Из истории завоевания морских глубин. Человек осваивает глубины Рекордное погружение с аквалангом

Главная операция в океанографии - выполнение гидрологической станции. Каждое океанографическое судно снабжено лебедкой, опускающей приборы на максимально возможную глубину, и во время станции физики измеряют температуру воды и берут пробы на стандартных, установленных международным соглашением глубинах (горизонтах). Когда судно стоит и, насколько возможно, удерживается неподвижно при помощи под работки винтами, За борт опускают серию приборов так, чтобы последний из них находился на максимальной глубине, проще говоря - у самого дна. Когда операция закончена, опускают следующую серию и исследуют вышележащий слой, смежный с первым, и так далее, пока не дойдут до самой поверхности.

Во время гидрологической станции применяются два классических океанографических прибора - опрокидывающийся батометр и опрокидывающийся термометр. Это самые старые приборы: океанографы всех стран пользуются ими уже около девяноста лет.

Схематически опрокидывающийся батометр состоит из металлической трубки, заканчивающейся двумя наружными клапанами. Опускают его открытым. Специальный грузик, посылаемый с поверхности, ударяясь о клапан, захлопывает его и переворачивает батометр на рычажном устройстве. Батометр должен перевернуться потому, что с его наружной стороны прикреплены два опрокидывающихся термометра, устроенных таким образом, чтобы измерять температуру на уровне опрокидывания. Ртутный столбик термометров имеет сужение, где ртуть разрывается; по объему отделившейся ртути и определяют температуру.

Обыкновенный термометр, помещенный в ту же стеклянную оболочку, или трубку, позволяет корректировать ошибку, возникающую оттого, что показания регистрируются на борту судна, то есть при иной температуре, чем в точке измерения. Толстостенная стеклянная трубка, в которую заключены оба термометра, предохраняет их от действия давления на глубине.

Существует и другой тип опрокидывающегося термометра, у которого защитная трубка с одного конца открыта. Такой термометр, подвергаясь воздействию давления окружающей воды, в результате компрессии стекла регистрирует температуру, которая отличается от температуры, (показываемой защищенным термометром. Тогда, зная коэффициент сжатия стекла и объем отделившейся ртути, мы, при сравнении обеих температур, получаем величину давления, иначе говоря - глубину, на которой произведено измерение. В таких случаях опрокидывающиеся батометры снабжены двумя гильзами, для опрокидывающихся термометров: одна для защищенного, другая - для незащищенного. Когда серия поднята на борт, температуру записывают, а воду из батометров переливают в маленькие бутылочки и сохраняют для последующих анализов.

Из всех таких анализов один является основным, а остальные - дополнительными. Поскольку морская вода содержит в среднем 35 граммов солей на литр, необходимо знать ее соленость, потому что, только зная эту величину и температуру, можно точно вычислить плотность ВОДЫ, А понятие плотности является краеугольным камнем океанографии и лежит в основе всех гипотез о водных массах и всех динамических расчетов движения этих водных масс.

До недавнего времени соленость определяли методом химического анализа, разработанным еще в начале века датчанином Кнудсеном. Этот метод обеспечивал точность до +0,01°% (промилле) - вполне достаточную для большинства динамических расчетов. За последние десять лет англичане и американцы создали и внедрили в промышленность лабораторные приборы, работающие на принципе электромагнитной индукции и определяющие соленость с той же точностью, что и метод Кнудсена. Преимущество этих электросолемеров заключается в том, что, во-первых, ими можно пользоваться на борту корабля, а во-вторых, они позволяют производить непрерывные измерения. Несомненно, будущее принадлежит этому методу.

Два года назад был предложен еще более практичный прибор - зонд, опускаемый с поверхности на дно. Он измеряет температуру, содержание хлора и давление. Все непрерывные измерения этих трех параметров регистируются самописцем на борту, а затем полученные результаты поступают в электронную вычислительную машину, рассчитывающую распределение температуры и солености в зависимости от глубины. Казалось бы - кончена возня с записью показаний термометров, взятием проб воды и анализами. Наконец-то физики моря получили идеальный прибор!.. Однако у зонда есть большой недостаток - невероятная дороговизна. Поэтому многие океанографы относятся к этой новинке скептически. Но, помимо высокой цены, он имеет еще один недостаток - для него требуется электрический кабель, неудобный в обращении и быстро выходящий из строя.

Конструкторская мысль должна идти по пути создания автономного зонда, свободно опускающегося на дно, который, по мере погружения, будет посылать на борт информацию в виде ультразвукового кода. Достигнув дна, зонд должен сбросить балласт и подняться на поверхность. В наш век электронной техники возможность создания такого зонда вполне реальна.

Из всех анализов морской воды только определение содержания хлора можно производить in situ (постоянно) при помощи электронного прибора. Что же касается определения других компонентов морской воды, океанографы все еще находятся в плену приборов для взятия проб.

Для биологических исследований и для подтверждения некоторых физических теорий о распределении водных масс в океане необходимо знать содержание в морской воде растворенного кислорода. Это делается старым методом Винклера. Поскольку содержание растворенного кислорода в пробе быстро изменяется, приходится производить первый этап анализа прямо на борту, сразу же после взятия пробы. Второй этап выполняется либо в судовой лаборатории, если таковая имеется, либо на берегу. В настоящее время для определения содержания в морской воде растворенного кислорода используются электронные приборы, но, с одной стороны, их точность еще совершенно недостаточна, а с другой датчики этих приборов еще ни разу не погружали на средние или большие глубины.

Биологов, помимо растворенного кислорода, интересует содержание в морской воде питательных солей: фосфатов, нитратов, кремнезема, от которых зависит жизнь в лоне океана. Для определения этих элементов производят лабораторные химические анализы или же используют фотометрический метод.

Для некоторых специальных исследованией океанографы применяют опрокидывающиеся батометры иного типа, чем были описаны выше. Они сделаны из металла или пластмассы (последние используются главным образом для определения содержания растворенного кислорода), и емкость их различна.

Для изучения радиоактивности - как естественной, так и образующейся при выпадении радиоактивных осадков - применяются очень большие батометры; система их закрытия зависит от изобретательности конструктора.

Температура океанской воды очень изменчива, особенно в верхних слоях. Поэтому интересно определять ее в точках, как можно ближе расположенных друг к другу.

Однако, поскольку нельзя слишком часто останавливать судно для гидрологических станций, океанографы пользуются батитермографом, который опускают с судна на ходу. Батитермограф. Устройство этого прибора позволяет ему погружаться в воду вертикально, несмотря на движение судна, и сразу определять распределение температуры по глубине. Точность батитермографа не слишком валика - не более 1/10 градуса. Он применяется на военно-морском флоте при корректировке скорости распространения звука для обнаружения подводных лодок гидролокатором.

Этот неведомый мир составляет 90 процентов обитаемого пространства планеты. Нам известно больше о поверхности Луны, чем о морском дне. В этой вечной темноте обитают странные формы жизни. Лишь несколько десятилетий назад считалось, что жизнь на таких глубинах невозможна, а уже сегодня ученые полагают, что первая жизнь появилась на дне океана. Энергия, ресурсы, пища и даже климат находится под влиянием океанов. Там ли определиться будущее нашей планеты?


Лишь с помощью новейшей техники можно постичь тайны морских глубин. Глубоководные исследования длительны и дороги, поэтому так медленно ученые проливают свет в темноту. Дорогостоящие экспедиции на современнейших судах бороздят моря в поисках ответов. Недавно был запущен один из самых масштабных мировых проектов по исследованию океана, который получил название АРГО. Армии из более 3 тысяч роботизированных буев доставляют данные ученым из семи морей, доступные им по щелчку мыши. Международное научное сообщество, наконец, получило доступ к обширной базовой информации во всех сферах морских исследований. Эти данные также доступны лицам, которые занимаются судоходством и рыболовным промыслом, метеорологам и исследователям климата.

Девяносто процентов всей жизни на Земле обитает в глубинах, но нам знакома лишь небольшая ее часть. Нам удается исследовать лишь те части моря, которые освещаем, но что происходит за их пределами.

Без техники мы слепы в глубинах. Каждый новый вопрос требует новое оборудование. Исследования часто терпят неудачу из-за прерывания связи. Однако изобретательность не знает границ. Ученые, инженеры, механики и моряки входят в международные команды пытающиеся извлечь тайны из морских глубин. Бесчисленное множество специальных устройств и аппаратов опускается на морское дно в поисках ответов.

глубоководный робот ROV Kiel 6000


Одно из самых современных устройств для морских исследований совсем недавно вернулось из своей первой экспедиции. Глубоководный робот ROV KIEL 6000, созданный институтом морских наук имени Лейбница, сейчас еще проходит проверку в порту города Киль. Данный дистанционно управляемый аппарат может опускаться на глубину до 6 тысяч метров. Он управляется и контролируется с помощью кабеля. Дистанционно управляемые аппараты пользуются огромным спросом у морских исследователей. Один экземпляр стоит 5 миллионов евро, но по словам мореплавателей он того стоит. Аппарат ROV KIEL 6000 уже достиг сенсационных результатов за свое первое путешествие в Южную Атлантику.

Только с таким оборудованием как глубоководные аппараты исследователи могут отважиться погрузиться в эту враждебные среду. Дистанционно управляемая система камер это глаза ученого, а манипуляторы это его руки. Вдобавок к ним множество измерительных приборов и сенсоров. Большая часть информации может быть немедленно передана на борт для анализа с помощью 6-километрового кабеля.

исследовательское судно «FS Poseidon»


автономный подводный аппарат SEAL 5000


Базой всех проектов по изучению морских глубин являются . Одним из них является «FS Poseidon». На его борту ученые всего мира недавно начали проверку автономного подводного аппарата SEAL 5000, стоимость которого составляет 1,5 миллиона евро. В отличие от дистанционных аппаратов он абсолютно независим, не соединен кабелем и может создавать очень точные карты морского дна.


Составлять карту морского дна с корабля все равно, что пытаться нарисовать карту Луны, глядя в телескоп. раскачивается вверх-вниз, и звуковые волны эхолота постоянно отклоняются на своем пути между палубой судна и дном океана. Но грубую картину все же получить можно. Как раз задачей аппарата SEAL 5000 и является создания точных топографических карт, которые нужны исследователям морских глубин, открывая экспертам удивительные тайны. С помощью таких карт геологи могут найти различные минеральные отложения.

Могут пройти годы, прежде чем они принесут плоды. А потребность человека в новых ресурсах бесконечна, поэтому исследование морских глубин приобретает все более важное экономическое значение. С помощью таких подробных карт геологи также находят следы гидротермальных источников. Среди прочих веществ они выбрасывают соединение металлов, которые откладываются вблизи. Уже были найдены отложения различных металлов от меди до золота, но когда речь идет о морских сокровищах основное внимание уделяется веществу, которое могло бы разом решить энергетические проблемы всего человечества. Под океанским дном скапливается невообразимое количество метана. Он более чем в два раза превышает общее количество угля, нефти и газа в мире. Но может ли метан решить энергетические проблемы будущего. Морские глубины так просто не уступит свои сокровища.

На глубине газ находится в виде замороженного гидрата метана, который является своего рода цементом морского дна. Если же ледяное твердое вещество станет газообразным, его объем увеличится более чем в 100 раз. Это делает его извлечение очень опасным, поэтому ученые по всему миру лихорадочно ищут менее опасный метод добычи этого замороженного золота. Добыча была бы особенно рискованной на материковых склонах, ведь если убрать этот цемент, большие части склонов могут внезапно осесть, что приведет к гигантским цунами с катастрофическими последствиями для прибрежных регионов. Кроме того метан очень сильно влияет на парниковый эффект. Он в 30 раз сильнее, чем углекислый газ. Но частично решение проблемы есть. Во время добычи метан можно было бы заменить в углекислым газом. Другими словами морские глубины могли бы быть хранилищем углекислого газа.

Немецкие и японские ученые являются лидерами в этом секторе исследований, работая вместе над различными проектами. Ученые должны ответить на множество вопросов, прежде чем начать рассматривать вариант хранения парниковых газов в море.

Как ни странно, но вокруг скоплений углекислого газа кипит жизнь. Жидкий углекислый газ очень опасное вещество на морском дне Окинавской впадины на побережье Японии. Здесь газ залегает на глубине 3000 метров. Из-за высокого давления и ледяного холода глубин газ превратился в жидкость, создавая скопление газа.

Какое воздействие оказывает это вещество на обитателей глубин. Ученые пытаются это выяснить. Эти формы жизни явно научились выживать в таких жестоких условиях. По словам ученых, скопление углекислого газа в Окинавской впадины уникально.


Непосредственную помощь в исследовании морских глубин оказывают немногочисленные морские суда. Но это не просто , а плавучие обсерватории, причем всегда заняты. В мире имеется всего несколько сотен больших исследовательских судов и за их экспедициями можно наблюдать через Интернет, на сайте sailwx.info .

современное исследовательское судно, проект


Палубы исследовательских судов похожи на научные лаборатории. Исследователи всего мира, используя разнообразное оборудование, теснятся на маленьком пространстве. Они работают по сменам круглые сутки. Но одно устройство найдется на любом .

прибор для взятия проб воды


Прибор для взятия проб воды, измеряющий электропроводность, температуру и глубину. Определение этих величин немного похожи на измерение пульса человека, но они являются базовой информацией, необходимой каждому океанографу. Прибор для взятия проб может черпать воду с точно указанной глубины. Эти и другие функции приводятся в действие с поста управления судна. Этот прибор используется чаще всех на каждом исследовательском судне по всему миру. Как только его поднимают на борт, пробы воды и немедленно обрабатываются. Анализ питательных веществ или микроорганизмов дает важные данные для описания океанской среды. Это стандартная процедура для океанографа.


В морских глубинах были найдены невероятно странные существа, причем большинство из них пока не изучены. Каждое новое положение видеокамеры открывает новые виды. Чтобы узнать больше о морских организмах в 2000 году была начата перепись морской жизни. Это глобальный проект по изучению глубоководных организмов. Все открытые формы жизни будут зарегистрированы. Ученые из 16 стран под руководством Норвегии участвуют в проекте по изучению экосистемы северной части Североатлантического хребта, регистрируя океанские формы жизни. За два месяца они открыли 80000 глубоководных форм жизни. Многие из них прежде не были известны. Ученые предполагают, что в глубинах проживает 10 миллионов видов, а на суше около 1,4 миллиона. Причудливый мир темноты принадлежит исключительно животным, ведь растения не могут существовать без света. Здесь нет даже водорослей, хотя некоторые формы жизни похожие на растения на самом деле животные. Они используют тонкие листовидные отростки, чтобы вылавливать из воды микроорганизмы.

В этой пустынной темноте удаленной от центра жизни найти пищу очень трудно. Так что когда умирает кит это чудо для обитателей морских глубин. Мертвый кит подобен оазису дающий за раз столько пищи, сколько обычно попадает сюда за тысячу лет.

самое современное исследовательское судно в мире «Maria S. Merian»


«Maria S. Merian » самое . Спущенное на воду в 2007 году, оно является первым научным судном, построенным в Германии за последние 15 лет. На борту судна может работать 20 ученых. В их распоряжении лаборатория, оборудованная для самых разных исследовательских миссий. Это исследовательское судно может идти 48 часов, не загрязняя воды, благодаря технологии «чистый корабль». Данная технология означает, что сточные воды и нечистоты не сливаются в море. Все жидкие отходы отправляются в специальный танк и хранятся там. Часть их может быть позже переработана, и снова использована на борту. Для науки это значит, что сточные воды не попадают ни в морскую воду ни в образцы. Никаких посторонних примесей, только чистая морская вода.

Многие научные проекты зависят от чистоты воды, например, проект по поиску рассеянности металлов. Этим веществам с недавних пор придается особое значение, и это не впервые. Они появляются в морской воде лишь в очень небольших количествах, но без этих элементов микроорганизмы вроде водорослей не могут расти в море. С помощью специального ковша ученые проводят точнейший анализ. Даже подъемное устройство сделано из синтетического волокна, чтобы избежать малейшего замутнения.


Различные измерители на борту исследовательского судна «Maria S. Merian» позволяют ученым следить за сложными экспериментами из центра управления, а чтобы не потерять из вида сложную технику, находящуюся под водой несколько лет, запускается робот-зонд или буй.

Кроме того у буя-измерителя может быть и своя особая задача. Так сотни буев стали частью масштабного проекта по изучению морских глубин мира, который получил название АРГО.

В программе по получению данных из морских глубин в режиме реального времени участвует 26 стран. Учёные очень ценят возможность отправлять такие буи, ведь эти маленькие датчики могут очень им помочь. В мировом океане сейчас находится 3000 буев, которые могут передавать данные в любую погоду, шторм или штиль. Это дает возможность ученым впервые получать достаточно данных, чтобы они могли уверенно сказать нагревается ли океан, уменьшается ли количество кислорода, и как это влияет на соленость. Для этого буй опускается на глубину 2 тысяч метров и дрейфует по течению. Через 10 дней он медленно поднимается на поверхность, одновременно с этим измеряя температуру, соленость и другие параметры. Оказавшись на поверхности, буй передает полученные данные, а также свои координаты на береговые центры через спутник. Каждый буй передает собранные данные каждые 10 дней. Так создается глобальная сеть доступная с каждого компьютера. Впервые эти данные стали доступными каждому ученому в мире.

Проект АРГО это своего рода глобальная океаническая метеостанция, за работой и маршрутом каждого отдельного буя можно следить благодаря компьютерной анимации. Это очень мощный инструмент для изучения климатических изменений. С помощью 3 тысяч однотипных буев-измерителей АРГО собирает данные о состоянии всего мирового океана.

Именно эта информация очень важна для будущей деятельности в морских глубинах, ведь права на разработку ресурсов морских глубин скоро будут пересмотрены. Территория шириной 200 морских миль вокруг континентального шельфа будет принадлежать соответствующему государству, поэтому все прибрежные страны желают тщательно исследовать свою подводную территорию, надеясь расширить свой континентальный шельф и обеспечить себя ресурсами в будущем. Широко известен правовой спор по поводу Северного полюса. Пять стран соперничают за господство над морскими глубинами скованными льдами: Россия, Норвегия, Дания, США и Канада. Причина проста - ресурсы. В соответствии с исследованиями 90 миллиардов баррелей нефти и втрое больше природного газа, не говоря уже о минеральных отложениях, находятся подо льдами северного полюса. Но технологии подводной добычи пока мало используются. Впереди всех Норвегия. Компания StatoilHydro извлекает природный газ на глубине 1000 метров, где построена первая в мире фабрика по добыче природного газа с морского дна.

Исследования пока находятся на ранней стадии. Маленькими шагами, но с большими усилиями ученые приобретают важнейшие знания, но уже стало ясно, что морские глубины сильнее влияют на всю планету, чем когда-либо предполагалось. И никто не знает, что еще ждет нас там. Наши шумные аппараты приносят свет в царство темноты, возможно, отпугивая настоящих властителей подводного мира, и заставляя их опускаться еще глубже.

Свыше 98% морского дна до сих пор не изучено, но в последние годы достигнут значительный прогресс в разработке методов исследования океанов. Исследовательские суда по-прежнему играют важную роль. Многое можно узнать, буксируя приборы за кораблями, собирая образцы в сети, поднимая материалы со дна океана. Удаленные от берега буйки передают информацию по радио, спутники могут сообщать на такие данные, как , появление ледового покрова, высота волн.

Глубоководное погружение

Подвесное судно должно иметь крепкую обшивку, чтобы выдержать давление воды, средства управления подъемной силой и регулирования глубины и систему двигателей. Батисфера представляла собой тяжелый стальной шар, который можно было спускать с судна на тросе. В 30-х гг. нашего века батисфера достигла рекордной для того времени глубины - 900 м. Батискаф, такой, как FNRS-З, был снабжен бензиновым двигателем и сбрасывал железные ядра, когда ему требовалось подняться на поверхность. В 1960 г. батискаф «Триест» с экипажем из трех, человек сумел погрузится на 11 300 м и достичь дна Марианской впадины, глубочайшей точки Мирового океана.

Подводный аппарат «Бобер-IV» сделан из очень легких материалов, чтобы добиться наилучшей плавучести. «Рыбы» коммерческий подводный аппарат, способный погружаться на глубину 9000 м. Некоторые аппараты, такие, как «Перри» и «Ныряльщик», снабжены переходным шлюзами для высадки аквалангистов.

«Ясон» — устройство с дистанционным управлением, которое исследует затонувшие корабли с помощью видеокамер, управляемых на расстоянии. Аппарат DSRV — спасательный аппарат глубокого погружения предназначен для спасения экипажа затонувших подводных лодок.

«Элвин», сконструированный в 1964 г., - подводный аппарат для экипажа из трех человек; он использовался для исследования обломков «Титаника». «Элвин» совершил более 1700 погружений, в том числе на глубину до 4000 м, и оказал неоценимую помощь в геологических и биологических исследованиях.

Водолазные костюмы

Жесткие костюмы, такие, как «Паук» и «Джим» представляют собой подводные аппараты в миниатюре, позволяющие ныряльщику погружаться на большую глубину и предохраняющие его от давления воды, «Паук» имеет запас воздуха и передвигается с помощью гребных винтов с электродвигателями.

В XVII в. люди опускались под воду в водолазных колоколах, и только в XIX в. был изобретен водолазный костюм с прочным медным шлемом. Воздух в него подавался с поверхности. В 1943 г. произошла революция в подводном плавании. Французский исследователь морей Жак Кусто и инженер Эмиль Каньян изобрели автономный дыхательный аппарат для подводного плавания, или акваланг. Сжатый воздух поступает из баллонов, укрепляемых на спине ныряльщика. Коммерческие акваланги снабжены всевозможными приспособлениями, чтобы облегчить работу ныряльщика. Есть гидрокостюмы с подогревом и даже аккумуляторные скутеры, помогающие ныряльщику передвигаться быстрее.

Мы живем на планете воды, но земные океаны знаем хуже, чем некоторые космические тела. Больше половины поверхности Марса артографировано с разрешением около 20 м — и только 10−15% океанского дна изучены при разрешении хотя бы 100 м. На Луне побывало 12 человек, на дне Марианской впадины — трое, и все они не смели и носа высунуть из сверхпрочных батискафов.

Погружаемся

Главная сложность в освоении Мирового океана — это давление: на каждые 10 м глубины оно увеличивается еще на одну атмосферу. Когда счет доходит до тысяч метров и сотен атмосфер, меняется все. Жидкости текут иначе, необычно ведут себя газы… Аппараты, способные выдержать эти условия, остаются штучным продуктом, и даже самые современные субмарины на такое давление не рассчитаны. Предельная глубина погружения новейших АПЛ проекта 955 «Борей» составляет всего 480 м.

Водолазов, спускающихся на сотни метров, уважительно зовут акванавтами, сравнивая их с покорителями космоса. Но бездна морей по‑своему опаснее космического вакуума. Случись что, работающий на МКС экипаж сможет перейти в пристыкованный корабль и через несколько часов окажется на поверхности Земли. Водолазам этот путь закрыт: чтобы эвакуироваться с глубины, могут потребоваться недели. И срок этот не сократить ни при каких обстоятельствах.

Впрочем, на глубину существует и альтернативный путь. Вместо того чтобы создавать все более прочные корпуса, можно отправить туда… живых водолазов. Рекорд давления, перенесенного испытателями в лаборатории, почти вдвое превышает способности подлодок. Тут нет ничего невероятного: клетки всех живых организмов заполнены той же водой, которая свободно передает давление во всех направлениях.

Клетки не противостоят водному столбу, как твердые корпуса субмарин, они компенсируют внешнее давление внутренним. Недаром обитатели «черных курильщиков», включая круглых червей и креветок, прекрасно себя чувствуют на многокилометровой глубине океанского дна. Некоторые виды бактерий неплохо переносят даже тысячи атмосфер. Человек здесь не исключение — с той лишь разницей, что ему нужен воздух.

Под поверхностью

Кислород Дыхательные трубки из тростника были известны еще могиканам Фенимора Купера. Сегодня на смену полым стеблям растений пришли трубки из пластика, «анатомической формы» и с удобными загубниками. Однако эффективности им это не прибавило: мешают законы физики и биологии.


Уже на метровой глубине давление на грудную клетку поднимается до 1,1 атм — к самому воздуху прибавляется 0,1 атм водного столба. Дыхание здесь требует заметного усилия межреберных мышц, и справиться с этим могут только тренированные атлеты. При этом даже их сил хватит ненадолго и максимум на 4−5 м глубины, а новичкам тяжело дается дыхание и на полуметре. Вдобавок чем длиннее трубка, тем больше воздуха содержится в ней самой. «Рабочий» дыхательный объем легких составляет в среднем 500 мл, и после каждого выдоха часть отработанного воздуха остается в трубке. Каждый вдох приносит все меньше кислорода и все больше углекислого газа.

Чтобы доставлять свежий воздух, требуется принудительная вентиляция. Нагнетая газ под повышенным давлением, можно облегчить работу мускулам грудной клетки. Такой подход применяется уже не одно столетие. Ручные насосы известны водолазам с XVII века, а в середине XIX века английские строители, возводившие подводные фундаменты для опор мостов, уже подолгу трудились в атмосфере сжатого воздуха. Для работ использовались толстостенные, открытые снизу подводные камеры, в которых поддерживали высокое давление. То есть кессоны.

Глубже 10 м

Азот Во время работы в самих кессонах никаких проблем не возникало. Но вот при возвращении на поверхность у строителей часто развивались симптомы, которые французские физиологи Поль и Ваттель описали в 1854 году как On ne paie qu’en sortant — «расплата на выходе». Это мог быть сильный зуд кожи или головокружение, боли в суставах и мышцах. В самых тяжелых случаях развивались параличи, наступала потеря сознания, а затем и гибель.


Чтобы отправиться на глубину без каких-либо сложностей, связанных с экстремальным давлением, можно использовать сверхпрочные скафандры. Это чрезвычайно сложные системы, выдерживающие погружение на сотни метров и сохраняющие внутри комфортное давление в 1 атм. Правда, они весьма дороги: например, цена недавно представленного скафандра канадской фирмы Nuytco Research Ltd. EXOSUIT составляет около миллиона долларов.

Проблема в том, что количество растворенного в жидкости газа прямо зависит от давления над ней. Это касается и воздуха, который содержит около 21% кислорода и 78% азота (прочими газами — углекислым, неоном, гелием, метаном, водородом и т. д. — можно пренебречь: их содержание не превышает 1%). Если кислород быстро усваивается, то азот просто насыщает кровь и другие ткани: при повышении давления на 1 атм в организме растворяется дополнительно около 1 л азота.

При быстром снижении давления избыток газа начинает выделяться бурно, иногда вспениваясь, как вскрытая бутылка шампанского. Появляющиеся пузырьки могут физически деформировать ткани, закупоривать сосуды и лишать их снабжения кровью, приводя к самым разнообразным и часто тяжелым симптомам. По счастью, физиологи разобрались с этим механизмом довольно быстро, и уже в 1890-х годах декомпрессионную болезнь удавалось предотвратить, применяя постепенное и осторожное снижение давления до нормы — так, чтобы азот выходил из организма постепенно, а кровь и другие жидкости не «закипали».

В начале ХХ века английский исследователь Джон Холдейн составил детальные таблицы с рекомендациями по оптимальным режимам спуска и подъема, компрессии и декомпрессии. Экспериментируя с животными, а затем и с людьми — в том числе с самим собой и своими близкими, — Холдейн выяснил, что максимальная безопасная глубина, не требующая декомпрессии, составляет около 10 м, а при длительном погружении — и того меньше. Возвращение с глубины должно производиться поэтапно и не спеша, чтобы дать азоту время высвободиться, зато спускаться лучше довольно быстро, сокращая время поступления избыточного газа в ткани организма. Людям открылись новые пределы глубины.


Глубже 40 м

Гелий Борьба с глубиной напоминает гонку вооружений. Найдя способ преодолеть очередное препятствие, люди делали еще несколько шагов — и встречали новую преграду. Так, следом за кессонной болезнью открылась напасть, которую дайверы почти любовно зовут «азотной белочкой». Дело в том, что в гипербарических условиях этот инертный газ начинает действовать не хуже крепкого алкоголя. В 1940-х опьяняющий эффект азота изучал другой Джон Холдейн, сын «того самого». Опасные эксперименты отца его ничуть не смущали, и он продолжил суровые опыты на себе и коллегах. «У одного из наших испытуемых произошел разрыв легкого, — фиксировал ученый в журнале, — но сейчас он поправляется».

Несмотря на все исследования, механизм азотного опьянения детально не установлен — впрочем, то же можно сказать и о действии обычного алкоголя. И тот и другой нарушают нормальную передачу сигналов в синапсах нервных клеток, а возможно, даже меняют проницаемость клеточных мембран, превращая ионообменные процессы на поверхностях нейронов в полный хаос. Внешне то и другое проявляется тоже схожим образом. Водолаз, «словивший азотную белочку», теряет контроль над собой. Он может впасть в панику и перерезать шланги или, наоборот, увлечься пересказом анекдотов стае веселых акул.

Наркотическим действием обладают и другие инертные газы, причем чем тяжелее их молекулы, тем меньшее давление требуется для того, чтобы этот эффект проявился. Например, ксенон анестезирует и при обычных условиях, а более легкий аргон — только при нескольких атмосферах. Впрочем, эти проявления глубоко индивидуальны, и некоторые люди, погружаясь, ощущают азотное опьянение намного раньше других.


Избавиться от анестезирующего действия азота можно, снизив его поступление в организм. Так работают дыхательные смеси нитроксы, содержащие увеличенную (иногда до 36%) долю кислорода и, соответственно, пониженное количество азота. Еще заманчивее было бы перейти на чистый кислород. Ведь это позволило бы вчетверо уменьшить объем дыхательных баллонов или вчетверо увеличить время работы с ними. Однако кислород — элемент активный, и при длительном вдыхании — токсичный, особенно под давлением.

Чистый кислород вызывает опьянение и эйфорию, ведет к повреждению мембран в клетках дыхательных путей. При этом нехватка свободного (восстановленного) гемоглобина затрудняет выведение углекислого газа, приводит к гиперкапнии и метаболическому ацидозу, запуская физиологические реакции гипоксии. Человек задыхается, несмотря на то что кислорода его организму вполне достаточно. Как установил тот же Холдейн-младший, уже при давлении в 7 атм дышать чистым кислородом можно не дольше нескольких минут, после чего начинаются нарушения дыхания, конвульсии — все то, что на дайверском сленге называется коротким словом «блэкаут».

Жидкостное дыхание

Пока еще полуфантастический подход к покорению глубины состоит в использовании веществ, способных взять на себя доставку газов вместо воздуха — например, заменителя плазмы крови перфторана. В теории, легкие можно заполнить этой голубоватой жидкостью и, насыщая кислородом, прокачивать ее насосами, обеспечивая дыхание вообще без газовой смеси. Впрочем, этот метод остается глубоко экспериментальным, многие специалисты считают его и вовсе тупиковым, а, например, в США применение перфторана официально запрещено.

Поэтому парциальное давление кислорода при дыхании на глубине поддерживается даже ниже обычного, а азот заменяют на безопасный и не вызывающий эйфории газ. Лучше других подошел бы легкий водород, если б не его взрывоопасность в смеси с кислородом. В итоге водород используется редко, а обычным заменителем азота в смеси стал второй по легкости газ, гелий. На его основе производят кислородно-гелиевые или кислородно-гелиево-азотные дыхательные смеси — гелиоксы и тримиксы.

Глубже 80 м

Сложные смеси Здесь стоит сказать, что компрессия и декомпрессия при давлениях в десятки и сотни атмосфер затягивается надолго. Настолько, что делает работу промышленных водолазов — например, при обслуживании морских нефтедобывающих платформ — малоэффективной. Время, проведенное на глубине, становится куда короче, чем долгие спуски и подъемы. Уже полчаса на 60 м выливаются в более чем часовую декомпрессию. После получаса на 160 м для возвращения понадобится больше 25 часов — а ведь водолазам приходится спускаться и ниже.

Поэтому уже несколько десятилетий для этих целей используют глубоководные барокамеры. Люди живут в них порой целыми неделями, работая посменно и совершая экскурсии наружу через шлюзовой отсек: давление дыхательной смеси в «жилище» поддерживается равным давлению водной среды вокруг. И хотя декомпрессия при подъеме со 100 м занимает около четырех суток, а с 300 м — больше недели, приличный срок работы на глубине делает эти потери времени вполне оправданными.


Методы длительного пребывания в среде с повышенным давлением прорабатывались с середины ХХ века. Большие гипербарические комплексы позволили создавать нужное давление в лабораторных условиях, и отважные испытатели того времени устанавливали один рекорд за другим, постепенно переходя и в море. В 1962 году Роберт Стенюи провел 26 часов на глубине 61 м, став первым акванавтом, а тремя годами позже шестеро французов, дыша тримиксом, прожили на глубине 100 м почти три недели.

Здесь начались новые проблемы, связанные с длительным пребыванием людей в изоляции и в изнурительно некомфортной обстановке. Из-за высокой теплопроводности гелия водолазы теряют тепло с каждым выдохом газовой смеси, и в их «доме» приходится поддерживать стабильно жаркую атмосферу — около 30 °C, а вода создает высокую влажность. Кроме того, низкая плотность гелия меняет тембр голоса, серьезно затрудняя общение. Но даже все эти трудности вместе взятые не поставили бы предел нашим приключениям в гипербарическом мире. Есть ограничения и поважнее.

Глубже 600 м

Предел В лабораторных экспериментах отдельные нейроны, растущие «в пробирке», плохо переносят экстремально высокое давление, демонстрируя беспорядочную гипервозбудимость. Похоже, что при этом заметно меняются свойства липидов клеточных мембран, так что противостоять этим эффектам невозможно. Результат можно наблюдать и в нервной системе человека под огромным давлением. Он начинает то и дело «отключаться», впадая в кратковременные периоды сна или ступора. Восприятие затрудняется, тело охватывает тремор, начинается паника: развивается нервный синдром высокого давления (НСВД), обусловленный самой физиологией нейронов.


Помимо легких, в организме есть и другие полости, содержащие воздух. Но они сообщаются с окружающей средой очень тонкими каналами, и давление в них выравнивается далеко не моментально. Например, полости среднего уха соединяются с носоглоткой лишь узкой евстахиевой трубой, которая к тому же часто забивается слизью. Связанные с этим неудобства знакомы многим пассажирам самолетов, которым приходится, плотно закрыв нос и рот, резко выдохнуть, уравнивая давление уха и внешней среды. Водолазы тоже применяют такое «продувание», а при насморке стараются вовсе не погружаться.

Добавление к кислородно-гелиевой смеси небольших (до 9%) количеств азота позволяет несколько ослабить эти эффекты. Поэтому рекордные погружения на гелиоксе достигают планки 200−250 м, а на азотсодержащем тримиксе — около 450 м в открытом море и 600 м в компрессионной камере. Законодателями в этой области стали — и до сих пор остаются — французские акванавты. Чередование воздуха, сложных дыхательных смесей, хитрых режимов погружения и декомпрессии еще в 1970-х позволило водолазам преодолеть планку в 700 м глубины, а созданную учениками Жака Кусто компанию COMEX сделало мировым лидером в водолазном обслуживании морских нефтедобывающих платформ. Детали этих операций остаются военной и коммерческой тайной, поэтому исследователи других стран пытаются догнать французов, двигаясь своими путями.

Пытаясь опуститься глубже, советские физиологи изучали возможность замены гелия более тяжелыми газами, например неоном. Эксперименты по имитации погружения на 400 м в кислородно-неоновой атмосфере проводились в гипербарическом комплексе московского Института медико-биологических проблем (ИМБП) РАН и в секретном «подводном» НИИ-40 Министерства обороны, а также в НИИ Океанологии им. Ширшова. Однако тяжесть неона продемонстрировала свою обратную сторону.


Можно подсчитать, что уже при давлении 35 атм плотность кислородно-неоновой смеси равна плотности кислородно-гелиевой примерно при 150 атм. А дальше — больше: наши воздухоносные пути просто не приспособлены для «прокачивания» такой густой среды. Испытатели ИМБП сообщали, что, когда легкие и бронхи работают со столь плотной смесью, возникает странное и тяжелое ощущение, «будто ты не дышишь, а пьешь воздух». В бодрствующем состоянии опытные водолазы еще способны с этим справиться, но в периоды сна — а на такую глубину не добраться, не потратив долгие дни на спуск и подъем — они то и дело просыпаются от панического ощущения удушья. И хотя военным акванавтам из НИИ-40 удалось достичь 450-метровой планки и получить заслуженные медали Героев Советского Союза, принципиально это вопроса не решило.

Новые рекорды погружения еще могут быть поставлены, но мы, видимо, подобрались к последней границе. Невыносимая плотность дыхательной смеси, с одной стороны, и нервный синдром высоких давлений — с другой, видимо, ставят окончательный предел путешествиям человека под экстремальным давлением.

Вода, если ее напор силен, размывает любые преграды. Вот так же стихийно лет триста миллионов назад жизнь преодолела береговой барьер, хлынула на сушу и завладела миром, который прежде ей был недоступен и чужд. А сегодня уже мы, люди, стремимся стать земноводными существами. «Человечеству надо «перестраиваться» на океан — это неизбежно...» — сказал известный советский ученый академик Л. А. Зенкевич, выразив мнение многих.

Зачем нужен этот шаг и что он даст? Обычно в таких случаях говорят, что океан может и должен стать житницей растущего человечества. Это верно. Верно также и то, что на дне Мирового океана неисчислимы запасы нефти и металлов, которых порой уже не хватает на суше, да и в самой воде растворены колоссальные богатства самых редких и ценных элементов. Но ведь и жизнь двинулась в свое время на сушу в погоне за пищей, энергией и пространством. Она все это нашла там, но нашла она и другое: спираль эволюции развернулась на суше, как пружина, и итогом стало возникновение разума. А какой толчок получим мы? Освоение новой среды обогатит наш духовный мир, преграды на пути отточат разум. Освоение океана неразрывно, всеми корнями связано с процветанием человечества. «Через тернии — к звездам», — древние римляне были правы.

Нужно, однако, сказать, что далеко не все ученые едины во мнении, какими методами и средствами следует осваивать морские глубины, для начала — наиболее близкий и доступный нам шельф, континентальный склон, простирающийся на 100—300 километров от берега. Ряд океанологов, например, считает, что научные исследования океана, разведку и добычу полезных ископаемых, установку и ремонт оборудования, прокладку трубопроводов следует передать дистанционно управляемым автоматам и роботам. «Иногда, — возражает известный американский океанолог Артур Флехсиг, — слышится довод против пребывания человека в морской стихии. Речь идет о том, что будто бы вместо людей можно посылать в глубины приборы и машины, которые справятся с задачами так же хорошо, если не лучше, или же, по крайней мере, достаточно успешно. Явно излишне использовать людей, если задачи сугубо просты... Однако, будучи высказанным по поводу изучения сложных явлений, это утверждение, на мой взгляд, представляет собой сущий вздор или более снисходительно — произвольное мнение». И действительно, опыт морских нефтяников показывает, что в подавляющем большинстве случаев при выполнении сложных и ответственных работ под водой присутствие человека необходимо. Техника будет совершенствоваться? Правильно, но будет возрастать и сложность задач, а роботы, столь же совершенные, как и человек, — это в обозримом будущем утопия.

Так что человек скорее всего сам должен обжить глубину моря. А способен ли он на это? Вода, давление, мрак... Погрузиться, допустим, можно, а жить?

Годы и метры

Освоение океана часто сравнивают с освоением космоса. Методы освоения, однако, оказались противоположными: в космос первыми вышли автоматические станции, а в океан шагнул сам человек. Сначала «без ничего» — на глубину нескольких десятков метров. Затем — уже в XIX веке — одетый в скафандр, который позволил ему спускаться на глубину до 80 метров и работать там непродолжительное время. Однако, как справедливо заметил Жак-Ив Кусто, «водолаз со своими тяжелыми свинцовыми ботинками оказался жалким и неловким пленником водной стихии»...

В корне изменило дело свободное погружение с аквалангом. С аквалангом человек наконец почувствовал себя в воде как рыба. Погружение до глубин в 40—50 метров стало доступным любому здоровому человеку, и люди впервые по-настоящему увидели красоту подводного мира.

Но власти над глубинами акваланг не дал. Чем ниже погружается человек с аквалангом, тем опасней для него сжатый воздух, которым он дышит: перенасыщение кислородом вызывает судороги, повреждает легкие, а перенасыщение азотом «опьяняет» пловца и приводит к кессонной болезни. Эти физиологические барьеры, казалось бы, наглухо закрывают человеку доступ в глубины. Достаточно вспомнить, в чем суть кессонной болезни: нагнетаемый под давлением азот растворяется в тканях организма и затем вскипает при быстром подъеме, словно углекислота при откупоривании шампанского. Чтобы избежать травмы и смерти, человек вынужден подниматься очень медленно, страхуясь на каждом шагу. Для глубины 150—200 метров сроки декомпрессии так велики, что водолазный труд становится непроизводительным: за минуты работы на дне приходится расплачиваться часами изнурительного подъема.

Поразительно, однако, как быстро удалось обойти эти «непреодолимые» вроде бы барьеры! Сейчас реальностью становится то, что еще 10—15 лет назад казалось чистой фантастикой: спуск более чем на полукилометровую глубину. Пока, правда, такие глубины достигнуты лишь в гидрокамере. Но фактически это означает, что шельф теперь открыт человеку.

Успех связан прежде всего с именем молодого швейцарского ученого Ганса Келлера, который отважился предположить, что невозможное возможно, проделал колоссальную исследовательскую работу и сам на себе проверил свои теоретические выкладки. Законы физиологии изменить нельзя, зато как угодно можно менять состав дыхательной смеси, режим дыхания, погружения и всплытия. Здесь миллионы и миллионы вариантов! Неужели среди этой бесконечности нет таких, которые «провели» бы человека через все опасности? Об объеме проделанной тут работы говорит хотя бы такой факт. Келлер рассчитал на компьютере 250 тысяч вариантов газовой смеси для дыхания при подъеме человека с глубины 300 метров. Продукция в виде таблиц с различными вариантами режима выхода водолаза на поверхность весила 9 килограммов! С этим поистине драгоценным грузом ученый отправился на озеро Лаго-Маджиоре, где, опустившись на глубину 222 метров, он вынырнул обратно, потратив на подъем всего 53 минуты. Для сравнения: англичанин Джордж Вуки, который в 1956 году достиг рекордной глубины 180 метров, выбирался на поверхность в течение двенадцати часов!

Позднее Келлер перекрыл собственный рекорд: «опустившись» в гидрокамере на глубину 300 метров, он «поднялся на поверхность» за 48 минут...

В чем тут секрет? Один из режимов выхода с глубины 300 метров, предложенный Келлером, выглядит так. На глубине 300—90 метров водолаз дышит смесью гелия и кислорода. От 90 до 60 метров пользуется более тяжелой азотно-кислородной смесью. С 60 до 15 метров он дышит уже аргоно-кислородным воздухом, а с 15 метров — чистым кислородом. При этом новые комбинации газов как бы нейтрализуют вредное влияние предшествующих.

Дело пошло быстро, едва был понят, усвоен и испытан общий принцип. В 1960—1962 годах Келлер погружается в специальной барокамере на глубину 400 метров. В 1970 году англичане воспроизводят спуск на глубину 457 метров. В ноябре того же года двое французов достигают отметки 520 метров. В 1972 году взят рубеж 565 метров. Затем... Но об этом несколько позже.

Лишь одно обстоятельство омрачало ликование: во всех этих опытах человек «находился на дне» не более двадцати минут. Получалось так, что человек может достичь полукилометровых глубин, а освоить их — нет. Но огорчение длилось недолго: было открыто, что легко создать такие условия, при которых время декомпрессии практически не зависит от срока пребывания человека на большой глубине. Это означало, что если на дне моря построить дом с постоянной атмосферой и всеми удобствами, то человек может жить в нем недели, месяцы, а декомпрессию ему придется пройти лишь при выходе на поверхность.

Хроника подводного градостроительства

Подводные дома стали возникать один за другим. Первый такой дом был в 1962 году установлен Жак-Ивом Кусто на глубине 10 метров около Марселя («Преконтинент-I»). Двое акванавтов прожили в нем 196 часов и доказали, что теория верна. Дальнейшая хроника выглядит так. 1963 год: «Преконтинент-II», в котором люди прожили уже месяц (глубина погружения дома — 11 метров). «Преконтинент-II», — писал Кусто, — убедил нашу группу, что еще при нашей жизни станут обычными промышленные и научные станции на дне моря». 1964 год: американцы устанавливают подводный дом «Силэб-I» на глубине 59 метров. Почти одновременно акванавты Джон Линдберг и Робер Стенюи проводят двое суток на глубине 130 метров в «походной палатке». 1965 год: на глубину 60 метров опускается «Силэб-II». Руководитель работ Джордж Бонд на этот раз выбрал «...самую черную, самую холодную, самую страшную...» воду, которую он смог найти на краю подводного каньона. Он «задался целью доказать, что человек в течение длительного времени может выполнять полезную работу в условиях... соответствующих реальной обстановке на больших глубинах...». Обитатели «Силэб-II» провели на дне 45 дней. «Жизнь в глубинах океана была настолько необычна и увлекательна, что я не прочь устроить для своей семьи дачу под водой», — полушутя заметил один из участников опыта.

Любопытная деталь: первопроходец морских глубин Жак-Ив Кусто предполагал поставить свой «Преконтинент-III» на глубине 33 метров. Узнав о результатах опыта с «Силэбом», он решил погрузить свой подводный дом сразу на глубину 110 метров. «Жизнь коротка, и надо успеть как можно больше сделать!»

В «Преконтиненте-IV» люди провели три недели, работая на глубине 110—130 метров. Это произошло в том же 1965 году. Океанавты, между прочим, смонтировали на дне нефтяную вышку. Было доказано, что на больших глубинах человек может выполнять сложные и трудные работы даже быстрее, чем на суше.

1969 год: в воды Тихого океана на глубину 183 метров опущена подводная лаборатория «Силэб-III». Однако вскоре была замечена утечка воздуха. Последовал вызов с поверхности аварийной команды. Внезапно во время ремонтных работ от сердечного приступа гибнет один из членов экипажа...

Задержала ли эта трагедия наступление на морские глубины? Судите сами. Десять лет назад правительство США расходовало на подводные исследования и технику 29 миллионов долларов. Сейчас — 500 миллионов. На последующие десять лет запланировано потратить 5 миллиардов.

Летопись будет неполной, если мы не упомянем о работах исследователей других стран. Около десяти подводных поселений создали советские ученые в Черном море. Ученые Кубы вместе с чехословацкими коллегами неподалеку от Гаваны установили «Карибе-I». К опытам с подводными домами приступили или приступают Голландия, Италия, Япония. Все эти работы выглядят не столь сенсационно, как работы французов и американцев, но в них есть немало уникального. Так, например, голландские акванавты будут питаться в основном продуктами моря. В Италии завершен проект научного городка, который предполагается создать на дне озера неподалеку от Рима.

Ныне почти все ученые мира сходятся в одном: освоение шельфа Мирового океана осуществится в ближайшие десять-пятнадцать лет.

«Я нырну на тысячу метров!»

Человеческий разум так устроен, что он никогда не довольствуется достигнутым. Материковые отмели вскоре будут освоены, с этим все ясно. А бездны океана? Станут ли они когда-нибудь доступными?

Да. И произойдет это скорее всего тоже в пределах нашего века. По мнению ряда специалистов, уже в ближайшие 30—40 лет в центре Атлантики будет предпринята попытка возвести город-станцию с квартирами и магазинами, институтами и заводами, больницами и театрами, улицами и ресторанами. Однако для этого придется преодолеть трудности не меньшие, чем при высадке людей на Луну.

Начнем с того, что на глубине 3500 метров, где предполагается построить станцию, давление столь велико, что современная подводная лодка испытала бы там участь спичечного коробка, попавшего под кузнечный пресс. Вообще говоря, металл вряд ли пригоден для такого строительства: сокрушительное давление способно найти в нем самую микроскопическую трещинку и разломать всю конструкцию. То, что металлические батискафы опускались и на большую глубину, не должно нас слишком обнадеживать, ведь сжатие, длящееся часами, — это одно, а сжатие, длящееся годами, — нечто совсем иное.

Кое-что нам, правда, подсказывает здесь природа. Так, на идею конструкции «Преконтинента-II» навела морская звезда, а очертания новой, проектируемой американцами станции «Силэб» (экипаж — 40 человек, глубина погружения — 200 метров), напоминают собой распластанного на дне осьминога. Еще более интересные инженерные решения открываются при изучении радиолярий и диатомей. Это поистине неисчерпаемый каталог прекраснейших и опробованных природой на больших глубинах конструкций.

Но как быть все-таки с материалом? Если стали и сплавы не годятся, то может ли их что-нибудь заменить?

В принципе материал для подводных городов уже найден. Это стекло. Это хрупкое вещество обладает одной изумительной особенностью: если полый стеклянный шар опускать в воду, то он с каждым метром становится все прочней. Специалисты называют это феноменальное явление глубинным закаливанием. Первая опытная модель будущего шара-жилища была изготовлена из специального сорта стекла и в 1969 году испытана на глубине 3500 метров. Стекло прекрасно выдержало давление.

Ну а как будет чувствовать себя на этих глубинах человек? Телу не придашь другую форму, мускулы другим материалом не заменишь. На человека обрушатся сотни атмосфер давления — да ведь это все равно что лечь под кузнечный пресс!

Тем не менее Ганс Келлер заявил, что он нырнет на глубину тысячи метров. Бахвальство? Морские организмы живут даже в глубочайших впадинах. Но ведь они дышат не воздухом, их организм «спроектирован» для многокилометровых глубин, тогда как организм человека...

Но оказалось, что мы явно недоучитываем способности своего организма. Судите сами. Ганс Келлер собирается нырнуть на глубину тысячи метров. Кусто собирается жить на этой глубине (проект «Преконтинент-VII»). Этих людей нельзя заподозрить в намерении покончить с собой столь экстравагантным способом. Они все трезво рассчитали и взвесили: человек может дышать и плавать на километровой глубине!

«Но это предел, — тут же заметили некоторые специалисты. — Глубина в тысячу метров — вот та природная граница, ниже которой человек опуститься не может».

Едва этот прогноз был сделан, как четверо добровольцев захлопнули за собой люк барокамеры и «погрузились» на глубину 1520 метров! Смельчаки американцы провели в барокамере четыре часа; без всякого вреда для здоровья, между прочим.

Не отказаться ли от легких?

Всегда были, есть и будут ученые, которым не нравятся традиционные пути. Барокамеры, режимы, дыхательные смеси отвоевывают для человека одну сотню метров погружения за другой, и все-таки нет особой надежды, что в результате акванавты будут чувствовать себя уверенно на какой угодно глубине. Так не лучше ли избрать окольный путь? Если обычный способ дыхания не позволяет человеку достичь цели, то надо изменить способ дыхания, вот и все. Пусть человек научится дышать... водой!

Если бы эту идею выдвинул кто другой, а не видный голландский физиолог, профессор Иоганнес Килстри, то к ней, вероятно, отнеслись бы, мягко говоря, скептически. Разве легкие могут стать жабрами?! Тысячи утопленников доказали это со всей очевидностью. Нет, нет, это несерьезно...

И в самом деле. Конечно, в воде есть растворенный кислород. Но его всего семь миллилитров в одном литре жидкости, тогда как литр воздуха содержит около двухсот миллилитров кислорода. Разница! Да и устройство легких отличается от устройства жабр.

Тем не менее Килстри не был ни сумасшедшим, ни фантазером. Ведь, прежде чем родиться, человек дышит не воздухом, а околоплодной жидкостью. Сами легкие, хотя и отличаются от жабр, имеют сходную функцию: в обоих случаях кислород проникает в кровь сквозь тонкие клеточные мембраны, а углекислый газ выводится при выдохе.

Чтобы решить проблему водного дыхания человека, рассудил Килстри, надо устранить два препятствия. Во-первых, как мы уже говорили, в воде при атмосферном давлении растворенного кислорода содержится в 30 раз меньше, чем в том же объеме воздуха. Следовательно, человек должен пропускать через легкие в 30 раз больше воды, чем воздуха. Чтобы удалить из организма выделяющийся углекислый газ, надо, в свою очередь, «выдохнуть» вдвое больше жидкости, чем воздуха. Учитывая, что вязкость воды в 36 раз больше, чем воздуха, надо затратить на это примерно в 70 раз больше усилий, что может привести к истощению сил. Во-вторых, морская и пресная вода по химическому составу отличаются от крови, и при вдыхании можно повредить нежные ткани легких, изменить состав жидкостей, циркулирующих в организме. Чтобы преодолеть перечисленные препятствия, Килстри приготовил специальный соляной раствор, близкий по своим свойствам к плазме крови. В нем растворили химическое вещество, вступающее в реакцию с выдыхаемой двуокисью углерода. Затем в раствор был введен под давлением чистый кислород.

Первые опыты были проведены на белых мышах. Подопытных животных помещали в замкнутый, наполненный соляным раствором резервуар. Туда же под давлением в 8 атмосфер нагнетался кислород (при таком давлении животное получало столько же кислорода, сколько и при дыхании воздухом). После погружения мыши довольно скоро освоились в непривычной обстановке и как ни в чем не бывало начали дышать подсоленной и обогащенной кислородом водой! И дышали ею десять-пятнадцать часов. А одна мышь-рекордсменка прожила в жидкости 18 часов. Более того, в одном из экспериментов Килстри маленькие, ничем не защищенные зверьки были подвергнуты давлению 160 атмосфер, что равносильно спуску под воду на глубину 1600 метров!

И все же, когда мышей вернули к нормальным условиям дыхания, большинство животных погибли. По мнению экспериментаторов, причина гибели мышей в том, что у них слишком миниатюрные органы дыхания; когда зверьки выходят на воздух, остатки воды застревают в легких, и животные умирают от удушья.

Тогда Килстри перешел к опытам над собаками. Как и мыши, собаки после первых минут растерянности начинали дышать водой, словно всю жизнь только этим и занимались. Через определенное число часов собаку извлекали из аквариума, откачивали из ее легких воду, а затем, массируя ей грудную клетку, заставляли снова дышать воздухом. Легочное дыхание у собаки восстанавливалось без каких-либо вредных последствий. Позднее Килстри и его коллеги поставили ряд опытов в камере с повышенным давлением, где находились и животные, и экспериментаторы. Собак не погружали в жидкость; их просто заставляли дышать через специальное приспособление соляным раствором с растворенным в нем под давлением кислородом. Семь собак остались живы без каких-либо осложнений здоровья. Одна из них через 44 дня родила 9 здоровых щенят.

Наконец Килстри решился испробовать водяное дыхание на человеке. Добровольцем вызвался американский водолаз-глубинник Фрэнсис Фалейчик. Из соображений безопасности испытания проводились только с одним легким. В дыхательные пути был введен двойной шланг. Концы его находились в бронхах. Таким образом, каждое легкое могло дышать отдельно. Обычный воздух поступал только в левое легкое. В правое легкое водолаз вдыхал через шланг обогащенную кислородом соленую воду. Никаких осложнений не было. Фрэнсис Фалейчик не испытывал затруднений при дыхании. Он... Впрочем, вот как пишет об этом сам Килстри: «Фалейчик, находившийся в течение всей процедуры в полном сознании, рассказал, что он не заметил значительной разницы между легким, дышащим воздухом, и легким, дышащим водой. Он не испытывал также неприятных ощущений при вдохе и выдохе потока жидкости из легкого...»

Однако, несмотря на успех первого опыта с Фалейчиком, Килстри прекрасно понимает, что торжествовать рано. Хотя дыхательная жидкость и хорошо снабжала легкое кислородом, не повреждая при этом его нежные ткани, при выдохе она в недостаточной степени удаляла двуокись углерода.

Но дыхательной жидкостью может быть не только соленая вода; есть и другие, более подходящие. Для решающего опыта, когда человек будет обоими легкими дышать жидкостью, подготавливается специальная синтетическая жидкость — флюркарбон, способная содержать в себе втрое больше углекислого газа и в пятьдесят раз больше кислорода, чем воздух. Следующий этап — полное погружение человека в жидкость. Если все пойдет успешно, то человек сможет опускаться на тысячу метров и подниматься оттуда без всякой декомпрессии.

Проблема водного дыхания в последние годы увлекла многих ученых. Ряд интересных опытов с «подводными собаками» поставил американец Э. Лампьер. Значительных успехов в экспериментах с мышами достигли советские ученые, сотрудники киевской лаборатории гидробионики В. Козак, М. Иродов, В. Демченко и другие. Энтузиасты не сомневаются в том, что в недалеком будущем снабдят акванавтов таким дыхательным прибором, в котором роль воздуха будет выполнять жидкость.

Реализм фантастики

Когда в 30-х годах писатель-фантаст А. Беляев вывел в романе подводного человека — Ихтиандра, то специалисты были единодушны в своих комментариях: «Красивая выдумка, которая никогда не сбудется». Прошло время, и выяснилось, что фантаст увидел то, чего не видели специалисты: земноводный человек — это реальность будущего.

И не столь уж далекого. Так, еще в начале 60-х годов в американской печати было опубликовано сообщение, что одна из фирм США разрабатывает конструкцию миниатюрного аппарата для насыщения крови кислородом. Идея такова. Искусственные жабры прикрепляются к поясу ныряльщика, идущие от них шланги соединяются с аортой. Легкие акванавта заполняются стерильным несжимаемым пластиком, таким образом, они как бы выключены, и человек, опустившийся в морские глубины, дышит через «жабры», точнее, он вообще перестает дышать, кровь насыщается кислородом с помощью искусственных жабр.

Узнав об американских разработках «искусственных жабр», Жак-Ив Кусто заявил с трибуны Международного конгресса подводников.

«Если этот проект осуществится, искусственные жабры дадут возможность тысячам новых Ихтиандров погружаться на глубины в 2 километра и более на неограниченное время!»

Не менее интересно следующее заявление Кусто: «Чтобы человек мог выдержать давление на больших глубинах, следовало бы удалить у него легкие. В его кровеносную систему включили бы патрон, который химически питал бы кислородом его кровь и удалял из нее углекислоту. Человек уже не подвергался бы опасности декомпрессии, он мог бы совершать восхождение на Джомолунгму с песней на устах. Он чувствовал бы себя одинаково хорошо и в море, и в космосе. Мы над этим работаем. Первые хирургические опыты на животных будут проведены в 1975 году, а на человеке — в 1980-м...»

С тех пор прошло около десяти лет. Идею Кусто пытаются реализовать. Но дело тут не только в технических сложностях проблемы. Превратить «человека сухопутного» в «человека подводного», допустим, можно. А надо ли? Гуманно ли? К каким последствиям приведет искусственное разделение людей на две расы?

Заманчивей и перспективней путь, предложенный американским инженером Уолтером Роббом. Сегодня этот исследователь может продемонстрировать сидящего в аквариуме хомяка. Это не подводный житель, его организм не переделан. И все же у него и у снующих рядом рыбок есть нечто общее: и хомяк и рыбы дышат растворенным в воде кислородом. Роль жабр выполняет силиконовая пленка, которой окутан хомяк. Тончайшая силиконовая пленка обладает одним замечательным свойством: она не пропускает воду, но сквозь нее устремляются молекулы растворенного в ней кислорода; она же отводит в воду молекулы выдыхаемого углекислого газа.

Независимо от Робба искусственные жабры, на этот раз уже для человека, создал инженер Вальдемар Эйрес. По виду эти жабры напоминают объемистые, соединенные шлангами мешки, принцип их действия схож с только что описанным. Поданная Эйресом заявка долгое время игнорировалась Бюро патентов США; никто не хотел верить в возможность создания жабр для человека. Чтобы убедить недоверчивых чиновников, Эйрес пригласил их на пляж, нацепил на себя жабры и нырнул. Он пробыл под водой полтора часа, и скептикам пришлось сдаться.

Сам Эйрес уверен, что созданный им аппарат сделает человека вполне земноводным существом. Однако не все ученые разделяют его оптимизм. Но сам принцип вряд ли уже вызывает сомнения. Совсем недавно японцы сообщили о таком усовершенствовании жабр, которое позволяет пользоваться ими уже на значительных глубинах.

Водное дыхание... Искусственное изменение организма... Жабры для человека... Пока еще нельзя сказать наверняка, какое из этих средств позволит человеку стать подводным жителем. Однако нет сомнений в том, что люди смогут жить и плодотворно работать на любых глубинах. И тогда не робким восхищенным гостем, а подлинным хозяином, во всеоружии науки и техники, придет человек в Мировой океан. «Это неверно, — пишет академик Л. М. Бреховских, — что человек — существо сухопутное. Жить на планете, которая на три четверти покрыта водой, и оставаться сухопутным существом — это не удел для человека...»

Понятно, речь не идет о том, что человек должен поселиться на дне океана навечно. Даже энтузиаст идеи «гомо акватикуса» Жак-Ив Кусто в предвидении грядущих подводных городов заметил: «Нам неплохо и под солнцем». Добавим: человек вообще неотделим от солнца. Ему постоянно нужен его свет, тепло, привольный ветер, запах цветов, шелест листьев. Став земноводным, человек неизбежно будет возвращаться из глубин на землю, в свою родную стихию. Иначе он не сможет остаться человеком. И если дело стало за определениями, то человек грядущего не будет ни «человеком сухопутным», ни «человеком подводным»: он будет «человеком универсальным». Таким, который сможет жить и на суше, и в глубинах моря, и в далях космоса.

Изотиборис Литинецкис

Поделитесь с друзьями или сохраните для себя:

Загрузка...