Роданидный метод определения железа. Аналитические реакции катионов железа Fe (III)

а) Реакция с гексацианоферратом (II) калия - ферроцианидом калия K 4 (фармакопейная). Катионы Fe 3+ в кислой среде реагируют с ферроцианидом калия с образованием темно-синего осадка «берлинской лазури» – комплексного соединения гексацианоферрата (II) железа (III) Fe 4 3 х H 2 O с переменным количеством молекул воды. Показано, что в зависимости от условий осаждения, осадок «берлинской лазури», как и осадок «турнбулевой сини» (см. выше), увлекает из раствора другие катионы, так что его состав меняется и может соответствовать формуле KFe 3+ :

Fe 3+ + K + + 4- →FeK↓

Реакция специфична. Проведению реакции мешают окислители, окисляющие реактив.

Выполнение реакции. В пробирку вносят 2-3 капли раствора соли железа (III), прибавляют 1-2 капли раствора HCI и 2 капли раствора K 4 . Раствор окрашивается в синий цвет и выпадает темно-синий осадок «берлинской лазури».

б) Реакция с тиоцианат-ионами (фармакопейная). Соли Fe 3+ образуют тиоцианат железа (III) красного цвета. Реакция проводится в кислой среде. Состав образующегося комплекса непостоянен и может в зависимости от концентрации ионов Fe 3+ и SCN - от 2+ до 3- . Эта реакции иногда используется для обнаружения железа в комбинации с реакцией 1, с гексацианоферратом (II) калия. Сначала добавлением NH 4 SCN получают красный комплекс тиоцианата железа, который затем добавлением гексацианоферрата (II) калия переводят в синий осадок гексацианоферрата (II) железа (III) калия:

Fe 3+ + 3SCN - →Fe(SCN) 3

Чувствительность реакции 0,25мкг. Проведению реакции мешают анионы кислородных кислот (фосфорной, мышьяковой и др.), фториды, образующие соединения с Fe 3+ и NO 2 , дающий SCN - соединение NOSCN красного цвета.

Выполнение реакции. В пробирку вносят 3-4 капли раствора соли железа (III) и прибавляют 2-3 капли раствора тиоцианата аммония NH4NCS или калия KNCS. Раствор окрашивается в синий цвет.

в) Реакция с сульфидом натрия (фармакопейная). Сульфид натрия осаждает из нейтральных и слабощелочных растворов солей железа (III) осадок черного цвета Fe 2 S 3:

2Fe 3+ + 3S 2- → Fe 2 S 3 ↓



Осадок Fe 2 S 3 растворим в минеральных кислотах.

Выполнение реакции. В пробирку вносят 3-4 капли раствора соли железа (III) и прибавляют 2-3 капли раствора сульфида аммония, либо сероводородной воды. Выделяется черный осадоксульфида железа (III).

г) Реакция с гидроксидами. Осадок гидроксида железа (III) Fe(OH) 3 , получающийся при взаимодействии Fe 3+ с гидроксид-ионами, нерастворим в растворах щелочей и поэтому по кислотно-основной классификации Fe 3+ относят к группе катионов, гидроксиды которых нерастворимы в щелочах. Осадок Fe(OH) 3 растворим в разбавленных кислотах; не растворим в насыщенном растворе хлорида аммония (в отличие от белого осадка Fe(OH) 2).

Выполнение реакции. В пробирку вносят 3-4 капли раствора соли железа (III) и прибавляют 3-4 капли NaOH. Выпадает красно-бурый осадок гидроксида железа (III) Fe(OH) 3.

д) Реакция с сульфосалициловой кислотой (фармакопейная). Катион Fe 3+ реагирует в водных растворах с сульфосалициловой кислотой при рН ≈ 9-11,5 с образованием желтых комплексов:Fe 3+ + L 2- → 3- , где L 2- - обозначение сульфосалицилат-аниона, образовавшегося из сульфосалициловой кислоты при отщеплении двух протонов предположительно от групп
–СООН и –SО 3 Н.

Наиболее устойчив комплекс желтого цвета, содержащий железо (III) и анионы сульфосалициловой кислоты в мольном соотношении железо (III): сульфосалицилат-анионы, равном 1:3, т.е. на один атом железа приходится три сульфосалицилатных лиганда. Этот комплекс доминирует в аммиачном растворе. Точное строение комплексов в растворе неизвестно. Чувствительность реакции 5-10мкг.

Выполнение реакции. В пробирку вносят ~5 капель раствора соли железа (III), прибавляют ~10 капель раствора сульфосалициловой кислоты и ~0,5 мл концентрированного раствора аммиака. Раствор принимает желтую окраску.

Аналитические реакции катионов магния (II).

а) Реакция со щелочами. Растворы щелочей выделяют из растворов солей магния белый студенистый осадок гидроксида магния Mg(OH) 2 , легко растворимый в кислотах и растворах аммонийных солей:

Mg(OH) 2 ↓+ 2HCI→MgCI 2 + 2H 2 O

Mg(OH) 2 ↓+ 2NH 4 CI→ MgCI 2 + 2NH 4 OH

Выполнение реакции. К 1-2 каплям раствора, содержащего ионы магния, прибавляют 2 - 3 капли 1М NaOH. Образуется белый студенистый осадок. Полученный осадок делим на 2 пробирки. В 1-ую пробирку прибавляем 3-4 капли HCl, осадок растворяется. Во 2-ую пробирку прибавляем 3-4 капли NH 4 Cl, осадок так же растворяется.

б) Реакция с гипоиодитом калия. При взаимодействии йода со щелочью образуется гипоиодит калия KIO; при этом равновесие в растворе смещается вправо и он обесцвечивается:

I 2 + 2OH - ↔I - + IO - + H 2 O

При добавлении соли магния ионы Mg 2+ образуют с ионами ОН - осадок Mg(OH) 2 , что вызывает смещение равновесия влево. Выделяющийся при это йод адсорбируется осадком Mg(OH) 2 и окрашивает его в красно-бурый цвет.

Выполнение реакции. Раствор Люголя обесцвечивают прибавляя по каплям раствор КОН. К полученному бесцветному раствору прибавляют раствор соли магния. Тотчас выделяется аморфный осадок, окрашенный в красно-бурый цвет.

в) Реакция с гидрофосфатом натрия (фармакопейная). Гидрофосфат натрияобразует с ионами магния в присутствии NH 3 при рН~9 белый кристаллический осадок :

При рН> 10 могут образоваться Mg(OH) 2 и Mg 3 (PО 4) 2 . Рекомендуется к кислому анализируемому раствору прибавлять NH 3 до рН ~9. Из за образования NH 4 C1 рН раствора поддерживается постоянным. Осадок растворяется в сильных кислотах и в уксусной кислоте:

MgNH 4 PO 4 ↓+ 3HCI→ H 3 PO 4 + MgCI 2 + NH 4 CI

MgNH 4 PO 4 ↓+ 2CH 3 COOH→Mg(CH 3 COO) 2 + NH 4 H 2 PO 4

Предел обнаружения магния - 10 мкг. Мешают ионы, образующие малорастворимые фосфаты; NH 4 + , K(I) и Na(I) не мешают.

Выполнение реакции. К 1-2 каплям раствора, содержащего ионы магния, прибавляют 2 - 3 капли 2 М НСl, 1 каплю раствора Na 2 HPО 4 и при перемешивании по каплям прибавляют 2 М NH 3 до появления запаха аммиака (рН ~9). Выпадает белый кристаллический осадок.

г) Реакция с 8-оксихинолином (люминесцентная реакция). 8-Оксихинолин образует с ионами магния при рН 9 - 12 флуоресцирующий зеленым светом оксихинолинат:


Предел обнаружения магния - 0,025 мкг. Интенсивность свечения повышается при обработке влажного пятна с оксихинолинатом магния раствором NH 3 . Мешают А1(III), Zn(II).

Выполнение реакции . На фильтровальную бумагу наносят каплю раствора, содержащего ионы магния, и каплю этанольного раствора реагента. Образующийся оксихинолинат магния обрабатывают каплей 10%-ного раствора аммиака. При рассмотрении влажного пятна в ультрафиолетовом свете наблюдается зеленое свечение.

д) Реакция с хинализарином (1,2,5,8-тетраоксиантрахи-нон)(I). Хинализарин (1,2,5,8-тетраоксиантрахинон)(I) с ионами магния образует в щелочном растворе малорастворимое соединение синего цвета, которому приписывают структуру (II):


Предполагают, что хинализариновый лак является адсорбционным соединением гидроксида магния с реагентом. Весьма вероятно образование хелатов переменного состава.

Предел обнаружения магния - 5 мкг. Обнаружению не мешают ионы щелочноземельных металлов; в присутствии достаточно большого количества щелочи не мешают ионы алюминия.

Ион аммония мешает обнаружению иона магния, так как препятствует образованию гидроксида магния. Раствор реагента в щелочной среде окрашен в фиолетовый цвет, поэтому необходимо проведение контрольного опыта.

Выполнение реакции. К 1 - 2 каплям раствора, содержащего ионы магния, добавляют 1 каплю раствора хинализарина и 2 капли 30%-ного раствора NaOH. Образуется осадок синего цвета. Для проведения контрольного опыта к 1 - 2 каплям воды добавляют одну каплю раствора хинализарина, 2 капли 30%-ного раствора NaOH. Раствор окрашивается в фиолетовый цвет.

4. Тест-контроль 1

Материал из Википедии - свободной энциклопедии

Тиоцианат железа(III)
Общие
Систематическое
наименование

Тиоцианат железа(III)

Традиционные названия тиоциановокислое железо; роданистое железо
Хим. формула Fe(SCN) 3
Физические свойства
Состояние красные кристаллы с зеленоватым оттенком
Молярная масса 230,09 г/моль
Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Тиоцианат железа(III) - неорганическое соединение, соль металла железа и роданистоводородной кислоты с формулой Fe(SCN) 3 , растворяется в воде, образует кристаллогидрат - красные кристаллы.

Получение

  • Обменными реакциями:
\mathsf{Fe_2(SO_4)_3 + 3Ba(SCN)_2 \ \xrightarrow{}\ 2Fe(SCN)_3 + 3BaSO_4\downarrow }
  • Нейтрализация раствора роданистоводородной кислоты свежеосаждённым гидроксидом железа(III) :
\mathsf{Fe(OH)_3 + 3HSCN \ \xrightarrow{}\ Fe(SCN)_3 + 3H_2O }

Физические свойства

Тиоцианат железа(III) образует кристаллогидрат Fe(SCN) 3 3H 2 O - парамагнитные красные гигроскопичные кристаллы, растворимые в воде, этаноле , эфире , трудно растворимы в сероуглероде , бензоле , хлороформе , толуоле .

Водные растворы содержат димеры Fe 6H 2 O.

Химические свойства

  • С тиоцианатами других металлов образует координационные соединения гексатиоцианатоферраты(III) , например Li 3 n H 2 O, Na 3 12H 2 O, K 3 4H 2 O, Cs 3 2H 2 O, (NH 4) 3 4H 2 O.

Напишите отзыв о статье "Тиоцианат железа(III)"

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М .: Советская энциклопедия, 1990. - Т. 2. - 671 с. - ISBN 5-82270-035-5 .
  • Рипан Р., Четяну И. Неорганическая химия. Химия металлов. - М .: Мир, 1972. - Т. 2. - 871 с.
К:Википедия:Изолированные статьи (тип: не указан)

Отрывок, характеризующий Тиоцианат железа(III)

– В будущую жизнь? – повторил князь Андрей, но Пьер не дал ему времени ответить и принял это повторение за отрицание, тем более, что он знал прежние атеистические убеждения князя Андрея.
– Вы говорите, что не можете видеть царства добра и правды на земле. И я не видал его и его нельзя видеть, ежели смотреть на нашу жизнь как на конец всего. На земле, именно на этой земле (Пьер указал в поле), нет правды – всё ложь и зло; но в мире, во всем мире есть царство правды, и мы теперь дети земли, а вечно дети всего мира. Разве я не чувствую в своей душе, что я составляю часть этого огромного, гармонического целого. Разве я не чувствую, что я в этом огромном бесчисленном количестве существ, в которых проявляется Божество, – высшая сила, как хотите, – что я составляю одно звено, одну ступень от низших существ к высшим. Ежели я вижу, ясно вижу эту лестницу, которая ведет от растения к человеку, то отчего же я предположу, что эта лестница прерывается со мною, а не ведет дальше и дальше. Я чувствую, что я не только не могу исчезнуть, как ничто не исчезает в мире, но что я всегда буду и всегда был. Я чувствую, что кроме меня надо мной живут духи и что в этом мире есть правда.
– Да, это учение Гердера, – сказал князь Андрей, – но не то, душа моя, убедит меня, а жизнь и смерть, вот что убеждает. Убеждает то, что видишь дорогое тебе существо, которое связано с тобой, перед которым ты был виноват и надеялся оправдаться (князь Андрей дрогнул голосом и отвернулся) и вдруг это существо страдает, мучается и перестает быть… Зачем? Не может быть, чтоб не было ответа! И я верю, что он есть…. Вот что убеждает, вот что убедило меня, – сказал князь Андрей.
– Ну да, ну да, – говорил Пьер, – разве не то же самое и я говорю!
– Нет. Я говорю только, что убеждают в необходимости будущей жизни не доводы, а то, когда идешь в жизни рука об руку с человеком, и вдруг человек этот исчезнет там в нигде, и ты сам останавливаешься перед этой пропастью и заглядываешь туда. И, я заглянул…
– Ну так что ж! вы знаете, что есть там и что есть кто то? Там есть – будущая жизнь. Кто то есть – Бог.
Князь Андрей не отвечал. Коляска и лошади уже давно были выведены на другой берег и уже заложены, и уж солнце скрылось до половины, и вечерний мороз покрывал звездами лужи у перевоза, а Пьер и Андрей, к удивлению лакеев, кучеров и перевозчиков, еще стояли на пароме и говорили.
– Ежели есть Бог и есть будущая жизнь, то есть истина, есть добродетель; и высшее счастье человека состоит в том, чтобы стремиться к достижению их. Надо жить, надо любить, надо верить, – говорил Пьер, – что живем не нынче только на этом клочке земли, а жили и будем жить вечно там во всем (он указал на небо). Князь Андрей стоял, облокотившись на перила парома и, слушая Пьера, не спуская глаз, смотрел на красный отблеск солнца по синеющему разливу. Пьер замолк. Было совершенно тихо. Паром давно пристал, и только волны теченья с слабым звуком ударялись о дно парома. Князю Андрею казалось, что это полосканье волн к словам Пьера приговаривало: «правда, верь этому».
Князь Андрей вздохнул, и лучистым, детским, нежным взглядом взглянул в раскрасневшееся восторженное, но всё робкое перед первенствующим другом, лицо Пьера.
– Да, коли бы это так было! – сказал он. – Однако пойдем садиться, – прибавил князь Андрей, и выходя с парома, он поглядел на небо, на которое указал ему Пьер, и в первый раз, после Аустерлица, он увидал то высокое, вечное небо, которое он видел лежа на Аустерлицком поле, и что то давно заснувшее, что то лучшее что было в нем, вдруг радостно и молодо проснулось в его душе. Чувство это исчезло, как скоро князь Андрей вступил опять в привычные условия жизни, но он знал, что это чувство, которое он не умел развить, жило в нем. Свидание с Пьером было для князя Андрея эпохой, с которой началась хотя во внешности и та же самая, но во внутреннем мире его новая жизнь.

Уже смерклось, когда князь Андрей и Пьер подъехали к главному подъезду лысогорского дома. В то время как они подъезжали, князь Андрей с улыбкой обратил внимание Пьера на суматоху, происшедшую у заднего крыльца. Согнутая старушка с котомкой на спине, и невысокий мужчина в черном одеянии и с длинными волосами, увидав въезжавшую коляску, бросились бежать назад в ворота. Две женщины выбежали за ними, и все четверо, оглядываясь на коляску, испуганно вбежали на заднее крыльцо.
– Это Машины божьи люди, – сказал князь Андрей. – Они приняли нас за отца. А это единственно, в чем она не повинуется ему: он велит гонять этих странников, а она принимает их.
– Да что такое божьи люди? – спросил Пьер.
Князь Андрей не успел отвечать ему. Слуги вышли навстречу, и он расспрашивал о том, где был старый князь и скоро ли ждут его.
Старый князь был еще в городе, и его ждали каждую минуту.
Князь Андрей провел Пьера на свою половину, всегда в полной исправности ожидавшую его в доме его отца, и сам пошел в детскую.
– Пойдем к сестре, – сказал князь Андрей, возвратившись к Пьеру; – я еще не видал ее, она теперь прячется и сидит с своими божьими людьми. Поделом ей, она сконфузится, а ты увидишь божьих людей. C"est curieux, ma parole. [Это любопытно, честное слово.]
– Qu"est ce que c"est que [Что такое] божьи люди? – спросил Пьер
– А вот увидишь.
Княжна Марья действительно сконфузилась и покраснела пятнами, когда вошли к ней. В ее уютной комнате с лампадами перед киотами, на диване, за самоваром сидел рядом с ней молодой мальчик с длинным носом и длинными волосами, и в монашеской рясе.
На кресле, подле, сидела сморщенная, худая старушка с кротким выражением детского лица.
– Andre, pourquoi ne pas m"avoir prevenu? [Андрей, почему не предупредили меня?] – сказала она с кротким упреком, становясь перед своими странниками, как наседка перед цыплятами.

Качественные реакции на железо (III)

Ионыжелеза (III ) в растворе можно определить с помощью качественных реакций. Проведем некоторые из них. Возьмем для опыта раствор хлорида железа (III ).

1. III )– реакция со щелочью.

Если в растворе есть ионы железа (III ), образуется гидроксид железа (III ) Fe(OH) 3 . Основание нерастворимо в воде и бурого цвета. (Гидроксид железа (II ) Fe(OH) 2 . – также нерастворим, но серо-зеленого цвета). Бурый осадок указывает на присутствие в исходном растворе ионов железа (III ).

FeCl 3 + 3 NaOH = Fe(OH) 3 ↓+ 3 NaCl

2. Качественная реакция на ион железа ( III ) – реакция с желтой кровяной солью.

Желтая кровяная соль – это гексацианоферраткалия K 4 [ Fe ( CN ) 6 ]. (Для определения железа (II ) используют красную кровяную соль K 3 [ Fe ( CN ) 6 ]). К порции раствора хлорида железаприльемраствор желтой кровяной соли. Синий осадок берлинской лазури* показывает на присутствие в исходном растворе ионов трехвалентного железа.

3 К 4 +4 FeCl 3 = K Fe ) ↓ + 12 KCl

3. Качественная реакция на ион железа ( III ) – реакция с роданидом калия.

Вначале разбавляем испытуемый раствор – иначе не увидим ожидаемой окраски. В присутствии иона железа (III ) при добавлении роданида калия образуется вещество красного цвета. Это ‑ роданид железа (III ). Роданид от греческого "родеос" - красный.

FeCl 3 + 3 К CNS = Fe ( CNS ) 3 + 3 KCl

Берлинская лазурь была получена случайно в начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении солей железа получался синим. При проверке поташа оказалось, что он был прокаленс бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с высушенной кровью животных и железными опилками. Выщелачиванием такого сплава получали желтую кровяную соль. Сейчас берлинскую лазурь используют для получения печатной краски и подкрашивания полимеров.

Оборудование: колбы, пипетка.

Техника безопасности . Соблюдать правила обращения с растворами щелочей и растворами гексацианоферратов. Не допускать контакта растворов гексацианоферратов с концентрированными кислотами.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Метод основан на определении винно-красной окраски, свойственной комплексам, образуемым ионами трехвалентного железа и роданид-ионами. Эти комплексы малоустойчивы, поэтому необходим большой избыток роданид-ионов, подавляющих диссоциацию комплекса. Процесс взаимодействия ионов трехвалентного железа с роданид-ионами протекает согласно уравнению (1):

Fe 3+ + 6 NH 4 CNS = 6NH 4 + + 3-

Необходимо учитывать, что помимо 3- , могут образовываться другие, менее интенсивно окрашенные комплексы, поэтому концентрация роданида аммония должна быть одинаковой в анализируемом и стандартных растворах. Определению мешают сильные окислители (перманганат калия, персульфат аммония, пероксид водорода и т.д.), окисляющие роданид-анион, а также вещества, восстанавливающие железо (III) до железа (II). Наилучшей средой является азотнокислая, при этом достаточна уже малая кислотность раствора, препятствующая гидролизу соли железа (1-2 мл концентрированной азотной кислоты на 50 мл раствора).

Реактивы

    Роданид аммония (NH4CNS), 10 %-ный раствор;

    Азотная кислота, концентрированная;

    Основной стандартный раствор. Для приготовления основного стандартного раствора в небольшом объеме дистиллированной воды растворяют 0,8634 г железоаммонийных квасцов. Если раствор получается непрозрачным, то добавляют несколько капель концентрированной азотной кислоты и доводят объем до 1 л. Раствор содержит 0,1 мг железа в 1 мл;

    Рабочий стандартный раствор. Рабочий стандартный раствор готовится разбавлением основного стандартного раствора в 10 раз. Раствор содержит 0,01 мг железа в 1 мл.

Ход работы

В мерные колбы на 100 мл вносят 1 и 5 мл рабочего стандартного раствора, а также 1; 2,5 и 5 мл основного стандартного раствора железа и доводят объем до метки дистиллированной водой, получая растворы с концентрацией 0,1; 0,5; 1,0; 2,5; и 5,0 мкг/л соответственно. Приготовленные растворы и 100 мл исследуемой пробы переливают в конические колбы на 150 мл, в каждую добавляют по 5 мл концентрированной HNO 3 и по 10 мл 10 %-ного раствора NH 4 CNS. Растворы тщательно перемешивают и через 3 минуты фотометрируют при длине волны λ=450 нм, используя кюветы с толщиной оптического слоя 5 мм, по отношению дистиллированной воде, в которую добавлены те же реактивы. Массовую концентрацию железа находят по калиброванному графику. Строят калибровочный график, откладывая по оси абсцисс массовую концентрацию железа в мкг/дм 3 а по оси ординат – соответствующие значение оптической плотности.

    1. Определение содержания хрома с применением дифенилкарбазида

Принцип метода

Метод основан на взаимодействии хроматов и бихроматов в кислой среде с дифенилкарбазидом с образованием окрашенного в красно-фиолетовый цвет соединения, в котором хром содержится в восстановленной форме Сr(III), а дифенилкарбазид окислен до дифенилкарбазона. Предел обнаружения составляет 0,02 мг/л. Диапазон измеряемых количеств хрома в пробе находится от 1 мкг до 50 мкг.

При анализе воды в одной пробе определяют только Сr(vi) , а в другой – суммарное содержание Сr(iii) иCr(vi), в которой Сr(III) окислен до Сr(VI). В качестве окислителя используют персульфат аммония. Процесс окисления протекает согласно уравнению (2):

2Сr 3+ + 3S 2 O 8 2- + 7H 2 O  Сr 2 O 7 2- + 6SO 4 2- + 14Н +

По разности результатов определяют содержание Cr 3+ .

Реактивы

    Бидистиллированная вода (используется для приготовления всех реактивов);

    Серная кислота,1:1;

    Фосфорная кислота концентрированная;

    Дифенилкарбазид (С 13 Н 14 ОN 4), 0,5 %-ный раствор в ацетоне (применяют свежеприготовленным);

    Раствор гидроксида натрия, 10 %-ный и 25 %-ный;

    Основной стандартный раствор бихромата калия K 2 Cr 2 O 7 . Основной стандартный раствор готовят растворением 2,8285 г реактива, высушенного при 150С, в бидистиллированой воде и доводят объем до 1 л (1 мл раствора содержит 1 мгCr(VI);

    Рабочий стандартный раствор 1. Готовят разбавлением 5 мл основного стандартного раствора бидистиллированой водой до 100 мл (1 мл полученного раствора содержит 50 мкг Cr(VI));

    Рабочий стандартный раствор 2. Готовят разбавлением 4 мл рабочего стандартного раствора 1 до 100 мл бидистиллированой водой (1 мл полученного раствора содержит 2 мкг Cr(VI)).

Построение калибровочного графика

В мерные колбы емкостью 100 мл отбирают 0; 0,5; 1,0; 2,0; 3,0; 5,0; 8,0; 10,0 мл рабочего стандартного раствора 2, доводят объем растворов до 50-60 мл, доводят рН до 8 раствором щелочи, контролируя по универсальной индикаторной бумаге. Приливают 1 мл Н 2 SO 4 (1:1) и 0,3 мл Н 3 РО 4 , доводят объем до 100 мл. Полученные растворы имеют концентрациюCr(VI) 0; 10; 20; 40; 60; 100; 160; 200 мкг/л. В каждую колбу добавляют 2 мл 0,5 %-ного раствора дифенилкарбазида и хорошо перемешивают. Полученные растворы через 10-15 мин. фотометрируют при длине волны λ=540 нм, используя кюветы с толщиной оптического слоя 30 мм, по отношению дистиллированной воде, в которую добавлены те же реактивы.

Определение содержания Cr (VI )

В мерную колбу объемом 100 мл помещают такой объем пробы, чтобы в нем содержалось от 0,005 до 0,1 мг хрома, доводят рН до 8 раствором кислоты или щелочи, контролируя по универсальной индикаторной бумаге. Приливают 1 мл Н 2 SO 4 (1:1) и 0,3 мл Н 3 РО 4 , доводят объем до 100 мл и перемешивают. В каждую колбу добавляют 2 мл 0,5 %-ного раствора дифенилкарбазида и снова перемешивают. Полученные растворы через 10-15 мин. фотометрируют как указано выше.

Поделитесь с друзьями или сохраните для себя:

Загрузка...