи внешних электронов с ядром. У элементов одного периода энергия ионизации возрастает с увеличением порядкового номера. Это связано с уменьшением атомного радиуса и увеличением заряда ядра.

Энергия E e , которая выделяется при присоединении электрона к свободному атому, называетсясродством к электрону (выражается также в эВ). Выделение (а не поглощение) энергии при присоединении заряженного электрона к некоторым нейтральным атомам объясняется тем, что наиболее устойчивыми в природе являются атомы с заполненными внешними оболочками. Поэтому тем атомам, у которых эти оболочки «немного не заполнены» (т.е. до заполнения не хватает 1, 2 или 3 электронов), энергетически выгодно присоединять к себе электроны, превращаясь в отрицательно заряженные ионы 1 . К таким атомам относятся, например, атомы галогенов (табл.2.1) – элементов седьмой группы (главной подгруппы) периодической системы Д.И.Менделеева. Сродство к электрону атомов металла, как правило, равно нулю или отрицательно, т.е. им энергетически невыгодно присоединение дополнительных электронов, требуется дополнительная энергия, чтобы удержать их внутри атомов. Сродство к электрону атомов неметаллов всегда положительно и тем больше, чем ближе к благородному (инертному) газу расположен неметалл в периодической системе. Это свидетельствует об усилениинеметаллических свойств по мере приближения к концу периода.

Из всего сказанного ясно, что электроотрицательность (2.1) атомов возрастает в направлении слева направо для элементов каждого периода и уменьшается в направлении сверху вниз для элементов одной и той же группы периодической системы Менделеева. Нетрудно, однако, понять, что для характеристики степени полярности ковалентной связи между атомами важным является не абсолютное значение электроотрицательности, а отношение электроотрицательностей атомов, образующих связь. Поэтому на практике пользуются относительными значениями электроотрицательности (табл.2.1),принимая за единицу электроотрицательность лития.

Для характеристики полярности ковалентной химической связи используют разность относительных электроотрицательностей атомов . Обычно связь между атомами А и В считается чисто ковалентной, если | A B |0.5.

Идея об образовании химической связи с помощью пары электронов, принадлежащих обоим соединяющимся атомам, была высказана в 1916г американским физико-химиком Дж. Льюисом.

Ковалентная связь существует между атомами как в молекулах, так и в кристаллах. Она возникает как между одинаковыми атомами (например, в молекулах Н 2 , Cl 2 , О 2 , в кристалле алмаза), так и между разными атомами (например, в молекулах Н 2 О и NН 3 , в кристаллах SiC). Почти все связи в молекулах органических соединений являются ковалентными (С-С, С-Н, С-N, и др.).

Различают два механизма образования ковалентной связи:

1) обменный;

2) донорно-акцепторный.

Обменный механизм образования ковалентной связи заключается в том, что каждый из соединяющихся атомов предоставляет на образование общей электронной пары (связи) по одному неспаренному электрону. Электроны взаимодействующих атомов должны при этом иметь противоположные спины.

Рассмотрим для примера образование ковалентной связи в молекуле водорода . При сближении атомов водорода происходит проникновение их электронных облаков друг в друга, которое называется перекрыванием электронных облаков (рис. 3.2), электронная плотность между ядрами возрастает. Ядра притягиваются друг к другу. Вследствие этого снижается энергия системы. При очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи l), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи Е св.

Рис. 3.2. Схема перекрывания электронных облаков при образовании молекулы водорода

Схематично образование молекулы водорода из атомов можно представить следующим образом (точка означает электрон , черта - пару электронов):

Н + Н→Н: Н или Н + Н→Н - Н.

В общем виде для молекул АВ других веществ:

А + В = А: В.

Донорно-акцепторный механизм образования ковалентной связи заключается в том, что одна частица - донор - представляет на образование связи электронную пару, а вторая - акцептор - свободную орбиталь:

А: +  В = А: В.

донор акцептор

Рассмотрим механизмы образования химических связей в молекуле аммиака и ионе аммония .

1. Образование

Атом азота имеет на внешнем энергетическом уровне два спаренных и три неспаренных электрона:

Атом водорода на s - подуровне имеет один неспаренный электрон.


В молекуле аммиака неспаренные 2р - электроны атома азота образуют три электронные пары с электронами 3-х атомов водорода:

.

В молекуле NH 3 образованы 3 ковалентных связи по обменному механизму.

2. Образование комплексного иона - иона аммония.

NH 3 + HCl = NH 4 Cl или NH 3 + H + = NH 4 +

У атома азота остается неподелённая пара электронов , т. е. два электрона с антипараллельными спинами на одной атомной орбитали. Атомная орбиталь иона водорода не содержит электронов (вакантная орбиталь). При сближении молекулы аммиака и иона водорода происходит взаимодействие неподеленной пары электронов атома азота и вакантной орбитали иона водорода. Неподеленная пара электронов становится общей для атомов азота и водорода, возникает химическая связь по донорно - акцепторному механизму. Атом азота молекулы аммиака является донором, а ион водорода - акцептором:

.

Следует отметить, что в ионе NH 4 + все четыре связи равноценны и неразличимы, следовательно, в ионе заряд делокализован (рассредоточен) по всему комплексу.

Рассмотренные примеры показывают, что способность атома образовывать ковалентные связи обусловливается не только одноэлектронными, но и 2-электронными облаками или наличием свободных орбиталей.

По донорно-акцепторному механизму образуются связи в комплексных соединениях: - ; 2+ ; 2- и т. д.

Ковалентная связь обладает следующими свойствами:

- насыщаемость;

- направленность;

- полярность и поляризуемость.

Ковалентная, ионная и металлическая – три основных типа химических связей.

Познакомимся подробнее с ковалентной химической связью . Рассмотрим механизм ее возникновения. В качестве примера возьмем образование молекулы водорода:

Сферически симметричное облако, образованное 1s-электроном, окружает ядро свободного атома водорода. Когда атомы сближаются до определенного расстояния, происходит частичное перекрывание их орбиталей (см. рис.), в результате чего появляется молекулярное двухэлектронное облако между центрами обоих ядер, которое обладает максимальной электронной плотностью в пространстве между ядрами. При увеличении же плотности отрицательного заряда происходит сильное возрастание сил притяжения между молекулярным облаком и ядрами.

Итак, мы видим, что ковалентная связь образуется путем перекрывания электронных облаков атомов, которое сопровождается выделением энергии. Если расстояние между ядрами у сблизившихся до касания атомов составляет 0,106 нм, тогда после перекрывания электронных облаков оно составит 0,074 нм. Чем больше перекрывание электронных орбиталей, тем прочнее химическая связь.

Ковалентной называется химическая связь, осуществляемая электронными парами . Соединения с ковалентной связью называют гомеополярными или атомными .

Существуют две разновидности ковалентной связи : полярная и неполярная .

При неполярной ковалентной связи образованное общей парой электронов электронное облако распределяется симметрично относительно ядер обоих атомов. В качестве примера могут выступать двухатомне молекулы, которые состоят из одного элемента: Cl 2 , N 2 , H 2 , F 2 , O 2 и другие, электронная пара в которых в принадлежит обоим атомам в одинаковой мере.

При полярной ковалентной связи электронное облако смещено к атому с большей относительной электроотрицательностью. Например молекулы летучих неорганических соединений таких как H 2 S, HCl, H 2 O и другие.

Образование молекулы HCl можно представить в следущем виде:

Т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1), электронная пара смещается к атому хлора.

Помимо обменного механизма образования ковалентной связи – за счет перекрывания, также существует донорно-акцепторный механизм ее образования. Это механизм, при котором образование ковалентной связи происходит за счет двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора). Давайте рассмотрим пример механизма образования аммония NH 4 + .В молекуле аммиака у атома азота есть двухэлектронное облако:

Ион водорода имеет свободную 1s-орбиталь, обозначим это как .

В процессе образования иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, это значит оно преобразуется в молекулярное электронное облако. Следовательно, появляется четвертая ковалентная связь. Можно представить процесс образования аммония такой схемой:

Заряд иона водорода рассредоточен между всеми атомами, а двухэлектронное облако, которое принадлежит азоту, становится общим с водородом.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При взаимодействии двух атомов одного и того же элемента-неметалла между ними образуется ковалентная химическая связь с помощью общих электронных пар. Эту ковалентную связь называют неполярной, так как общие электронные пары принадлежат обоим атомам в одинаковой степени и ни на одном из них не будет избытка или недостатка отрицательного заряда, который несут электроны.

Однако если ковалентная связь образуется между атомами разных элементов-неметаллов, то картина будет несколько иной. Рассмотрим, например, образование молекулы хлороводорода НС1 из атомов водорода и хлора.

1. Атом водорода имеет на единственном уровне один электрон, и до его завершения ему не хватает ещё одного электрона. У атома хлора на внешнем уровне - семь электронов, и ему также недостает до завершения одного электрона.

2. Атомы водорода и хлора объединяют свои непарные электроны и образуют одну общую электронную пару, т. е. возникает ковалентная связь:

Структурная формула молекулы хлороводорода Н-С1.

3. Так как ковалентная связь образуется между атомами различных элементов-неметаллов, то общая электронная пара будет принадлежать взаимодействующим атомам уже не в равной степени. Для того чтобы качественно определить, какому из этих атомов общая электронная пара будет принадлежать в большей мере, используют понятие электроотрицательностъ.

ЭО можно охарактеризовать как меру неметалличности химических элементов. В порядке уменьшения ЭО химические элементы располагаются в следующий ряд:

Самый электроотрицательный элемент в таблице Д. И. Менделеева - фтор. Это, так сказать, «золотой призёр» электроотрицательности. «Серебряным призёром» является кислород, а «бронзовым» - азот.

Величина ЭО элемента зависит от его положения в таблице Д. И. Менделеева: в каждом периоде она обычно возрастает с увеличением порядкового номера элемента, а в каждой подгруппе - уменьшается.

Пользуясь рядом ЭО, можно определить, куда смещаются общие электронные пары. Они всегда смещены к атомам элемента с большей ЭО. Например, в молекуле хлороводорода НС1 общая электронная пара смещена к атому хлора, так как его ЭО больше, чем у водорода. В результате на атомах образуются частичные заряды , в молекуле возникают два полюса - положительный и отрицательный. Поэтому такую ковалентную связь называют полярной.

Смещение общих электронных пар в случае ковалентной полярной связи иногда обозначают стрелками, а частичный заряд - греческой буквой δ («дельта»): .

В формулах соединений химический знак менее электроотрицательного элемента пишут первым. Так как ковалентная полярная связь является разновидностью ковалентной связи, то алгоритм рассуждений для её схематического изображения такой же, как и для ковалентной неполярной связи (см. § 11), только в этом случае добавится ещё один шаг - четвёртый: по ряду ЭО определим более электроотрицательный элемент и отразим полярность связи в структурной формуле стрелкой и обозначением частичных зарядов.

Например, рассмотрим алгоритм схематического изображения образования связи для соединения OF 2 - фторида кислорода.

1. Кислород - это элемент главной подгруппы VI группы (VIA группы) Периодической системы Д. И. Менделеева. Его атомы имеют по шесть электронов на внешнем электронном слое. Непарных электронов будет: 8-6 = 2.

Фтор - элемент главной подгруппы VII группы (VIIA группы) Периодической системы Д. И. Менделеева. Его атомы содержат по семь электронов на внешнем электронном слое. Непарным является один электрон.

2. Запишем знаки химических элементов с обозначением внешних электронов:

3. Запишем электронную и структурную формулы образовавшихся молекул:

4. По ряду ЭО определим, что общие электронные пары будут смещены от кислорода к фтору, как к более электроотрицательному элементу, т. е. связь будет ковалентной полярной: .

Аналогично образуются молекулы воды:

В действительности молекула воды имеет не линейную, а угловую форму (∠HOH = 104°27"). Строение молекулы воды можно изобразить различными способами (рис. 40).

Рис. 40.
Различные модели молекулы воды

Атом водорода образует только одну ковалентную связь с другими атомами. Поэтому говорят, что водород одновалентен. Атом кислорода связан с другими атомами двумя химическими связями - он двухвалентен. При образовании молекул атомы соединяются таким образом, чтобы все их валентности были задействованы. Понятно, что двухвалентный кислород должен соединиться с двумя атомами одновалентного водорода. Если обозначить валентность чёрточкой, то схему образования молекулы воды можно представить так:

Аналогично трёхвалентный азот соединяется с тремя атомами одновалентного водорода в молекулу аммиака

Формулы, в которых валентности элементов обозначены чёрточками, как вы знаете, называют структурными.

Структурная формула метана СН 4 - соединение четырёхвалентного углерода с водородом - будет следующей:

А каким образом соединяются в молекулу углекислого газа С0 2 атомы четырёхвалентного углерода и двухвалентного кислорода? Очевидно, этот способ может отразить только следующая структурная формула:

Является ли валентность постоянной величиной? Оказывается для водорода и кислорода это утверждение верно, а вот для азота и углерода нет, так как эти элементы могут проявлять и другие значения валентности. Например, азот может быть одно-, двух-, трёх-, четырёхвалентен. Его соединения с кислородом будут иметь разный состав. Следовательно, различают:

  • элементы с постоянной валентностью (например, одновалентные: Н, F; двухвалентные: О, Be; трёхвалентные: В, А1);
  • элементы с переменной валентностью (например, S проявляет валентности II, IV, VI; С1 - валентности I, III, V и VII).

Давайте научимся выводить формулы двухэлементных соединений по валентности.

Для вывода формулы соединения фосфора с кислородом, в котором фосфор пятивалентен, порядок действий следующий:

Аналогично выведем формулу соединения азота с кислородом, в котором азот четырёхвалентен.

Индекс 1 в формулах не записывается.

Знание валентности химических элементов необходимо для того, чтобы верно записать формулу вещества. Однако справедливо и обратное: по формуле вещества можно определить валентность одного из элементов, если известна валентность другого. Например, определим валентность серы в соединении, формула которого SО 3:

Лабораторный опыт № 4
Изготовление моделей молекул бинарных соединений

Используя шаростержневые наборы, соберите модели молекул следующих веществ:

  • вариант 1 - хлороводорода НС1, четырёххлористого углерода СС1 4 ;
  • вариант 2 - сернистого газа SО 2 , хлорида алюминия AlCl 3 .

Ключевые слова и словосочетания

  1. Ковалентная неполярная и ковалентная полярная химические связи.
  2. Электроотрицательность.
  3. Частичный заряд.
  4. Валентность.
  5. Составление формул ковалентных соединений по валентности.
  6. Определение валентности по формулам.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. У атомов водорода и фосфора почти одинаковые значения ЭО. Каков тип химической связи в молекуле фосфина РН 3 ?
  2. Определите тип химической связи и запишите схему её образования для веществ с формулами: a) S 2 , К 2 О и H 2 S; б) N 2 , Li 3 N и C1 3 N.
  3. В какой из молекул - хлороводорода НС1 или фтороводорода HF - ковалентная химическая связь более полярна?
  4. В следующих предложениях впишите пропущенные слова и выражения: «Ковалентная химическая связь образуется за счёт.... По числу общих электронных пар она бывает.... По ЭО ковалентную связь делят на... и...».
  5. Определите валентности элементов в соединениях с формулами: PbS, PbО 2 , FeS 2 , Fe 2 S 3 , SF 6 .
  6. Запишите формулы хлоридов - соединений элементов с одновалентным хлором: железа (III), меди (I), меди (II), марганца (IV), фосфора (V).
Поделитесь с друзьями или сохраните для себя:

Загрузка...