Рассеивание рентгеновских лучей под малыми углами. Малоугловое рассеяние рентгеновских лучей

Рассмотренные нами соотношения отражают количественную сторону процесса ослабления рентгеновского излучения. Остановимся кратко на качественной стороне процесса, или на тех физических процессах, которые вызывают ослабление. Это, во-первых, поглощение, т.е. превращение энергии рентгеновского излучения в другие виды энергии и, во-вторых, рассеяние, т.е. изменение направления распространения излучения без изменения длины волны (классическое рассеяние Томпсона) и с изменением длины волны (квантовое рассеяние или комптон-эффект).

1. Фотоэлектрическое поглощение . Рентгеновские кванты могут вырывать с электронных оболочек атомов вещества электроны. Их обычно называют фотоэлектронами. Если энергия падающих квантов невелика, то они выбивают электроны с наружных оболочек атома. Фотоэлектронам сообщается большая кинетическая энергия. С увеличением энергии рентгеновские кванты начинают взаимодействовать с электронами, находящимися на более глубоких оболочках атома, у которых энергия связи с ядром больше, чем электронов наружных оболочек. При таком взаимодействии почти вся энергия падающих рентгеновских квантов поглощается, и часть энергии, отдаваемой фотоэлектронам, меньше, чем в первом случае. Кроме появления фотоэлектронов в этом случае испускаются кванты характеристического излучения за счет перехода электронов с вышележащих уровней на уровни, расположенные ближе к ядру.

Таким образом, в результате фотоэлектрического поглощения возникает характеристический спектр данного вещества – вторичное характеристическое излучение. Если вырывание электрона произошло с K-оболочки, то появляется весь линейчатый спектр, характерный для облучаемого вещества.

Рис. 2.5. Спектральное распределение коэффициента поглощения.

Рассмотрим изменение массового коэффициента поглощения t/r, обусловленное фотоэлектрическим поглощением в зависимости от длины волны l падающего рентгеновского излучения(рис.2.5). Изломы кривой называются скачками поглощения, а соответствующая им длина волны – границей поглощения. Каждый скачек соответствует определенному энергетическому уровню атома K, L, M и т.д. При l гр энергия рентгеновского кванта оказывается достаточной для того, чтобы выбить электрон с этого уровня, в результате чего поглощение рентгеновских квантов данной длины волны резко возрастает. Наиболее коротковолновый скачек соответствует удалению электрона с K-уровня, второй с L-уровня, и т.д. Сложная структура L и M-границ обусловлена наличием нескольких подуровней в этих оболочках. Для рентгеновских лучей с длинами волн несколько большими l гр, энергия квантов недостаточна, чтобы вырвать электрон с соответствующей оболочки, вещество относительно прозрачно в этой спектральной области.

Зависимость коэффициента поглощения от l и Z при фотоэффекте определяется как:

t/r = Сl 3 Z 3 (2.11)

где С – коэффициент пропорциональности, Z – порядковый номер облучаемого элемента, t/r – массовый коэффициент поглощения, l – длина волны падающего рентгеновского излучения.

Эта зависимость описывает участки кривой рис.2.5 между скачками поглощения.

2. Классическое (когерентное) рассеяние объясняет волновая теория рассеяния. Оно имеет место в том случае, если квант рентгеновского излучения взаимодействует с электроном атома, и энергия кванта недостаточна для вырывания электрона с данного уровня. В этом случае, согласно классической теории рассеяния, рентгеновские лучи вызывают вынужденные колебания связанных электронов атомов. Колеблющиеся электроны, как и все колеблющиеся электрические заряды, становятся источником электромагнитных волн, которые распространяются во все стороны.

Интерференция этих сферических волн приводит к возникновению дифракционной картины, закономерно связанной со строением кристалла. Таким образом, именно когерентное рассеяние дает возможность получать картины дифракции, на основании которых можно судить о строении рассеивающего объекта. Классическое рассеяние имеет место при прохождении через среду мягкого рентгеновского излучения с длинами волн более 0,3Å. Мощность рассеяния одним атомом равна:

, (2.12)

а одним граммом вещества

где I 0 – интенсивность падающего рентгеновского пучка, N – число Авогадро, A – атомный вес, Z – порядковый номер вещества.

Отсюда можно найти массовый коэффициент классического рассеяния s кл /r, поскольку он равен P/I 0 или .

Подставив все значения, получим .

Так как у большинства элементов Z /A@0,5 (кроме водорода), то

т.е. массовый коэффициент классического рассеяния примерно одинаков для всех веществ и не зависит от длины волны падающего рентгеновского излучения.

3. Квантовое (некогерентное) рассеяние . При взаимодействии вещества с жестким рентгеновским излучением (длиной волны менее 0,3Å) существенную роль начинает играть квантовое рассеяние, когда наблюдается изменение длины волны рассеянного излучения. Это явление нельзя объяснить волновой теорией, но оно объясняется квантовой теорией. Согласно квантовой теории такое взаимодействие можно рассматривать как результат упругого столкновения рентгеновских квантов со свободными электронами (электронами внешних оболочек). Этим электронам рентгеновские кванты отдают часть своей энергии и вызывают переход их на другие энергетические уровни. Электроны, получившие энергию, называются электронами отдачи. Рентгеновские кванты с энергией hn 0 в результате такого столкновения отклоняются от первоначального направления на угол y, и будут иметь энергию hn 1 , меньшую, чем энергия падающего кванта. Уменьшение частоты рассеянного излучения определяется соотношением:

hn 1 = hn 0 - E отд, (2.15)

где E отд – кинетическая энергия электрона отдачи.

Теория и опыт показывают, что изменение частоты или длины волны при квантовом рассеянии не зависит от порядкового номера элемента Z , но зависит от угла рассеянияy. При этом

l y - l 0 = l = ×(1 - cos y) @ 0,024 (1 - cosy) , (2.16)

где l 0 и l y – длина волны рентгеновского кванта до и после рассеяния,

m 0 – масса покоящегося электрона, c – скорость света.

Из формул видно, что по мере увеличения угла рассеяния, l возрастает от 0 (при y = 0°) до 0,048 Å (при y = 180°). Для мягких лучей с длиной волны порядка 1Å эта величина составляет небольшой процент примерно 4–5 %. Но для жестских лучей (l = 0,05–0,01 Å) изменение длины волны на 0,05 Å означает изменение l вдвое и даже в несколько раз.

Ввиду того, что квантовое рассеяние некогерентно (различно l, различен угол распространения отраженного кванта, нет строгой закономерности в распространении рассеянных волн по отношению к кристаллической решетке), порядок в расположении атомов не влияет на характер квантового рассеяния. Эти рассеянные рентгеновские лучи участвуют в создании общего фона на рентгенограмме. Зависимость интенсивности фона от угла рассеяния может быть теоретически вычислена, что практического применения в рентгеноструктурном анализе не имеет, т.к. причин возникновения фона несколько и общее его значение не поддается легкому расчету.

Рассмотренные нами процессы фотоэлектронного поглощения, когерентного и некогерентного рассеяния определяют, в основном ослабление рентгеновских лучей. Кроме них возможны и другие процессы, например, образование электронно-позитронных пар в результате взаимодействия рентгеновских лучей с ядрами атомов. Под воздействием первичных фотоэлектронов с большой кинетической энергией, а также первичной рентгеновской флюоресценции, возможно возникновение вторичного, третичного и т.д. характеристического излучения и соответствующих фотоэлектронов, но уже с меньшими энергиями. Наконец, часть фотоэлектронов (а частично и электронов отдачи) может преодолевать потенциальный барьер у поверхности вещества и вылетать за его пределы, т.е. может иметь место внешний фотоэффект.

Все отмеченные явления, однако, значительно меньше влияют на величину коэффициента ослабления рентгеновских лучей. Для рентгеновских лучей с длинами волн от десятых долей до единиц ангстрем, используемых обычно в структурном анализе, всеми этими побочными явлениями можно пренебречь и считать, что ослабление первичного рентгеновского пучка происходит с одной стороны за счет рассеяния и с другой – в результате процессов поглощения. Тогда коэффициент ослабления можно представить в виде суммы двух коэффициентов:

m/r = s/r + t/r , (2.17)

где s/r – массовый коэффициент рассеяния, учитывающий потери энергии за счет когерентного и некогерентного рассеяния; t/r – массовый коэффициент поглощения, учитывающий главным образом потери энергии за счет фотоэлектрического поглощения и возбуждения характеристических лучей.

Вклад поглощения и рассеяния в ослабление рентгеновского пучка неравнозначен. Для рентгеновских лучей, используемых в структурном анализе, некогерентным рассеянием можно пренебречь. Если учесть при этом, что величина когерентного рассеяния также невелика и примерно постоянна для всех элементов, то можно считать, что

m/r » t/r , (2.18)

т.е. что ослабление рентгеновского пучка определяется в основном поглощением. В связи с этим для массового коэффициента ослабления будут справедливы закономерности, рассмотренные нами выше для массового коэффициента поглощения при фотоэффекте.

Выбор излучения . Характер зависимости коэффициента поглощения (ослабления) от длины волны определяет в известной мере выбор излучения при структурных исследованиях. Сильное поглощение в кристалле значительно уменьшает интенсивность дифракционных пятен на рентгенограмме. Кроме того, возникающая при сильном поглощении флюоресценция засвечивает пленку. Поэтому работать при длинах волн, несколько меньших границы поглощения исследуемого вещества, невыгодно. Это можно легко понять из схемы рис. 2.6.

1. Если излучать будет анод, состоящий из тех же атомов, как и исследуемое вещество, то мы получим, что граница поглощения, например

Рис.2.6. Изменение интенсивности рентгеновского излучения при прохождении через вещество.

K-край поглощения кристалла (рис.2.6, кривая 1), будет несколько сдвинут относительно его характеристического излучения в коротковолновую область спектра. Этот сдвиг – порядка 0,01–0,02 Å относительно линий края линейчатого спектра. Он всегда имеет место в спектральном положении излучения и поглощения одного и того же элемента. Поскольку скачок поглощения соответствует энергии, которую надо затратить, чтобы удалить электрон с уровня за пределы атома, самая жесткая линия K-серии соответствует переходу на K-уровень с наиболее далекого уровня атома. Понятно, что энергия E, необходимая для вырывания электрона за пределы атома, всегда несколько больше той, которая освобождается при переходе электрона с наиболее удаленного уровня на тот же K-уровень. Из рис. 2.6 (кривая 1) следует, что, если анод и исследуемый кристалл – одно вещество, то наиболее интенсивное характеристическое излучение, особенно линии K a и K b , лежит в области слабого поглощения кристалла по отношению к границе поглощения. Поэтому поглощение такого излучения кристаллом мало, а флюоресценция слаба.

2. Если мы возьмем анод, атомный номер которого Z на 1 больше исследуемого кристалла, то излучение этого анода, согласно закону Мозли, несколько сместится в коротковолновую область и расположится относительно границы поглощения того же исследуемого вещества так, как это показано на рис. 2.6, кривая 2. Здесь поглощается K b – линия, за счет чего появляется флюоресценция, которая может мешать при съемке.

3. Если разница в атомных номерах составляет 2–3 единицы Z , то спектр излучения такого анода еще дальше сместится в коротковолновую область (рис. 2.6, кривая 3). Этот случай еще более невыгоден, так как, во-первых, рентгеновские излучения сильно ослаблено и, во-вторых, сильная флюоресценция засвечивает пленку при съемке.

Наиболее подходящим, таким образом, является анод, характеристическое излучение которого лежит в области слабого поглощения исследуемым образцом.

Фильтры . Рассмотренный нами эффект селективного поглощения широко используется для ослабления коротковолновой части спектра. Для этого на пути лучей ставится фольга толщиной несколько сотых мм. Фольга изготовлена из вещества, у которого порядковый номер на 1–2 единицы меньше, чем Z анода. В этом случае согласнорис.2.6 (кривая 2) край полосы поглощения фольги лежит между K a - и K b - линиями излучения и K b -линия, а также сплошной спектр, окажутся сильно ослабленными. Ослабление K b по сравнению с K a -излучением порядка 600. Таким образом, мы отфильтровали b-излучение от a-излучения, которое почти не изменяется по интенсивности. Фильтром может служить фольга, изготовленная из материала, порядковый номер которого на 1–2 единицы меньше Z анода. Например, при работе на молибденовом излучении (Z = 42), фильтром могут служить цирконий (Z = 40) и ниобий (Z = 41). В ряду Mn (Z = 25), Fe (Z = 26), Co (Z = 27) каждый из предшествующих элементов может служить фильтром для последующего.

Понятно, что фильтр должен быть расположен вне камеры, в которой производится съемка кристалла, чтобы не было засветки пленки лучами флюоресценции.

Для получения количественной информации о субструктуре нанокристаллических сплавов большие возможности имеет метод малоуглового рассеяния рентгеновских лучей (МУР). Этот метод позволяет определить размеры и форму субмикроскопических частиц размеры, которых лежат в пределах от 10 до 1000 Å. К преимуществам метода МУР следует отнести то, что в области малых углов можно не учитывать комптоновское рассеяние, а также рассеяние вследствие тепловых колебаний и статических смещений, которые ничтожно малы именно в области малых углов. Следует отметить, что в создании дифракционной картины принимают участие лишь электроны (рассеяния на ядрах пренебрежимо мало), поэтому по дифракционной картине можно судить о пространственном распределении электронной плотности, причем избыток и недостаток электронов по отношению к средней по образцу электронной плотности действуют эквивалентно .

Согласно классической теории амплитуда рассеянная отдельной сферической частицей равна

где – угол дифракции, модуль вектора дифракции равен ; – функция распределения электронной плотности в частице; – радиус частицы.

Наиболее легко может быть вычислена интенсивность, рассеянная однородной сферической частицей радиуса имеющей электронную плотность .

– функция формы частицы, а ее квадрат – фактор рассеяния сферической частицы; – число электронов в частице, – интенсивность, рассеиваемая электроном (следует заметить, что в области нулевого узла обратной решетки угловой зависимостью функции можно пренебречь, т.е. ).

Как показано в , Гинье предложил упрощенный метод расчета интенсивности, который заключается в том, что при малом размере частицы и при , имеем . Поэтому при разложении в ряд, можно ограничиться первыми двумя членами:

Величина называется электронным радиусом инерции (радиус гирации) частицы и представляет собой среднеквадратичный размер частицы (неоднородности). Легко показать, что для однородной сферической частицы радиуса имеющей электронную плотность , радиус гирации выражается через ее радиус следующим образом: , а величина равна – числу электронов в частице или точнее – разности между числом электронов в частице и числом электронов в равном объеме окружающей частицу среды ( – объем неоднородности, и – электронные плотности вещества неоднородности и матрицы соответственно). Исходя из выше сказанного, получим:

В случае монодисперсной разряженной системы, когда можно пренебречь интерференцией лучей, рассеянных различными частицами, профиль интенсивности рассеяния нулевого узла обратной решетки системой, содержащей частиц в облучаемом объеме, можно описать следующей формулой:


Эта формула (2.7) была получена Гинье и названа его именем.

Величина находится по формуле:

где – интенсивность первичного пучка; и – заряд и масса электрона соответственно; – скорость света в вакууме; – расстояние от образца до точки наблюдения.

Как показано на рис. 4 зависимости интенсивности от угла, вычисленные по формулам (2.2) и (2.7) для сферически однородной частицы радиуса хорошо совпадают при .

Рис. 4. Рассеяние сферической частицей радиуса .

Прологарифмируем формулу Гинье:

Таким образом, из выражения (2.8) следует, что в случае представлении картины МУР от монодисперсной системы частиц в координатах при достаточно малых получается линейная зависимость, по углу наклона которой можно найти радиус гирации частиц.

В случае полидисперсной системы, когда частицы имеют разные размеры, зависимость уже не будет линейной. Однако, как показывают исследования при достаточной монодисперсности каждого сорта частиц и отсутствия межчастичной интерференции на картине МУР в координатах можно выделить несколько линейных областей. Разделив эти области можно найти соответствующие им радиусы гирации частиц разного сорта (рис. 5).

Не смотря на выше перечисленные достоинства при получении структурной информации, метод МУР обладает рядом существенных недостатков .

Значительное искажение в картину МУР может внести двойное брэгговское отражение (ДБО), которое возникает при прохождении рентгеновских лучей через кристаллические материалы. Схема, объясняющая возникновение ДБО, приведена на рис. 6. Пусть первичный пучок рентгеновских лучей падает на мозаичный кристалл, состоящий из слегка разориентированных блоков. Если, например, блок 1 находится к s 0 под брегговским углом υ , то от него отразится луч s 1 , который на своем пути может встретить блок 2, находящийся по отношению к s 1 в отражающем положении, поэтому от блока 2 отразится луч s 2 . Если нормали n 1 иn 2 к отражающим плоскостям обоих блоков расположены в одной плоскости (например, в плоскости чертежа), то луч s 2 попадет, как и луч s 1 , в центральное пятно P 0 рентгенограммы. Блок 2 отражает и в том случае, когда он повернут вокруг s 1 так, что нормаль n 2 продолжает составлять угол (π/2)-υ с s 1 , но уже не лежит в одной плоскости с n 1 . Тогда дважды отраженный луч выйдет из плоскости чертежа и переместится по образующей конуса, осью которого является s 1 . В результате на фотопленке около центрального пятна P 0 появится короткий штрих, являющийся наложением следов дважды отраженных лучей.

Рис 6. Схема, поясняющая возникновение двойного брегговского отражения.

Штрихи ДБО ориентированы перпендикулярно к линии P 0 P , соединяющей центральное пятно P 0 с брегговским максимумом P; их длина тем больше, чем больше угол мозаичности кристалла.

Избавиться от ДБО при исследовании МУР монокристаллом несложно: достаточно ориентировать последний по отношению к первичному пучку так, чтобы ни одна система плоскостей (hkl ) не находилась в отражающем положении.

При исследовании поликристаллов исключить ДБО практически нельзя, так как всегда найдутся кристаллиты, отражающие первичный пучок. ДБО будет отсутствовать только при использовании излучений с длиной волны λ > d max (d max – наибольшее межплоскостное расстояние для данного кристаллита). Так, например, при исследовании меди следует применять Al K α – излучение, что представляет значительные экспериментальные трудности.

При сравнительно больших углах рассеяния (ε > 10") МУР нельзя отделить от эффекта ДБО. Но при ε < 2" интенсивность МУР на порядок выше интенсивности ДБО. Отделение истинного МУР от ДБО в этом случае основано на различном характере зависимостей МУР и ДБО от используемой длины волны. Для этого получают кривые интенсивности I (ε/λ) на двух излучениях, например, CrK α и CuK α . Если обе кривые совпадают, то это свидетельствует, что все рассеяние обусловлено эффектом МУР. Если кривые разойдутся так, что в каждой точке ε/λ отношение интенсивностей окажется постоянным, то все рассеяние обусловлено ДБО.

Когда присутствуют оба эффекта, то

I 1 = I 1 ДБО + I 1 ДБО; I 2 = I 2 ДБО + I 2 ДБО

Б. Я. Пинесом и др. показано, что поскольку при ε 1 /λ 1 = ε 2 /λ 2

I 1 МУР /I 2 МУР = 1 и I 1 ДБО /I 2 ДБО = К,

I 2 ДБО = (I 1 – I 2)ε 1 /λ 1 = ε 2 /λ 2 (К – 1),

где постоянную К вычисляют теоретически для каждого конкретного случая.

По эффекту ДБО можно определить средние углы разориентации блоков внутри кристаллитов или монокристаллах .

где и – экспериментальная и исправленная интенсивности МУР, – вектор дифракции, – угол рассеяния, – длина волны; – постоянный коэффициент; – переменная интегрирования . Следует также отметить, что формулу Гинье можно обосновано применять лишь в случаях предусматривающих отсутствие интерференции лучей рассеянных различными частицами, простоту форм и электронную однородность рассеивающих частиц (шар, эллипс, пластинка при ), в противном случае зависимость не будет содержать линейных областей, и обработка картин МУР существенно усложняется .

2.2. Анализ нанокомпозитной структуры методами рентгеновской дифракции на большие и малые углы.

Среди косвенных методов определения размера частиц основное место принадлежит дифракционному методу. Одновременно этот метод является наиболее простым и доступным, так как рентгеновское иссле­дование структуры распространено повсеместно и хорошо обеспечено соответствующей аппаратурой. С помощью дифракционного метода наряду с фазовым составом, параметрами кристаллической решётки, статическими и динамическими смещениями атомов из положения равновесия и микронапряжениями в решётке можно определить размер зёрен (кристаллитов).

Определение дифракционным методом размера зёрен, частиц (или областей когерентного рассеяния) основано на изменении формы профиля дифракционного отражения при уменьшении размера зёрен. При обсуждении дифракции под когерентным рассеянием понимается рассеяние дифрагирующего излучения, при котором обеспечивается выполнение условий интерференции. В общем случае размер отдельного зерна может не совпадать с размером области когерентного рассеяния.

В дифракционных экспериментах изучение дефектов структуры проводят по уширению дифракционных отражений от поликристалла или порошка. Однако при практическом применении этого метода для определения размера зёрен зачастую сравнивают ширину дифракционных отражений от вещества с крупным размером зёрен (частиц) и от того же вещества в наносостоянии. Такое определение уширения и последующая оценка среднего размера частиц не всегда верны и могут давать очень большую (несколько сотен процентов) ошибку. Дело в том, что уширение следует определять относительно дифракционных отражений от бесконечно большого кристалла. Реально это означает, что сравнивать измеренную ширину дифракционных отражений следует с инструментальной шириной, т. е. с шириной функции разрешения дифрактометра, заранее определенной в специальном дифракционном эксперименте. Кроме того, точное определение ширины дифракционных отражений возможно только путем теоретического восстановления формы экспериментального отражения. Весьма существенно, что могут быть и другие, помимо малого размера кристаллитов, физические причины уширения дифракционных отражений. Поэтому важно не только определить величину уширения, но и выделить вклад в него, обусловленный именно малым размером частиц.

Поскольку дифракционный метод определения размера частиц яв­ляется самым распространенным и доступным, рассмотрим особенно­сти его применения более подробно .

Ширина дифракционной линии может зависеть от ряда причин. К ним относятся малые размеры кристаллитов, наличие разного рода дефектов, а так же неоднородность образцов по химическому составу. Уширение, обусловленное микродеформациями и хаотически распределенными дислокациями, зависит от порядка отражения и про­порционально tg υ. Величина уширения, вызванного негомогенностью Δх ; (или Δу), пропорциональна (sin 2 υ)/cos υ. В случае нанокристаллических веществ наиболее интересно уширение, связанное с малым размером D кристаллитов (D < 150 нм), причем в этом случае величина уширения пропорциональна seс υ. Рассмотрим вывод выражения, учитываю­щего уширение дифракционного отражения, обусловленное конечным размером частиц поликристаллического вещества.

Пусть v - усреднённая по объёму высота колонки плоскостей когерентного рассеяния, - усреднённый по объёму диаметр ча­стиц. Для частиц со сферической формой интегрирование приводит к выражению

Введем в рассмотрение вектор рассеяния s = 2sin υ / λ, где λ - длина волны излучения. Математически его дифференциал (или неопределенность с физической точки зрения, поскольку в конечном кристалле волновой вектор становится плохим квантовым числом) равен

ds= (2.12)

В этом выражении величина d(2υ) является интегральной шириной дифракционного отражения (линии), выраженной в углах 2υ и измеряемой в радианах. Интегральная ширина определяется как интегральная интенсивность линии, деленная на её высоту, и не зависит от формы дифракционной линии. Это позволяет использовать интегральную ширину для анализа дифракционного рентгеновского, синхротронного или нейтронографического эксперимента, выполненного на разных установках с отличающейся функцией разрешения дифрактометра и в разных интервалах углов.

Неопределенность вектора рассеяния ds обратно пропорциональна усреднённой по объёму высоте колонки плоскостей когерентного рассеяния v, поэтому произведение этих величин равно единице, v·ds = 1. Из этого соотношения ясно, что при бесконечной высоте колонки (т. е. при бесконечно большом размере кристаллитов) неопределенность ds равна нулю. Если же высота колонки мала и стремится к нулю, то неопределенность ds волнового вектора и, соответственно, ширина d (2υ) дифракционной линии становятся очень большими. Поскольку v = 1/ds, то для дифракционной линии произвольной формы размер зерна (в предположении, что все зёрна являются сферическими) с учётом (2.11) и (2.12) можно определить как

где d (2 ) - интегральная ширина дифракционной линии. На практике часто пользуются не интегральной шириной, а полной шириной дифракционной линии на половине высоты FWHM (full width at half maximum). Связь между интегральной шириной линии и FWHM зависит от формы экспериментальной дифракционной линии и в каждом конкретном случае должна определяться специально. Для линии в виде прямоугольника и треугольника интегральная ширина линии в точности равна FWHM. Для функций Лоренца и Гаусса связь описывается выражениями: d (2 ) L ≈ 1,6∙FWHM L (2 ) и d (2 ) G ≈ 1,1∙FWHM G (2 ), а для псевдо-функции Фойгта, которая будет рассмотрена ниже, эта связь более сложная и зависит от соотношения вкладов Гаусса и Лоренца. Для дифракционных линий в малых углах соотношение между интегральным уширением и FWHM можно принять равным d(2 ) ≈ 1,47 ∙ FWHM(2 ); подставляя это соотношение в (2.13), получим формулу Дебая:

В общем случае, когда частицы вещества имеют произвольную форму, средний размер частиц можно найти по формуле Дебая-Шеррера:

где - постоянная Шеррера, значение которой зависит от формы частицы (кристаллита, домена) и от индексов (hkl ) дифракционного отражения.

В реальном эксперименте из-за конечного разрешения дифрактометра линия уширяется и не может быть меньше, чем инструментальная ширина линии. Иначе говоря, в формуле (2.15) следует использовать не ширину FWHM(2υ) отражения, а её уширение β относительно инструментальной ширины. Поэтому в дифракционном эксперименте средний размер частиц определяют по методу Уоррена:

где уширение дифракционного отражения. Заметим, что .

Полную ширину на половине высоты FWHM R или инструментальную ширину дифрактометра можно измерить на хорошо отожжённом и полностью гомогенном веществе (порошке) с частицами размером 1-10 мкм. Иначе говоря, за эталон сравнения нужно брать отражение без каких-либо дополнительных, кроме инструментального, уширений. Если функция разрешения дифрактометра описывается функцией Гаусса, a υ R - её второй момент, то FWHM R =2.355υ R .

Дифракционные отражения описывают функциями Гаусса g(υ) и Лоренца l(υ):

, (2.17)

или их суперпозицией V l () + (1-c) g() - псевдо-функцией Фойгта:

где относительный вклад функции Лоренца в общую интенсивность отражения; параметры распределений Лоренца и Гаусса; А - нормирующий множитель.

Рассмотрим особенности распределений Гаусса и Лоренца, которые необходимы далее. Для распределения Гаусса параметр является вторым моментом функции. Второй момент , выраженный в углах , связан с полной шириной на половине высоты, измеренной в углах 2 , известным соотношением () = FWHM(2 )/(2·2,355). Это соотношение легко получить непосредственно из распределения Гаусса. На рис. 6 а показано распределение Гаусса, описываемое функцией

где - второй момент функции Гаусса, т. е. значение аргумента, соответствующее точке перегиба функции, когда . Найдем величину , при которой функция (2.20) принимает значение, равное половине её высоты. В этом случае и , откуда . Как видно на рисунке 6 а, полная ширина функции Гаусса на половине высоты равна .

Для распределения Лоренца параметр совпадает с полушириной этой функции на половине высоты. Пусть функция Лоренца,

принимает значение, равное половине высоты, т. е. (рис. 6 б). Значение аргумента, которое соответствует такому значению функции, найдем из уравнения

откуда и .Таким образом, действительно для функции Лоренца . Второй момент функции Лоренца, т. е. значение аргумента, соответствующего точке перегиба функции, можно найти из условия . Расчет показывает, что второй момент функции Лоренца равен .

Псевдо-функция Фойгта (2.19) обеспечивает наилучшее по сравнению с функциями Гаусса и Лоренца описание экспериментального дифракционного отражения.

Учитывая это, функцию разрешения дифрактометра представим как псевдо-функцию Фойгта; для упрощения записи примем, что в (2.19) А=1. Тогда

Поскольку функция разрешения есть суперпозиция функций Лоренца и Гаусса, то в нулевом приближении ее ширину можно аппроксимировать выражением

Если , то . Пусть некоторая эффективная функция Гаусса , площадь которой совпадает с площадью псевдо-функции Фойгта, имеет ширину , равную , тогда второй момент такой функции . Таким образом псевдо-функция разрешения Фойгта и эффективная функция Гаусса эквивалентны по полуширине. Это позволяет, в нулевом приближении, заменить функцию (2.22) функцией

где при условии, что .

Экспериментальная функция , описывающая форму произвольного дифракционного отражения, является сверткой функции распределения и функции разрешения (2.24), т. е.

Из (2.25) ясно, что второй момент экспериментальной функции . (2.26)

Уширение β дифракционного отражения выражается через полную ширину отражения на половине высоты как .Если вторые моменты и полная ширина выражены в одинаковых единицах (все в углах или все в углах 2 ), то и уширение отражения (hkl) равно

Как уже отмечалось, уширения, вызванные малым размером зёрен, деформациями и негомогенностью, пропорциональны sec , tg и (sin ) 2 /cos , соответственно, поэтому благодаря разной угловой зависимости можно разделить три разных вида уширения. При этом следует иметь в виду, что размер областей когерентного рассеяния, определяемый из размерного уширения, может соответствовать размеру индивидуальных частиц (кристаллитов), но может также отражать субдоменную структуру и характеризовать среднее расстояние между дефектами упаковки или эффективный размер мозаичных блоков и т. д. Кроме того, нужно учитывать, что форма дифракционного отражения зависит не только от размера, но и от формы наночастиц. В неоднофазных наноматериалах заметное искажение формы наблюдаемых дифракционных линий может быть следствием суперпозиции дифракционных отражений нескольких фаз.

Рассмотрим, как можно разделить уширение, обусловленное несколькими разными факторами, на примере наноструктурированных карбидных твёрдых растворов системы Zr C – Nb C. При рентгеновском исследовании этих твёрдых растворов было обнаружено, что дифракционные отражения на рентгенограммах образцов (ZrС) 0.46 (NbС) 0,54 сильно уширены. Известно, что эти твёрдые растворы имеют склонность к распаду в твёрдом состоянии, однако по рентгеновским данным образцы были однофазны. Для выяснения причины уширения отражений (негомогенность, малый размер зёрен или деформации) был выполнен количественный анализ профиля дифракционных отражений с использованием псевдо-функции Фойгта (2.19). Проведенный анализ показал, что ширина всех дифракционных отражений существенно превышает ширину функции разрешения дифрактометра.

В кубической кристаллической решётке кристаллиты имеют размеры одного порядка в трех перпендикулярных направлениях. В этом случае для кристаллов с кубической симметрией коэффициент отражений с различными кристаллографическими индексами Миллера (hkl) кубической кристаллической решётки, можно вычислить по формуле

Деформационные искажения и обусловленные ими неоднородные смещения атомов из узлов решётки могут возникать при хаотическом размещении дислокаций в объёме образца. В этом случае смещения атомов определяются суперпозицией смещений от каждой дислокации, что можно рассматривать как локальное изменение межплоскостных расстояний. Иначе говоря, расстояние между плоскостями непрерывно меняется от (d 0 -Δd) до (d 0 +Δd) (d 0 и Δd - межплоскостное расстояние в идеальном кристалле и среднее по величине изменение расстояния между плоскостями (hkl) в объёме V кристалла, соответственно). В этом случае величина ε = Δd / d 0 есть микродеформация решётки, которая характеризует усреднённую по кристаллу величину однородной деформации. Дифракционный максимум от областей кристалла с измененным межплоскостным расстоянием возникает под углом , несколько отличающимся от угла о для идеального кристалла, и в результате этого происходит уширение отражения. Формулу для уширения линии, связанного с микродеформацией решётки, легко вывести, продифференцировав уравнение Вульфа-Брегга: ; .Уширение линии в одну сторону от максимума линии, соответствующего межплоскостному расстоянию d, при изменении межплоскостного расстояния на +Δd равно , а при изменении на - (рис. 6 а) функции разрешения рентгеновского дифрактометра определяли в специальных экспериментах на отожжённых крупнозернистых соединениях, не имеющих области гомогенности (большой размер зёрен, отсутствие деформационных искажений и однородность состава образцов исключали уширение отражений): монокристалле гексагонального карбида кремния 6Н-SiC и на стехиометрическом карбиде вольфрама WС. Сопоставление найденных величин; в - зависимость экспериментального уширения дифракционных отражений образца (ZrС) 0.46 (NbС) 0,54 от

Guinier A., Fournet G. Small-angle scattering of x-rays. New York-London: J. Wiley and Sons. Chapman and Hall Ltd. 1955.

Игнатенко П. И., Иваницын Н. П. Рентгенография реальных кристаллов. - Донецк: ДГУ, 2000. – 328 с.

Русаков, А. А. Рентгенография металлов - М. : Атомиздат, 1977. - 479 с.

Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. – М.: ФИЗМАТЛИТ, 2005. – 416 с.

При работе на повышенных напряжениях , как и при рентгенографии на обычных напряжениях, необходимо использовать все известные способы борьбы с рассеянным рентгеновским излучением.

Количество рассеянных рентгеновых лучей уменьшается с уменьшением поля облучения, что достигается ограничением в поперечнике рабочего пучка рентгеновых лучей. С уменьшением поля облучения, в свою очередь, улучшается разрешающая способность рентгеновского изображения, т. е. уменьшается минимальный размер определяемой глазом детали. Для ограничения в поперечнике рабочего пучка рентгеновых лучей далеко еще недостаточно используются сменные диафрагмы или тубусы.

Для уменьшения количества рассеянных рентгеновых лучей следует применять, где это возможно, компрессию. При компрессии уменьшается толщина исследуемого объекта и, само собой разумеется, становится меньше центров образования рассеянного рентгеновского излучения. Для компрессии используются специальные компрессионные пояса, которые входят в комплект рентгенодиагностических аппаратов, но они недостаточно часто используются.

Количество рассеянного излучения уменьшается с увеличением расстояния между рентгеновской трубкой и пленкой. При увеличении этого расстояния и соответствующем диафрагмировании получается менее расходящийся в стороны рабочий пучок рентгеновых лучей. При увеличении расстояния между рентгеновской трубкой и пленкой необходимо уменьшать поле облучения до минимально возможных размеров. При этом не должна «срезаться» исследуемая область.

С этой целью в последних конструкциях рентгенодиагностических аппаратов предусмотрен пирамидальный тубус со световым центратором. С его помощью достигается возможность не только ограничить снимаемый участок для повышения качества рентгеновского изображения, но и исключается излишнее облучение тех частей тела человека, которые не подлежат рентгенографии.

Для уменьшения количества рассеянных рентгеновых лучей исследуемую деталь объекта следует максимально приближать к рентгеновской пленке. Это не относится к рентгенографии с непосредственным увеличением рентгеновского изображения. При рентгенографии с непосредственным увеличением изображения рассеянное изучение практически не достигает рентгеновской пленки.

Мешочки с песком, используемые для фиксации исследуемого объекта, надо располагать дальше от кассеты, так как песок является хорошей средой для образования рассеянного рентгеновского излучения.

При рентгенографии , производимой на столе без использования отсеивающей решетки, под кассету или конверт с пленкой следует подкладывать лист просвинцованной резины возможно больших размеров.
Для поглощения рассеянных рентгеновых лучей применяются отсеивающие рентгеновские решетки, которые поглощают эти лучи при выходе их из тела человека.

Освоение техники производства рентгеновских снимков при повышенных напряжениях на рентгеновской трубке является именно тем путем, который приближает нас к идеальному рентгеновскому снимку, т. е. такому снимку, на котором хорошо видны в деталях и костная, и мягкая ткани.

EX = EX0 cos(wt – k0 z + j0) EY = EY0 cos(wt – k0 z + j0)

BX = BX0 cos(wt – k0 z + j0) BY = BY0 cos(wt – k0 z + j0)

где t – время, w – частота электромагнитного излучения, k0 – волновое число, j0 – начальная фаза. Волновое число представляет собой модуль волнового вектора и обратно пропорционально длине волны k0 = 2π/l. Численное значение начальной фазы зависит от выбора начального момента времени t0=0. Величины EX0, EY0, BX0, BY0 являются амплитудами соответствующих компонент (3.16) электрического и магнитного полей волны.

Таким образом, все компоненты (3.16) плоской электромагнитной волны описываются элементарными гармоническими функциями вида:

Y = A0 cos(wt – kz+ j0) (3.17)

Рассмотрим рассеяние плоской монохроматической рентгеновской волны на множестве атомов исследуемого образца (на молекуле, кристалле конечных размеров и т.п.). Взаимодействие электромагнитной волны с электронами атомов приводит к генерированию вторичных (рассеянных) электромагнитных волн. Согласно классической электродинамике, рассеяние на отдельном электроне происходит в телесный угол 4p и обладает существенной анизотропией. Если первичное рентгеновское излучение не поляризовано, то плотность потока рассеянного излучение волны описывается следующей функцией

(3.18)

где I0 – плотность потока первичного излучения, R – расстояние от точки рассеяния до места регистрации рассеянного излучения, q – полярный угла рассеяния, который отсчитывается от направления волнового вектора плоской первичной волны k0 (см. рис.3.6). Параметр

» 2,818×10-6 нм(3. 19)

исторически называется классическим радиусом электрона.

Рис.3.6. Полярный угол рассеяния q плоской первичной волны на маленьком исследуемом образце Cr.

Определенный угол q задает в пространстве коническую поверхность. Коррелированное движение электронов внутри атома усложняет анизотропию рассеянного излучения. Амплитуда рентгеновской волны, рассеянной атомом выражается с помощью функцией длины волны и полярного угла f(q, l), которая называется атомной амплитудой.

Таким образом, угловое распределение интенсивности рентгеновской волны, рассеянной атомом, выражается формулой

(3. 20)

и обладает аксиальной симметрией относительно направления волнового вектора первичной волны k0. Квадрат атомной амплитуды f 2 принято называть атомным фактором.

Как правило, в экспериментальных установках для рентгеноструктурных и рентгеноспектральных исследований детектор рассеянных рентгеновских лучей располагается на расстоянии R значительно превышающем размеры рассеивающего образца. В таких случаях входное окно детектора вырезает из поверхности постоянной фазы рассеянной волны элемент, который, можно с высокой точностью полагать плоским.

Рис.3.8. Геометрическая схема рассеяния рентгеновских лучей на атомах образца 1 в условиях дифракции Фраунгофера.

2 – детектор рентгеновских лучей, k0 – волновой вектор первичной рентгеновской волны, штриховые стрелки изображают потоки первичных рентгеновских лучей, штрих-пунктирные – потоки рассеянных рентгеновских лучей. Кружками обозначены атомы исследуемого образца.

Кроме того, расстояния между соседними атомами облучаемого образца на несколько порядков меньше диаметра входного окна детектора.

Следовательно, в данной геометрии регистрации детектор воспринимает поток плоских волн, рассеянных отдельными атомами, причем волновые векторы всех рассеянных волн можно с высокой точностью полагать параллельными.

Вышеперечисленные особенности рассеяния рентгеновских лучей и их регистрации исторически получили название дифракции Фраунгофера. Эта приближенное описание процесса рассеяния рентгеновских лучей на атомных структурах позволяет рассчитать дифракционную картину (угловое распределение интенсивности рассеянного излучения) с высокой точностью. Доказательством служит то, что приближение дифракции Фраунгофера лежит в основе рентгеноструктурных методов исследования вещества, которые позволяют определять параметры элементарных ячейках кристаллов вычислять координаты атомов, устанавливать наличие различных фаз в образце, определять характеристики дефектности кристаллов и т.д.

Рассмотрим кристаллический образец небольшого размера, содержащий конечное количество N атомов с определенным химическим номером.

Введем прямоугольную систему координат. Ее начало совместим с центром одного из атомов. Положение каждого центра атома (центра рассеяния) задается тремя координатами. xj, yj, zj, где j – порядковый номер атома.

Пусть исследуемый образец подвергается воздействию плоской первичной рентгеновской волны с волновым вектором k0, направленным параллельно оси Oz выбранной системы координат. При этом первичная волна представляется функцией вида (3.17).

Рассеяние рентгеновских лучей на атомах может быть как неупругим, так и упругим. Упругое рассеяние происходит без изменения длины волны рентгеновского излучения. При неупругом рассеянии длина волны излучения увеличивается, а вторичные волны являются некогерентными. Далее рассматривается лишь упругое рассеяние рентгеновских лучей на атомах.

Обозначим L – расстояние от начала координат до детектора. Положим, что выполняются условия дифракции Фраунгофера. Это, в частности, означает, что максимальное расстояние между атомами облучаемого образца на несколько порядков меньше, чем расстояние L. При этом чувствительный элемент детектора подвергается воздействию плоских волн с параллельными волновыми векторами k. Модули всех векторов равны модулю волнового вектора k0 = 2π/l.

Каждая плоская волна вызывает гармоническое колебание с частотой

(3.21)

Если первичная волна удовлетворительно аппроксимируется плоской гармонической, то все вторичные (рассеянные атомами) волны являются когерентными. Разность фаз рассеянных волн зависит от разности хода этих волн.

Проведем из начала координат в точку расположения входного окна детектора вспомогательную ось Or. Тогда каждую вторичную, распространяющуюся в направлении этой оси можно описать функцией

y = A1 fcos(wt– kr+ j0) (3.22)

где амплитуда A1 зависит от амплитуды первичной волны A0, а начальная фаза j0 одинакова для всех вторичных волн.

Вторичная волна, испущенная атомом, находящимся в начале координат, создаст колебание чувствительного элемента детектора, описываемое функцией

A1 f(q) cos(wt – kL+ j0) (3.23)

Другие вторичные волны создадут колебания с той же частотой (3.21), но отличающиеся от функции (3.23) сдвигом фазы, который в свою очередь, зависит от разности хода вторичных волн.

Для системы плоских когерентных монохроматических волн, движущиеся в определенном направлении, относительный сдвиг фаз Dj прямо пропорционален разности хода DL

Dj = k×DL(3.24)

где k – волновое число

k = 2π/l. (3.25)

Для расчета разности хода вторичных волн (3.23) сначала предположим, что облучаемый образец представляет собой одномерную цепочку атомов, расположенных вдоль оси координат Ox (см. рис.3.9). Координаты атомов заданы числами xi, (j = 0, 1, …, N–1), где x0 = 0. Поверхность постоянной фазы первичной плоской волны параллельна цепочке атомов, а волновой вектор k0 – перпендикулярен ей.

Будем рассчитывать плоскую дифракционную картину, т.е. угловое распределение интенсивности рассеянного излучения в плоскости, изображенной на рис.3.9. В этом случае, ориентация месторасположения детектора (иначе говоря, направление вспомогательной оси Or) задается углом рассеяния, который отсчитывается от оси Oz, т.е. от направления волнового вектора k0 первичной волны.

Рис.3.9. Геометрическая схема дифракции Фраунгофера в заданной плоскости на прямолинейной цепочке атомов


Без потери общности рассуждений можно полагать, что все атомы расположены на правой полуоси Ox. (кроме атома находящегося в центре координат).

Так как выполнены условия дифракции Фраунгофера, то волновые векторы всех волн, рассеянных атомами, приходят во входное окно детектора с параллельными волновыми векторами k.

Из рис.3.9 следует, что волна, испущенная атомом с координатой xi проходит расстояние до детектора L – xisin(q). Следовательно, колебание чувствительного элемента детектора, вызванного вторичной волной, испущенной атомом с координатой xi, описывается функцией

A1 f(q) cos(wt – k(L– xj sin(q)) + j0) (3.26)

Аналогичный вид имеют остальные рассеянные волны, попадающие в окно детектора, находящегося в заданном положении.

Величина начальной фазы j0 определяется, в сущности, моментом начала отсчета времени. Ничто не мешает выбрать величину j0 равным –kL. Тогда движение чувствительного элемента детектора, представится суммой

(3.27)

Это означает, что разность хода волн, рассеянных атомами с координатами xi и x0 составляет –xisin(q), а соответствующая разность фаз равна kxisin(q).

Частота w колебаний электромагнитных волн рентгеновского диапазона очень велика. Для рентгеновских лучей с длиной волны l = Å частота w по порядку величины составляет ~1019 сек-1. Современная аппаратура не может измерить мгновенные значения напряженностей электрического и магнитного полей (1) при столь быстрых изменениях полей, поэтому все детекторы рентгеновского излучения регистрируют среднее значение квадрата амплитуды электромагнитных колебаний.

В отличие от многих, распространенных в то время спекуляций о строении атома модель Томсона базировалась на физических фактах, которые не только оправдывали модель, но и давали определенные указания на число корпускул в атоме. Первым таким фактом является рассеяние рентгеновских лучей, или, как говорил Томсон, возникновение вторичных рентгеновских лучей. Томсон рассматривает рентгеновское излучение как электромагнитные пульсации. Когда такие пульсации падают на атомы, содержащие электроны, то электроны, приходя в ускоренное движение, излучают как это и описывает формула Лармора. Количество энергии, излучаемое в единицу времени электронами, находящимися в единице объема, будет

где N - число электронов (корпускул) в единице объема. С другой стороны, ускорение электрона


где Е р - напряженность поля первичного излучения. Следовательно, интенсивность рассеянного излучения


Так как интенсивность падающего излучения согласно теореме Пойнтинга равна


то отношение рассеянной энергии к первичной


Чарлз Гловер Баркла , получивший в 1917 г. Нобелевскую премию за открытие характеристических рентгеновских лучей, был в 1899-1902 гг. "студентом-исследователем" (аспирантом) у Томсона в Кембридже, и здесь он заинтересовался рентгеновскими лучами. В 1902 г. он был преподавателем университетского колледжа в Ливерпуле, и здесь в 1904 г. он, исследуя вторичное рентгеновское излучение, обнаружил его поляризацию, которая вполне совпадала с теоретическими предсказаниями Томсона. В окончательном опыте 1906 г. Баркла заставлял первичный пучок рассеиваться атомами углерода. Рассеянный пучок падал перпендикулярно первичному пучку и здесь вновь рассеивался углеродом. Этот третичный пучок был полностью поляризован.

Изучая рассеяние рентгеновских лучей от легких атомов, Баркла в 1904 г. нашел, что характер вторичных лучей таков же, как и первичных. Для отношения интенсивности вторичного излучения к первичному он нашел величину, не зависящую от первичного излучения, пропорциональную плотности вещества:

Из формулы Томсона



Но плотность = n A / L , где А - атомный вес атома, n - число атомов в 1 см 3 , L - число Авогадро. Следовательно,


Если положить число корпускул в атоме равным Z, то N = nZ и



Если подставить к правой части этого выражения значения e, m, L, то найдем К. В 1906 г., когда числа e и m не были точно известны, Томсон нашел из измерений Баркла для воздуха, что Z = A , т. е. число корпускул в атоме равно атомному весу. Значение K, полученное для легких атомов Баркла еще в 1904 г., было K = 0,2 . Но в 1911 г. Баркла, воспользовавшись уточненными данными Бухерера для e / m , значениями e и L, полученными Резерфордом и Гейгером , получил K = 0,4 , и следовательно, Z = 1 / 2 . Как оказалось несколько позже, это соотношение хорошо выполняется в области легких ядер (за исключением водорода).

Теория Томсона помогла разобраться в ряде вопросов, но еще большее число вопросов оставляла нерешенными. Решительный удар этой модели был нанесен опытами Резерфорда 1911 г., о которых будет сказано дальше.

Сходную кольцевую модель атома предложил в 1903 г. японский физик Нагаока. Он предположил, что в центре атома находится положительный заряд, вокруг которого обращаются кольца электронов наподобие колец Сатурна. Ему удалось вычислить периоды колебаний, совершаемые электронами при незначительных смещениях на своих орбитах. Частоты, полученные таким образом, более или менее приближенно описывали спектральные линии некоторых элементов * .

* (Следует отметить также, что планетарная модель атома были предложена в 1901 г. Ж. Перреном. Об этой своей попытке он упоминал в Нобелевской лекции, прочитанной 11 декабря 1926 г. )

25 сентября 1905 г. на 77-м съезде немецких естествоиспытателей и врачей с докладом об электронах выступил В. Вин. В этом докладе он, между прочим, говорил следующее: "Большую трудность представляет для электронной теории также объяснение спектральных линий. Так как каждому элементу соответствует определенная группировка спектральных линий, которые он испускает, находясь в состоянии свечения, то каждый атом должен представлять неизменную систему. Проще всего было бы представлять атом как планетарную систему, состоящую из положительно заряженного центра, вокруг которого обращаются, подобно планетам, отрицательные электроны. Но такая система не может быть неизменной вследствие излучаемой электронами энергии. Поэтому мы вынуждены обратиться к системе, в которой электроны находятся в относительном покое или обладают ничтожными скоростями - представление, в котором содержится много сомнительного".

Сомнения эти еще более увеличивались по мере открытия новых загадочных свойств излучения и атомов.

Поделитесь с друзьями или сохраните для себя:

Загрузка...