Теорема архимеда тело погруженное в жидкость вытесняет. Закон Архимеда: история открытия и суть явления для чайников

Ник. Горькавый

Другие научные сказки Ник. Горькавого печатались в журнале «Наука и жизнь» в 2010-2013 годах.

Доменико Фетти. Архимед размышляет. 1620 год. Картина из Галереи старых мастеров, Дрезден.

Эдуард Вимон. Смерть Архимеда. 1820-е годы.

Гробница Архимеда в Сиракузах. Фото: Codas2.

Остров Ортигия, исторический центр Сиракуз, родного города Архимеда. У этих берегов Архимед сжёг и потопил римские галеры. Фото: Marcos90.

Греческий театр в Сиракузах. Фото: Victoria|photographer_location_London, UK.

Архимед переворачивает Землю с помощью рычага. Старинная гравюра. 1824 год.

Изображение Архимеда на золотой медали Филдса - высшей награде среди математиков. Надпись на латыни: «Transire suum pectus mundoque potiri» - «Превзойти свою человеческую ограниченность и покорить Вселенную». Фото Стефана Захова.

Каждая новая сказка писателя и астрофизика, доктора физико-математических наук Николая Николаевича Горькавого (Ник. Горькавого) - это рассказ о том, как совершались важные открытия в той или иной области науки. И неслучайно героями его научно-популярных романов и сказок стали принцесса Дзинтара и её дети - Галатея и Андрей, ведь они из породы тех, кто стремится «всё знать». Истории, рассказанные Дзинтарой детям, вошли в сборник «Звёздный витамин». Он оказался таким интересным, что читатели потребовали продолжения. Предлагаем вам ознакомиться с некоторыми сказками из будущего сборника «Создатели времён». Перед вами - первая публикация.

Величайший учёный античного мира древнегреческий математик, физик и инженер Архимед (287-212 годы до н.э.) был родом из Сиракуз - греческой колонии на самом большом острове Средиземноморья - Сицилии. Древние греки, создатели европейской культуры, поселились там почти три тысячи лет назад - в VIII веке до нашей эры, и к моменту рождения Архимеда Сиракузы были процветающим культурным городом, где жили свои философы и учёные, поэты и ораторы.

Каменные дома горожан обступали дворец царя Сиракуз Гиерона II, высокие стены защищали город от врагов. Жители любили собираться на стадионах, где состязались бегуны и метатели диска, и в банях, где не просто мылись, а отдыхали и обменивались новостями.

В тот день в банях на главной площади города было шумно - смех, крики, плеск воды. Молодёжь плавала в большом бассейне, а люди почтенного возраста, держа в руках серебряные кубки с вином, вели неспешную беседу на удобных ложах. Солнце заглядывало во внутренний дворик бань, освещая проём двери, ведущей в отдельную комнату. В ней, в небольшом бассейне, похожем на ванну, сидел в одиночестве человек, который вёл себя совсем не так, как другие. Архимед - а это был именно он - прикрыл глаза, но по каким-то неуловимым признакам было видно, что человек этот не спит, а напряжённо думает. В последние недели учёный настолько углубился в свои мысли, что часто забывал даже про еду и домашним приходилось следить, чтобы он не остался голодным.

Началось с того, что царь Гиерон II пригласил Архимеда к себе во дворец, налил ему лучшего вина, спросил про здоровье, а потом показал золотую корону, изготовленную для правителя придворным ювелиром.

Я не разбираюсь в ювелирном деле, но разбираюсь в людях, - сказал Гиерон. - И думаю, что ювелир меня обманывает.

Царь взял со стола слиток золота.

Я дал ему точно такой же слиток, и он сделал из него корону. Вес у короны и слитка одинаковый, мой слуга проверил это. Но меня не оставляют сомнения, не подмешано ли в корону серебро? Ты, Архимед, самый великий учёный Сиракуз, и я прошу тебя это проверить, ведь, если царь наденет фальшивую корону, над ним будут смеяться даже уличные мальчишки…

Правитель протянул корону и слиток Архимеду со словами:

Если ты ответишь на мой вопрос, то оставишь золото себе, но я всё равно буду твоим должником.

Архимед взял корону и слиток золота, вышел из царского дворца и с тех пор потерял покой и сон. Уж если он не сможет решить эту задачу, то и никто не сможет. Действительно, Архимед был самым известным учёным Сиракуз, учился в Александрии, дружил с главой Александрийской библиотеки, математиком, астрономом и географом Эратосфеном и другими великими мыслителями Греции. Архимед прославился множеством открытий в математике и геометрии, заложил основы механики, на его счету несколько выдающихся изобретений.

Озадаченный учёный пришёл домой, положил корону и слиток на чаши весов, поднял их за середину и убедился, что вес у обоих предметов одинаковый: чаши покачивались на одном уровне. Плотность чистого золота была Архимеду известна, предстояло узнать плотность короны (вес, делённый на объём). Если в короне есть серебро, её плотность должна быть меньше плотности золота. А раз веса` короны и слитка совпадают, то объём фальшивой короны должен быть больше объёма золотого слитка. Объём слитка измерить можно, но как определить объём короны, в которой столько сложных по форме зубцов и лепестков? Вот эта проблема и мучила учёного. Он был прекрасным геометром, например, решил сложную задачу - определение площади и объёма шара и описанного вокруг него цилиндра, но как найти объём тела сложной формы? Нужно принципиально новое решение.

В баню Архимед пришёл, чтобы смыть с себя пыль жаркого дня и освежить уставшую от размышлений голову. Обычные люди, купаясь в бане, могли болтать и жевать инжир, а Архимеда мысли о нерешённой задаче не оставляли ни днём, ни ночью. Его мозг искал решение, цепляясь за любую подсказку.

Архимед снял хитон, положил его на лавку и подошёл к маленькому бассейну. Вода плескалась в нём на три пальца ниже края. Когда учёный погрузился в воду, её уровень заметно поднялся, и первая волна даже выплеснулась на мрамор пола. Учёный прикрыл глаза, наслаждаясь приятной прохладой. Мысли об объёме короны привычно кружились в голове.

Вдруг Архимед почувствовал, что случилось что-то важное, но не мог понять - что. Он с досадой открыл глаза. Со стороны большого бассейна доносились голоса и чей-то горячий спор - кажется, о последнем законе правителя Сиракуз. Архимед замер, пытаясь осознать, что же всё-таки произошло? Он осмотрелся вокруг: вода в бассейне не доставала до края всего на один палец, а ведь когда он входил в воду, уровень её был ниже.

Архимед встал и вышел из бассейна. Когда вода успокоилась, она вновь оказалась на три пальца ниже края. Учёный снова забрался в бассейн - вода послушно поднялась. Архимед быстро оценил размер бассейна, вычислил его площадь, потом умножил на изменение уровня воды. Получилось, что объём воды, вытесненной его телом, равен объёму тела, если принять, что плотности воды и человеческого тела почти одинаковы и каждый кубический дециметр, или кубик воды со стороной в десять сантиметров, можно приравнять к килограмму веса самого учёного. Но при погружении тело Архимеда потеряло в весе и плавало в воде. Каким-то таинственным образом вода, вытесненная телом, отобрала у него вес…

Архимед понял, что он на верном пути, - и вдохновение понесло его на своих могучих крыльях. Можно ли применить найденный закон об объёме вытесненной жидкости к короне? Конечно! Надо опустить корону в воду, измерить увеличение объёма жидкости, а потом сравнить с объёмом воды, вытесняемой золотым слитком. Задача решена!

Согласно легенде, Архимед с победным криком «Эврика!», что значит по-гречески «Нашёл!», выскочил из бассейна и, забыв надеть хитон, помчался домой. Надо было срочно проверить своё решение! Он бежал по городу, а жители Сиракуз приветственно махали ему руками. Всё-таки не каждый день открывается важнейший закон гидростатики и не каждый день можно увидеть голого человека, бегущего по центральной площади Сиракуз.

На следующий день царю доложили о приходе Архимеда.

Я решил задачу, - сказал учёный. - В короне действительно много серебра.

Как ты это узнал? - поинтересовался правитель.

Вчера, в банях, я догадался, что тело, которое погружается в бассейн с водой, вытесняет объём жидкости, равный объёму самого тела, и теряет при этом в весе. Вернувшись домой, я провёл множество опытов с чашами весов, погружёнными в воду, и доказал, что тело в воде теряет в весе ровно столько, сколько весит вытесненная им жидкость. Поэтому человек может плавать, а золотой слиток - нет, но всё равно в воде он весит меньше.

И как же это доказывает наличие серебра в моей короне? - спросил царь.

Вели принести чан с водой, - попросил Архимед и достал весы. Пока слуги тащили чан в царские покои, Архимед положил на весы корону и слиток. Они уравновесили друг друга.

Если в короне есть серебро, то объём короны больше, чем объём слитка. Значит, при погружении в воду корона потеряет в весе больше и весы изменят своё положение, - сказал Архимед и осторожно погрузил обе чаши весов в воду. Чаша с короной немедленно поднялась вверх.

Ты поистине великий учёный! - воскликнул царь. - Теперь я смогу заказать себе новую корону и проверить - настоящая она или нет.

Архимед спрятал в бороде усмешку: он понимал, что закон, открытый им накануне, гораздо ценнее тысячи золотых корон.

Закон Архимеда остался в истории навсегда, им пользуются при проектировании любых кораблей. Сотни тысяч судов бороздят океаны, моря и реки, и каждое из них держится на поверхности воды благодаря силе, открытой Архимедом.

Когда Архимед состарился, его размеренные занятия наукой неожиданно закончились, впрочем как и спокойная жизнь горожан, - быстро растущая Римская империя решила завоевать плодородный остров Сицилию.

В 212 году до н.э. огромный флот галер, набитых римскими воинами, подошёл к острову. Преимущество в силе римлян было очевидным, и командующий флотом нисколько не сомневался, что Сиракузы будут захвачены очень быстро. Но не тут-то было: стоило галерам подойти к городу, как со стен ударили мощные катапульты. Они бросали тяжёлые камни так точно, что галеры захватчиков разлетались в щепки.

Римский полководец не растерялся и скомандовал капитанам своего флота:

Подойдите к самым стенам города! На близком расстоянии катапульты будут нам не страшны, а лучники смогут прицельно стрелять.

Когда флот с потерями прорвался к городским стенам и приготовился его штурмовать, римлян ждал новый сюрприз: теперь уже лёгкие метательные машины забросали их градом ядер. Спускаемые крюки мощных подъёмных кранов цепляли римские галеры за носы и поднимали их в воздух. Галеры переворачивались, падали вниз и тонули.

Знаменитый историк древности Полибий писал о штурме Сиракуз: «Римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузцев одного старца». Этим старцем был Архимед, который сконструировал метательные машины и мощные подъёмные краны для защиты города.

Быстрый захват Сиракуз не получился, и римский полководец дал команду отступить. Сильно поредевший флот отошёл на безопасное расстояние. Город стойко держался благодаря инженерному гению Архимеда и мужеству горожан. Лазутчики донесли римскому полководцу имя учёного, который создал столь неприступную оборону. Полководец решил, что после победы нужно заполучить Архимеда как самый ценный военный трофей, ведь он один стоил целой армии!

День за днём, месяц за месяцем мужчины дежурили на стенах, стреляли из луков и заряжали катапульты тяжёлыми камнями, которые, увы, не достигали цели. Мальчишки подносили солдатам воду и еду, но воевать им не давали - малы ещё!

Архимед был стар, он, как и дети, не мог стрелять из лука так далеко, как молодые и сильные мужчины, но у него был могучий мозг. Архимед собрал мальчишек и спросил их, показывая на вражеские галеры:

Хотите уничтожить римский флот?

Мы готовы, говори, что делать!

Мудрый старец объяснил, что придётся серьёзно поработать. Он велел каждому мальчишке взять большой медный лист из уже приготовленной стопы и положить его на ровные каменные плиты.

Каждый из вас должен отполировать лист так, чтобы он сиял на солнце, как золотой. И тогда завтра я покажу вам, как потопить римские галеры. Работайте, друзья! Чем лучше вы сегодня отполируете медь, тем легче нам будет завтра воевать.

А мы сами будем воевать? - спросил маленький кудрявый мальчуган.

Да, - твёрдо сказал Архимед, - завтра вы все будете на поле боя наравне с воинами. Каждый из вас сможет совершить подвиг, и тогда о вас будут складывать легенды и песни.

Трудно описать энтузиазм, который охватил мальчишек после речи Архимеда, и они энергично взялись надраивать свои медные листы.

Назавтра, в полдень, солнце обжигающе пылало в небе, а римский флот неподвижно стоял на якорях на внешнем рейде. Деревянные борта вражеских галер разогрелись на солнце и сочились смолой, которую использовали для защиты кораблей от протечек.

На крепостных стенах Сиракуз, там, куда не доставали вражеские стрелы, собрались десятки подростков. Перед каждым из них стоял деревянный щит с отполированным медным листом. Опоры щита были сделаны так, что лист меди можно было легко поворачивать и наклонять.

Вот сейчас мы и проверим, как хорошо вы отполировали медь, - обратился к ним Архимед. - Надеюсь, все умеют пускать солнечные зайчики?

Архимед подошёл к маленькому кудрявому мальчику и сказал:

Поймай своим зеркалом солнце и направь солнечный зайчик в середину борта большой чёрной галеры, как раз под мачтой.

Мальчишка бросился выполнять указание, а воины, столпившиеся на стенах, удивлённо переглянулись: что ещё затеял хитрец Архимед?

Учёный остался доволен результатом - на боку чёрной галеры появилось световое пятно. Тогда он обратился к остальным подросткам:

Наведите свои зеркала в то же место!

Заскрипели деревянные опоры, загремели медные листы - стая солнечных зайчиков сбежалась к чёрной галере, и её бок стал наливаться ярким светом. На палубы галер высыпали римляне - что происходит? Вышел главнокомандующий и тоже уставился на сверкающие зеркала на стенах осаждённого города. Боги Олимпа, что ещё придумали эти упрямые сиракузцы?

Архимед инструктировал своё воинство:

Не спускайте глаз с солнечных зайчиков - пусть они всё время будут направлены в одно место.

Не прошло и минуты, как от сияющего пятна на борту чёрной галеры повалил дым.

Воды, воды! - закричали римляне. Кто-то бросился черпать забортную воду, но дым быстро сменился пламенем. Сухое просмолённое дерево прекрасно горело!

Переведите зеркала на соседнюю галеру справа! - скомандовал Архимед.

Считаные минуты - и соседняя галера тоже занялась огнём. Римский флотоводец вышел из оцепенения и приказал сниматься с якоря, чтобы отойти подальше от стен проклятого города с его главным защитником Архимедом.

Сняться с якорей, посадить гребцов на вёсла, развернуть огромные корабли и отвести их в море на безопасное расстояние - дело не быстрое. Пока римляне суматошно бегали по палубам, задыхаясь от удушливого дыма, юные сиракузцы переводили зеркала на новые корабли. В суматохе галеры подходили друг к другу так близко, что огонь перекидывался с одного судна на другое. Спеша отплыть, некоторые корабли развернули паруса, которые, как оказалось, горели ничуть не хуже смоляных бортов.

Вскоре сражение было окончено. На рейде догорало множество римских кораблей, а остатки флота отступили от стен города. Среди юного воинства Архимеда потерь не было.

Слава великому Архимеду! - кричали восхищённые жители Сиракуз и благодарили и обнимали своих детей. Могучий воин в блестящих доспехах крепко пожал руку кудрявому мальчику. Его маленькая ладонь была покрыта кровавыми мозолями и ссадинами от полировки медного листа, но он даже не поморщился при рукопожатии.

Молодец! - уважительно сказал воин. - Этот день сиракузцы запомнят надолго.

Прошло два тысячелетия, а этот день остался в истории, и запомнили его не только сиракузцы. Жители разных стран знают удивительную историю о сожжении Архимедом римских галер, но он один ничего бы не сделал без своих юных помощников. Кстати, совсем недавно, уже в ХХ веке нашей эры, учёные провели эксперименты, которые подтвердили полную работоспособность древнего «сверхоружия», изобретённого Архимедом для защиты Сиракуз от захватчиков. Хотя есть историки, считающие это легендой…

Эх, жаль, меня там не было! - воскликнула Галатея, внимательно слушавшая вместе с братом вечернюю сказку, которую рассказывала им мать - принцесса Дзинтара. Та продолжила читать книгу:

Потеряв надежду захватить город с помощью оружия, римский полководец прибег к старому испытанному способу - подкупу. Он нашёл в городе предателей, и Сиракузы пали. Римляне ворвались в город.

Найдите мне Архимеда! - приказал командующий. Но солдаты, опьянённые победой, плохо понимали, чего он от них хочет. Они врывались в дома, грабили и убивали. Один из воинов выбежал на площадь, где работал Архимед, рисуя на песке сложную геометрическую фигуру. Солдатские башмаки затоптали хрупкий рисунок.

Не тронь моих чертежей! - грозно сказал Архимед.

Римлянин не узнал учёного и в гневе ударил его мечом. Так погиб этот великий человек.

Известность Архимеда была столь велика, что книги его часто переписывали, благодаря чему ряд трудов сохранился до нашего времени, несмотря на пожары и войны двух тысячелетий. История дошедших до нас книг Архимеда нередко была драматической. Известно, что в XIII веке какой-то невежественный монах взял книгу Архимеда, написанную на прочном пергаменте, и смыл формулы великого учёного, чтобы получить чистые страницы для записи молитв. Прошли века, и этот молитвенник попал в руки других учёных. Они с помощью сильной лупы исследовали его страницы и различили следы стёртого драгоценного текста Архимеда. Книга гениального учёного была восстановлена и напечатана большим тиражом. Теперь она уже никогда не исчезнет.

Архимед был настоящим гением, сделавшим множество открытий и изобретений. Он опередил своих со-временников даже не на века - на тысячелетия.

В книге «Псаммит, или Исчисление песчинок» Архимед пересказал смелую теорию Аристарха Самосского, согласно которой в центре мира расположено большое Солнце. Архимед писал: «Аристарх Самосский... полагает, что неподвижные звёзды и Солнце не меняют своего места в пространстве, что Земля движется по окружности около Солнца, находящегося в его центре…» Архимед считал гелиоцентрическую теорию Самосского убедительной и использовал её, чтобы оценить размеры сферы неподвижных звёзд. Учёный даже построил планетарий, или «небесную сферу», где можно было наблюдать движение пяти планет, восход солнца и луны, её фазы и затмения.

Правило рычага, которое открыл Архимед, стало основой всей механики. И хотя рычаг был известен до Архимеда, он изложил его полную теорию и успешно применил её на практике. В Сиракузах он в одиночку спустил на воду новый многопалубный корабль царя Сиракуз, используя хитроумную систему блоков и рычагов. Именно тогда, оценив всю мощь своего изобретения, Архимед воскликнул: «Дайте мне точку опоры, и я переверну мир».

Неоценимы достижения Архимеда в области математики, которой, по словам Плутарха, он был просто одержим. Его главные математические открытия относятся к математическому анализу, где идеи учёного легли в основу интегрального и дифференциального исчисления. Огромное значение для развития математики имело вычисленное Архимедом отношение длины окружности к диаметру. Архимед дал приближение для числа π (Архимедова числа):

Своим наивысшим достижением учёный считал работы в области геометрии и, прежде всего, расчёт шара, вписанного в цилиндр.

Что за цилиндр и шар? - спросила Галатея. - Почему он так ими гордился?

Архимед сумел показать, что площадь и объём сферы относятся к площади и объёму описанного цилиндра как 2:3.

Дзинтара поднялась и сняла с полки модель земного шара, который был впаян внутрь прозрачного цилиндра так, что соприкасался с ним на полюсах и на экваторе.

Я с детства люблю эту геометрическую игрушку. Посмотрите, площадь шара равна площади четырёх кругов такого же радиуса или площади боковой стороны прозрачного цилиндра. Если добавить площади основания и верха цилиндра, то получится, что площадь цилиндра в полтора раза больше площади шара внутри него. То же самое соотношение выполняется для объёмов цилиндра и шара.

Архимед был восхищён полученным результатом. Он умел ценить красоту геометрических фигур и математических формул - именно поэтому не катапульта и не горящая галера украшают его могилу, а изображение шара, вписанного в цилиндр. Таково было желание великого учёного.

Казалось бы, нет ничего проще, чем закон Архимеда. Но когда-то сам Архимед здорово поломал голову над его открытием. Как это было?

С открытием основного закона гидростатики связана интересная история.

Интересные факты и легенды из жизни и смерти Архимеда

Помимо такого гигантского прорыва, как открытие собственно закона Архимеда, ученый имеет еще целый список заслуг и достижений. Вообще, он был гением, трудившимся в областях механики, астрономии, математики. Им написаны такие труды, как трактат «о плавающих телах», «о шаре и цилиндре», «о спиралях», «о коноидах и сфероидах» и даже «о песчинках». В последнем труде была предпринята попытка измерить количество песчинок, необходимых для того, чтобы заполнить Вселенную.


Роль Архимеда в осаде Сиракуз

В 212 году до нашей эры Сиракузы были осаждены римлянами. 75-летний Архимед сконструировал мощные катапульты и легкие метательные машины ближнего действия, а также так называемые "когти Архимеда". С их помощью можно было буквально переворачивать вражеские корабли. Столкнувшись со столь мощным и технологичным сопротивлением, римляне не смогли взять город штурмом и вынуждены были начать осаду. По другой легенде Архимед при помощи зеркал сумел поджечь римский флот, фокусируя солнечные лучи на кораблях. Правдивость данной легенды представляется сомнительной, т.к. ни у одного из историков того времени упоминаний об этом нет.

Смерть Архимеда

Согласно многим свидетельствам, Архимед был убит римлянами, когда те все-таки взяли Сиракузы. Вот одна из возможных версий гибели великого инженера.

На крыльце своего дома ученый размышлял над схемами, которые чертил рукой прямо на песке. Проходящий мимо солдат наступил на рисунок, а Архимед, погруженный в раздумья, закричал: «Прочь от моих чертежей». В ответ на это спешивший куда-то солдат просто пронзил старика мечом.

Ну а теперь о наболевшем: о законе и силе Архимеда...

Как был открыт закон Архимеда и происхождение знаменитой "Эврика!"

Античность. Третий век до нашей эры. Сицилия, на которой еще и подавно нет мафии, но есть древние греки.

Изобретатель, инженер и ученый-теоретик из Сиракуз (греческая колония на Сицилии) Архимед служил у царя Гиерона второго. Однажды ювелиры изготовили для царя золотую корону. Царь, как человек подозрительный, вызвал ученого к себе и поручил узнать, не содержит ли корона примесей серебра. Тут нужно сказать, что в то далекое время никто не решал подобных вопросов и случай был беспрецедентным.


Архимед долго размышлял, ничего не придумал и однажды решил сходить в баню. Там, садясь в тазик с водой, ученый и нашел решение вопроса. Архимед обратил внимание на совершенно очевидную вещь: тело, погружаясь в воду, вытесняет объем воды, равный собственному объему тела.

Именно тогда, даже не потрудившийся одеться, Архимед выскочил из бани и кричал свое знаменитое «эврика», что означает «нашел». Явившись к царю, Архимед попросил выдать ему слитки серебра и золота, равные по массе короне. Измеряя и сравнивая объем воды, вытесняемой короной и слитками, Архимед обнаружил, что корона изготовлена не из чистого золота, а имеет примеси серебра. Это и есть история открытия закона Архимеда.

Суть закона Архимеда

Если Вы спрашиваете себя, как понять закон Архимеда, мы ответим. Просто сесть, подумать, и понимание придет. Собственно, этот закон гласит:

На тело, погруженное в газ или жидкость действует выталкивающая сила, равная весу жидкости (газа) в объеме погруженной части тела. Эта сила называется силой Архимеда.


Как видим, сила Архимеда действует не только на тела, погруженные в воду, но и на тела в атмосфере. Сила, которая заставляет воздушный шар подниматься вверх – та же сила Архимеда. Высчитывается Архимедова сила по формуле:

Здесь первый член - плотность жидкости (газа), второй - ускорение свободного падения, третий - объем тела. Если сила тяжести равна силе Архимеда, тело плавает, если больше – тонет, а если меньше – всплывает до тех пор, пока не начнет плавать.


В данной статье мы рассмотрели закон Архимеда для чайников. Если Вы хотите узнать, как как решать задачи, где есть закон Архимеда, обращайтесь к нашим специалистам . Лучшие авторы с удовольствием поделятся знаниями и разложат решение самой сложной задачи «по полочкам».

Один из первых физических законов, изучаемых учениками средней школы. Хотя бы примерно этот закон помнит любой взрослый человек, как бы далек он ни был от физики. Но иногда полезно вернуться к точным определениям и формулировкам - и разобраться в деталях этого закона, которые могли позабыться.

О чем говорит закон Архимеда?

Существует легенда, что свой знаменитый закон древнегреческий ученый открыл, принимая ванну. Погрузившись в емкость, наполненную водой до краев, Архимед обратил внимание, что вода при этом выплеснулась наружу - и испытал озарение, мгновенно сформулировав суть открытия.

Скорее всего, в реальности дело обстояло иначе, и открытию предшествовали долгие наблюдения. Но это не столь важно, потому что в любом случае Архимеду удалось открыть следующую закономерность:

  • погружаясь в любую жидкость, тела и объекты испытывают на себе сразу несколько разнонаправленных, но направленных перпендикулярно по отношению к их поверхности сил;
  • итоговый вектор этих сил направлен вверх, поэтому любой объект или тело, оказавшись в жидкости в состоянии покоя, испытывает на себе выталкивание;
  • при этом сила выталкивания в точности равна коэффициенту, который получится, если умножить на ускорение свободного падения произведение объема предмета и плотности жидкости.
Итак, Архимед установил, что тело, погружённое в жидкость, вытесняет такой объём жидкости, который равен объёму самого тела. Если в жидкость погружается только часть тела, то оно вытеснит жидкость, объём которой будет равен объёму только той части, которая погружается.

Та же самая закономерность действует и для газов - только здесь объем тела необходимо соотносить с плотностью газа.

Можно сформулировать физический закон и немного проще - сила, которая выталкивает из жидкости или газа некий предмет, в точности равна весу жидкости или газа, вытесненных этим предметом при погружении.

Закон записывается в виде следующей формулы:


Какое значение имеет закон Архимеда?

Закономерность, открытая древнегреческим ученым, проста и совершенно очевидна. Но при этом ее значение для повседневной жизни невозможно переоценить.

Именно благодаря познаниям о выталкивании тел жидкостями и газами мы можем строить речные и морские суда, а также дирижабли и воздушные шары для воздухоплавания. Тяжелые металлические корабли не тонут благодаря тому, что их конструкция учитывает закон Архимеда и многочисленные следствия из него - они построены так, что могут удерживаться на поверхности воды, а не идут ко дну. По аналогичному принципу действуют воздухоплавательные средства - они используют выталкивающие способности воздуха, в процессе полета становясь как бы легче него.

Закон Архимеда – закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

История вопроса

«Эврика!» («Нашел!») – именно этот возглас, согласно легенде, издал древнегреческий ученый и философ Архимед, открыв принцип вытеснения. Легенда гласит, что сиракузский царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало – нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото. Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну – и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый побежал докладывать о своей победе в царский дворец, даже не потрудившись одеться.

Однако, что правда – то правда: именно Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Давление, которое ранее действовало на вытесненную жидкость, теперь будет действовать на твердое тело, вытеснившее ее. И, если действующая вертикально вверх выталкивающая сила окажется больше силы тяжести, тянущей тело вертикально вниз, тело будет всплывать; в противном случае оно пойдет ко дну (утонет). Говоря современным языком, тело плавает, если его средняя плотность меньше плотности жидкости, в которую оно погружено.

Закон Архимеда и молекулярно-кинетическая теория

В покоящейся жидкости давление производится посредством ударов движущихся молекул. Когда некий объем жидкости вымещается твердым телом, направленный вверх импульс ударов молекул будет приходиться не на вытесненные телом молекулы жидкости, а на само тело, чем и объясняется давление, оказываемое на него снизу и выталкивающее его в направлении поверхности жидкости. Если же тело погружено в жидкость полностью, выталкивающая сила будет по-прежнему действовать на него, поскольку давление нарастает с увеличением глубины, и нижняя часть тела подвергается большему давлению, чем верхняя, откуда и возникает выталкивающая сила. Таково объяснение выталкивающей силы на молекулярном уровне.

Такая картина выталкивания объясняет, почему судно, сделанное из стали, которая значительно плотнее воды, остается на плаву. Дело в том, что объем вытесненной судном воды равен объему погруженной в воду стали плюс объему воздуха, содержащегося внутри корпуса судна ниже ватерлинии. Если усреднить плотность оболочки корпуса и воздуха внутри нее, получится, что плотность судна (как физического тела) меньше плотности воды, поэтому выталкивающая сила, действующая на него в результате направленных вверх импульсов удара молекул воды, оказывается выше гравитационной силы притяжения Земли, тянущей судно ко дну, – и корабль плывет.

Формулировка и пояснения

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается поднять на суше. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился.

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Формула

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле: F А = ρ ж gV пт,

где ρж – плотность жидкости,

g – ускорение свободного падения,

Vпт – объем погруженной в жидкость части тела.

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести Fт и архимедовой силы FA, которые действуют на это тело. Возможны следующие три случая:

1) Fт > FA – тело тонет;

2) Fт = FA – тело плавает в жидкости или газе;

3) Fт < FA – тело всплывает до тех пор, пока не начнет плавать.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность: Если внимательно присмотреться к окружающему миру, то можно открыть для себя множество событий, происходящих вокруг. Издревле человека окружает вода. Когда мы плаваем в ней, то наше тело выталкивает на поверхность какие-то силы. Я давно задаю себе вопрос: «Почему тела плавают или тонут? Вода выталкивает предметы?»

Моя исследовательская работа направлена на то, чтобы углубить полученные на уроке знания об архимедовой силе. Ответы на интересующие меня вопросы, используя жизненный опыт, наблюдения за окружающей действительностью, провести собственные эксперименты и объяснить их результаты, которые позволят расширить знания по данной теме. Все науки связаны между собой. А общий объект изучения всех наук - это человек «плюс» природа. Я уверен, что исследование действия архимедовой силы сегодня является актуальным.

Гипотеза: Я предполагаю, что в домашних условиях можно рассчитать величину выталкивающей силы действующей на погруженное в жидкость тело и определить зависит ли она от свойств жидкости, объема и формы тела.

Объект исследования: Выталкивающая сила в жидкостях.

Задачи:

Изучить историю открытия архимедовой силы;

Изучить учебную литературу по вопросу действия архимедовой силы;

Выработать навыки проведения самостоятельного эксперимента;

Доказать, что значение выталкивающей силы зависит от плотности жидкости.

Методы исследования:

Исследовательские;

Расчетные;

Информационного поиска;

Наблюдений

1. Открытие силы Архимеда

Существует знаменитая легенда о том, как Архимед бежал по улице и кричал «Эврика!» Это как раз повествует об открытии им того, что выталкивающая сила воды равна по модулю весу вытесненной им воды, объем которой равен объему погруженного в нее тела. Это открытие названо законом Архимеда.

В III веке до нашей эры жил Гиерон - царь древнегреческого города Сиракузы и захотел он сделать себе новую корону из чистого золота. Отмерил его строго сколько нужно, и дал ювелиру заказ. Через месяц мастер вернул золото в виде короны и весила она столько, сколько и масса данного золота. Но ведь всякое бывает и мастер мог схитрить, добавив серебро или того хуже - медь, ведь на глаз не отличишь, а масса такая, какая и должна быть. А царю узнать охота: честно ль сделана работа? И тогда, попросил он ученого Архимеда, проверить из чистого ли золота сделал мастер ему корону. Как известно, масса тела равна произведению плотности вещества, из которого сделано тело, на его объем: . Если у разных тел одинаковая масса, но они сделаны из разных веществ, то значит, у них будет разный объем. Если бы мастер вернул царю не ювелирно сделанную корону, объем которой определить невозможно из-за ее сложности, а такой же по форме кусок металла, который дал ему царь, то сразу было бы ясно, подмешал он туда другого металла или нет. И вот принимая ванну, Архимед обратил внимание, что вода из нее выливается. Он заподозрил, что выливается она именно в том объеме, какой объем занимают его части тела, погруженные в воду. И Архимеда осенило, что объем короны можно определить по объему вытесненной ей воды. Ну а коли можно измерить объем короны, то его можно сравнить с объемом куска золота, равного по массе. Архимед погрузил в воду корону и измерил, как увеличился объем воды. Также он погрузил в воду кусок золота, у которого масса была такая же, как у короны. И тут он измерил, как увеличился объем воды. Объемы вытесненной в двух случаях воды оказались разными. Тем самым мастер был изобличен в обмане, а наука обогатилась замечательным открытием.

Из истории известно, что задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. Опыты, проведенные Архимедом, были описаны в сочинении «О плавающих телах», которое дошло до нас. Седьмое предложение (теорема) этого сочинения сформулировано Архимедом следующим образом: тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела.

Интересно, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

Открытие основного закона гидростатики - крупнейшее завоевание античной науки.

2. Формулировка и пояснения закона Архимеда

Закон Архимеда описывает действие жидкостей и газов на погруженное в них тело, и является одним из главных законов гидростатики и статики газов.

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела - эта сила называется силой Архимеда :

,

где - плотность жидкости (газа), - ускорение свободного падения, - объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности).

Следовательно, архимедова сила зависит только от плотности жидкости, в которую погружено тело, и от объема этого тела. Но она не зависит, например, от плотности вещества тела, погруженного в жидкость, так как эта величина не входит в полученную формулу.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

3. Определение силы Архимеда

Силу, с которой тело, находящееся в жидкости, выталкивается ею, можно определить на опыте используя данный прибор:

Небольшое ведерко и тело цилиндрической формы подвешиваем на пружине, закрепленной в штативе. Растяжение пружины отмечаем стрелкой на штативе, показывая вес тела в воздухе. Приподняв тело, под него подставляем стакан с отливной трубкой, наполненный жидкостью до уровня отливной трубки. После чего тело погружают целиком в жидкость. При этом часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в жидкости. В данном случае на тело, наряду с силой тяжести, действует еще и сила, выталкивающая его из жидкости. Если в ведёрко налить жидкость из стакана (т.е. ту, которую вытеснило тело), то указатель пружины возвратится к своему начальному положению.

На основании этого опыта можно заключить, что сила, выталкивающая тело, целиком погруженное в жидкость, равна весу жидкости в объёме этого тела. Зависимость давления в жидкости (газе) от глубины погружения тела приводит к появлению выталкивающей силы (силы Архимеда), действующей на любое тело, погруженное в жидкость или газ. Тело при погружении двигается вниз под действием силы тяжести. Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Данный опыт подтверждает, что архимедова сила равна весу жидкости в объёме тела.

4. Условие плавания тел

На тело, находящееся внутри жидкости, действуют две силы: сила тяжести, направленная вертикально вниз, и архимедова сила, направленная вертикально вверх. Рассмотрим, что будет происходить с телом под действием этих сил, если вначале оно было неподвижно.

При этом возможны три случая:

1) Если сила тяжести больше архимедовой силы, то тело опускается вниз, то есть тонет:

, то тело тонет;

2) Если модуль силы тяжести равен модулю архимедовой силы, то тело может находиться в равновесии внутри жидкости на любой глубине:

, то тело плавает;

3) Если архимедова сила больше силы тяжести, то тело будет поднимается из жидкости - всплывать:

, то тело плавает.

Если всплывающее тело частично выступает над поверхностью жидкости, то объем погруженной части плавающего тела такой, что вес вытесненной жидкости равен весу плавающего тела.

Архимедова сила больше силы тяжести, если плотность жидкости больше плотности погруженного в жидкость тела, если

1) =— тело плавает в жидкости или газе,2) >— тело тонет,3) < — тело всплывает до тех пор, пока не начнет плавать.

Именно эти принципы соотношения силы тяжести и силы Архимеда применяются в судоходостронии. Однако на воде держатся громадные речные и морские суда, изготовленные из стали, плотность которой почти в 8 раз больше плотности воды. Объясняется это тем, что из стали делают лишь сравнительно тонкий корпус судна, а большая часть его объема занята воздухом. Среднее значение плотности судна при этом оказывается значительно меньше плотности воды; поэтому оно не только не тонет, но и может принимать для перевозки большое количество грузов. Суда, плавающие по рекам, озерам, морям и океанам, построены из разных материалов с различной плотностью. Корпус судов обычно делают из стальных листов. Все внутренние крепления, придающие судам прочность, также изготавливают из металлов. Для постройки судов используют разные материалы, имеющие по сравнению с водой как большую, так и меньшую плотность. Вес воды, вытесненной подводной частью судна, равен весу судна с грузом в воздухе или силе тяжести, действующей на судно с грузом.

Для воздухоплавания вначале использовали воздушные шары, которые раньше наполняли нагретым воздухом, сейчас - водородом или гелием. Для того чтобы шар поднялся в воздух, необходимо, чтобы архимедова сила (выталкивающая), действующая на шар, была больше силы тяжести.

5. Проведение эксперимента

    Исследовать поведение сырого яйца в жидкостях разного рода.

Задача: доказать, что значение выталкивающей силы зависит от плотности жидкости.

Я взял одно сырое яйцо и жидкости разного рода (приложение 1):

Вода чистая;

Вода, насыщенная солью;

Подсолнечное масло.

Сначала я опустил сырое яйцо в чистую воду - яйцо утонуло - «пошло ко дну» (приложение 2). Потом в стакан с чистой водой я добавил столовую ложку поваренной соли, в результате яйцо плавает (приложение 3). И наконец, я опустил яйцо в стакан с подсолнечным маслом - яйцо опустилось на дно (приложение 4).

Вывод: в первом случае плотность яйца больше плотности воды и поэтому яйцо утонуло. Во втором случае плотность солёной воды больше плотности яйца, поэтому яйцо плавает в жидкости. В третьем случае плотность яйца также больше плотности подсолнечного масла, поэтому яйцо утонуло. Следовательно, чем больше плотность жидкости, тем сила тяжести меньше.

2. Действие Архимедовой силы на тело человека в воде.

Определить на опыте плотность тела человека, сравнить ее с плотностью пресной и морской воды и сделать вывод о принципиальной возможности человека плавать;

Вычислить вес человека в воздухе, архимедову силу, действующую на человека в воде.

Для начала с помощью весов я измерил массу своего тела. Затем измерил объем тела (без объема головы). Для этого я налил в ванну воды столько, чтобы при погружении в воду я был полностью в воде (за исключением головы). Далее с помощью сантиметровой ленты отметил от верхнего края ванны расстояние до уровня воды ℓ 1 , а затем - при погружении в воду ℓ 2 . После этого с помощью предварительно проградуированной трехлитровой банки стал наливать в ванну воду от уровня ℓ 1 до уровня ℓ 2 - так я измерил объем вытесненной мной воды (приложение 5). Плотность я рассчитал с помощью формулы:

Сила тяжести, действующая на тело в воздухе, была рассчитана по формуле: , где - ускорение свободного падения ≈ 10 . Значение выталкивающей силы было рассчитано с помощью формулы описанной в пункте 2.

Вывод:Тело человекаплотнее пресной воды, а, значит, оно в ней тонет. Человеку легче плавать в море, чем в реке, так как плотность морской воды больше, а следовательно больше значение выталкивающей силы.

Заключение

В процессе работы над этой темой мы узнали для себя много нового и интересного. Круг наших познаний увеличился не только в области действия силы Архимеда, но и применении ее в жизни. Перед началом работы мы имели о ней далеко неподробное представление. При проведении опытов мы подтвердили экспериментально справедливость закона Архимеда и выяснили, что выталкивающая силазависит от объема тела и плотности жидкости, чем больше плотность жидкости, тем архимедова сила больше. Результирующая сила, которая определяет поведение тела в жидкости, зависит от массы, объёма тела и плотности жидкости.

Помимо проделанных экспериментов, была изучена дополнительная литература об открытии силы Архимеда, о плавании тел, воздухоплавании.

Каждый из Вас может сделать удивительные открытия, и для этого не нужно обладать ни особенными знаниями, ни мощным оборудованием. Нужно лишь немного внимательней посмотреть на окружающий нас мир, быть чуть более независимым в своих суждениях, и открытия не заставят себя ждать. Нежелание большинства людей познавать окружающий мир оставляет большой простор любознательным в самых неожиданных местах.

Список литературы

1.Большая книга экспериментов для школьников - М.: Росмэн, 2009. - 264 с.

2. Википедия: https://ru.wikipedia.org/wiki/Закон_Архимеда.

3. Перельман Я.И. Занимательная физика. - книга 1. - Екатеринбург.: Тезис, 1994.

4. Перельман Я.И. Занимательная физика. - книга 2.- Екатеринбург.: Тезис, 1994.

5. Перышкин А.В. Физика: 7 класс: учебник для общеобразовательных учреждений / А.В. Перышкин. - 16-е изд., стереотип. - М.: Дрофа, 2013. - 192 с.: ил.

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Поделитесь с друзьями или сохраните для себя:

Загрузка...