Гравитационные волны что могут дать. Мы нашли гравитационные волны

Валентин Николаевич Руденко делится историей своего визита в город Кашина (Италия), где он провел неделю на тогда еще только что построенной «гравитационной антенне» – оптическом интерферометре Майкельсона. По дороге к месту назначения таксист интересуется, для чего построена установка. «Тут люди думают, что это для разговора с Богом», – признается водитель.

– Что такое гравитационные волны?

– Гравитационная волна один из «переносчиков астрофизической информации». Существуют видимые каналы астрофизической информации, особая роль в «дальнем видении» принадлежит телескопам. Астрономы освоили также низкочастотные каналы – микроволновой и инфракрасный, и высокочастотные – рентгеновские и гамма-. Кроме электромагнитного излучения, мы можем регистрировать потоки частиц из Космоса. Для этого используют нейтринные телескопы – крупногабаритные детекторы космических нейтрино – частиц, которые слабо взаимодействуют с веществом и поэтому трудно регистрируются. Почти все теоретически предсказанные и лабораторно-исследованные виды «переносчиков астрофизической информации» надежно освоены на практике. Исключение составляла гравитация – самое слабое взаимодействие в микромире и самая мощная сила в макромире.

Гравитация – это геометрия. Гравитационные волны – геометрические волны, то есть волны, которые меняют геометрические характеристики пространства, когда проходят по этому пространству. Грубо говоря, это – волны, деформирующие пространство. Деформация – это относительное изменение расстояния между двумя точками. Гравитационное излучение отличается от всех других типов излучений именно тем, что они геометрические.

– Гравитационные волны предсказал Эйнштейн?

– Формально считается, что гравитационные волны предсказал Эйнштейн, как одно из следствий его общей теории относительности, но фактически их существование становится очевидным уже в специальной теории относительности.

Теория относительности предполагает, что из-за гравитационного притяжения возможен гравитационный коллапс, то есть стягивание объекта в результате коллапсирования, грубо говоря, в точку. Тогда гравитация такая сильная, что из нее даже не может выйти свет, поэтому такой объект образно называется черной дырой.

– В чем заключается особенность гравитационного взаимодействия?

Особенностью гравитационного взаимодействия является принцип эквивалентности. Согласно ему динамическая реакция пробного тела в гравитационном поле не зависит от массы этого тела. Проще говоря, все тела падают с одинаковым ускорением.

Гравитационное взаимодействие – самое слабое из известных нам сегодня.

– Кто первым пытался поймать гравитационную волну?

– Гравитационно-волновой эксперимент первым провел Джозеф Вебер из Мэрилендского университета (США). Он создал гравитационный детектор, который теперь хранится в Смитсоновском музее в Вашингтоне. В 1968-1972 году Джо Вебер провел серию наблюдений на паре пространственно разнесенных детекторов, пытаясь выделить случаи «совпадений». Прием совпадений заимствован из ядерной физики. Невысокая статистическая значимость гравитационных сигналов, полученных Вебером, вызывала критическое отношение к результатам эксперимента: не было уверенности в том, что удалось зафиксировать гравитационные волны. В дальнейшим ученые пытались увеличить чувствительность детекторов веберовского типа. На разработку детектора, чувствительность которого была адекватна астрофизическому прогнозу, ушло 45 лет.

За время начала эксперимента до фиксации прошло много других экспериментов, были зафиксированы импульсы за этот период, но у них была слишком маленькая интенсивность.

– Почему о фиксации сигнала объявили не сразу?

– Гравитационные волны были зафиксированы еще в сентябре 2015 года. Но даже если совпадение было зафиксировано, надо прежде, чем объявлять, доказать, что оно не является случайным. В сигнале, снимаемом с любой антенны, всегда есть шумовые выбросы (кратковременные всплески), и один из них случайно может произойти одновременно с шумовым всплеском на другой антенне. Доказать, что совпадение произошло не случайно можно только с помощью статистических оценок.

– Почему открытия в области гравитационных волн так важны?

– Возможность зарегистрировать реликтовый гравитационный фон и измерить его характеристики, такие как плотность, температура и т.п., позволяет подойти к началу мироздания.

Привлекательным является то, что гравитационное излучение трудно обнаружить, потому что оно очень слабо взаимодействует с веществом. Но, благодаря этому же свойству, оно и проходит без поглощений из самых далеких от нас объектов с самыми таинственными, с точки зрения материи, свойствами.

Можно сказать, что гравитационные излучения проходят без искажения. Наиболее амбициозная цель – исследовать то гравитационное излучение, которое было отделено от первичной материи в Теории Большого Взрыва, которое создалось в момент создания Вселенной.

– Исключает ли открытие гравитационных волн квантовую теорию?

Теория гравитации предполагает существование гравитационного коллапса, то есть стягивание массивных объектов в точку. В то же время, квантовая теория, которую развивала Копенгагенская школа предполагает, что, благодаря принципу неопределенности, нельзя одновременно указать точно такие параметры как координата, скорость и импульс тела. Здесь есть принцип неопределенности, нельзя определить точно траекторию, потому что траектория – это и координата, и скорость и т. д. Можно определить только некий условный доверительный коридор в пределах этой ошибки, которая связана с принципами неопределенности. Квантовая теория категорически отрицает возможность точечных объектов, но описывает их статистически вероятностным образом: не конкретно указывает координаты, а указывает вероятность того, что она имеет определенные координаты.

Вопрос об объединении квантовой теории и теории гравитации – один из фундаментальных вопросов создания единой теории поля.

Над ним сейчас продолжают работать, и слова “квантовая гравитация” означают совершенно передовую область науки, границу знаний и незнаний, где сейчас работают все теоретики мира.

– Что может дать открытие в будущем?

Гравитационные волны неизбежно должны лечь в фундамент современной науки как одна из составляющих нашего знания. Им отводится существенная роль в эволюции Вселенной и с помощью этих волн Вселенную следует изучать. Открытие способствует общему развитию науки и культуры.

Если решиться выйти за рамки сегодняшней науки, то допустимо представить себе линии телекоммуникационной гравитационной связи, реактивные аппараты на гравитационной радиации, гравитационно-волновые приборы интроскопии.

– Имеют ли отношение гравитационные волны к экстрасенсорике и телепатии?

Не имеют. Описанные эффекты – это эффекты квантового мира, эффекты оптики.

Беседовала Анна Уткина

11 февраля 2016-го года международная группа ученых, в том числе из России, на пресс-конференции в Вашингтоне объявила об открытии, которое рано или поздно изменит развитие цивилизации. Удалось на практике доказать гравитационные волны или волны пространства-времени. Их существование предсказал еще 100 лет назад Альберт Эйнштейн в своей .

Никто не сомневается, что это открытие будет удостоено Нобелевской премии. Учёные не торопятся говорить о его практическом применении. Но напоминают, что еще совсем недавно человечество точно также не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.

Что такое гравитационные волны простым языком

Гравитация и всемирное тяготение – это одно и то же. Гравитационные волны являются одним из решений ОТС. Распространяться они должны со скоростью света. Излучает его любое тело, движущееся с переменным ускорением.

Например, вращается по своей орбите с переменным ускорением, направленным к звезде. И это ускорение постоянно изменяется. Солнечная система излучает энергию порядка нескольких киловатт в гравитационных волнах. Это ничтожная величина, сравнимая с 3 старыми цветными телевизорами.

Другое дело – два вращающихся вокруг друг друга пульсара (нейтронных звезды). Они вращаются по очень тесным орбитам. Такая «парочка» была обнаружена астрофизиками и наблюдалась долгое время. Объекты готовы были друг на друга упасть, что косвенно свидетельствовало, что пульсары излучают волны пространства-времени, то есть энергию в их поле.

Гравитация – сила тяготения. Нас тянет к земле. А суть гравитационной волны – изменение этого поля, чрезвычайно слабое, когда до нас доходит. К примеру, возьмем уровень воды в водоёме. Напряженность гравитационного поля — ускорение свободного падения в конкретной точке. По нашему водоёму бежит волна, и вдруг меняется ускорение свободного падения, совсем чуть-чуть.

Такие опыты начались в 60-е годы прошлого столетия. В ту пору придумывали так: подвешивали огромный алюминиевый цилиндр, охлажденный во избежание внутренних тепловых колебаний. И ждали, когда до нас внезапно дойдет волна от столкновения, например, двух массивных черных дыр. Исследователи были полны энтузиазма и говорили, что весь земной шар может испытать воздействие гравитационной волны, прилетевшей из космического пространства. Планета начнет колебаться, и можно будет изучить эти сейсмические волны (сжатия, сдвига и поверхностные).

Важная статья об устройстве простым языком, и как американцы и LIGO украли идею советских учёных и построили интроферометры, позволившие сделать открытие. Никто не говорит об этом, все молчат!

Между прочим, гравитационное излучение больше интересно с позиции реликтового излучения, найти которое пытаются по изменению спектра электромагнитного излучения. Реликтовое и электромагнитное излучение появились 700 тыс. лет после Большого взрыва, затем в процессе расширения вселенной, заполненной горячим газом с бегающими ударными волнами, превратившимися позже в галактики. При этом, естественно, должны были излучаться гигантское, умопомрачительное количество волн пространства-времени, влияющих на длину волны реликтового излучения, которое в то время еще было оптическим. Отечественный астрофизик Сажин пишет и регулярно публикует статьи на эту тему.

Неверная интерпретация открытия гравитационных волн

«Висит зеркало, на него действует гравитационная волна, и оно начинает колебаться. И даже самые незначительные колебания амплитудой меньше размера атомного ядра замечаются приборами» — такая неверная интерпретация, например, используется в статье Википедии. Не поленитесь, найдите статью советских учёных 1962 года.

Во-первых, зеркало должно быть массивным, чтобы почувствовать «рябь». Во-вторых, его нужно охлаждать практически до абсолютного нуля (по Кельвину), чтобы избежать собственных тепловых колебаний. Скорее всего не то что в 21 веке, а вообще никогда не удастся обнаружить элементарную частицу — носителя гравитационных волн:

В четверг, 11 февраля, группа ученых из международного проекта LIGO Scientific Collaboration заявили, что им удалось , существование которых еще в 1916 году предсказал Альберт Эйнштейн. По утверждению исследователей, 14 сентября 2015 года они зафиксировали гравитационную волну, которая была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца, после чего они слились в одну большую черную дыру. По их словам, это произошло предположительно 1,3 миллиарда лет назад на расстоянии 410 Мегапарсеков от нашей галактики.

Подробно о гравитационных волнах и масштабном открытии ЛІГА.net рассказал Богдан Гнатык , украинский ученый, астрофизик, доктор физико-математических наук, ведущий научный сотрудник Астрономической обсерватории Киевского национального университета имени Тараса Шевченко, который возглавлял обсерваторию с 2001-го по 2004 год.

Теория простым языком

Физика изучает взаимодействие между телами. Установлено, что между телами существует четыре вида взаимодействия: электромагнитное, сильное и слабое ядерное взаимодействие и гравитационное взаимодействие, которое мы все ощущаем. Вследствие гравитационного взаимодействия планеты вращаются вокруг Солнца, тела имеют вес и падают на землю. С гравитационным взаимодействием человек сталкивается постоянно.

В 1916 году, 100 лет назад, Альберт Эйнштейн построил теорию гравитации, которая улучшала ньютоновскую теорию гравитации, сделала ее математически правильной: она стала отвечать всем требованиям физики, стала учитывать то, что гравитация распространяется с очень большой, но конечной скоростью. Это по праву одно из самых грандиозных достижений Эйнштейна, поскольку он построил ​​теорию гравитации, которая отвечает всем явлениям физики, которые мы сегодня наблюдаем.

Эта теория также предполагала существование гравитационных волн . Основой этого предсказания было то, что гравитационные волны существуют в результате гравитационного взаимодействия, которое возникает вследствие слияния двух массивных тел.

Что такое гравитационная волна

Сложным языком это возбуждение метрики пространства-времени. "Скажем, пространство имеет определенную упругость и по нему могут бежать волны. Это похоже на то, когда мы в воду бросаем камешек и от него разбегаются волны", - рассказал ЛІГА.net доктор физико-математических наук.

Ученым удалось экспериментально доказать, что подобное колебание имело место во Вселенной и во всех направлениях пробежала гравитационная волна. "Астрофизическим способом впервые было зафиксировано явление такой катастрофической эволюции двойной системы, когда сливаются два объекта в один, а это слияние приводит к очень интенсивному выделению гравитационной энергии, которая затем в виде гравитационных волн распространяется в пространстве", - пояснил ученый.


Как это выглядит (фото - EPA)

Эти гравитационные волны очень слабые и чтобы они поколебали пространство-время, необходимо взаимодействие очень больших и массивных тел, чтобы напряженность гравитационного поля была большая в месте генерирования. Но, несмотря на их слабость, наблюдатель через определенное время (равное расстоянию к взаимодействию разделенному на скорость прохождения сигнала) зарегистрирует эту гравитационную волну.

Приведем пример: если бы Земля упала на Солнце, то произошло бы гравитационное взаимодействие: выделилась бы гравитационная энергия, образовалась бы гравитационная сферически-симметричная волна и наблюдатель смог бы ее зарегистрировать. "Здесь же произошло аналогичное, но уникальное, с точки зрения астрофизики, явление: столкнулись два массивных тела - две черные дыры", - отметил Гнатык.

Вернемся к теории

Черная дыра - это еще одно предсказание общей теории относительности Эйнштейна, которое предусматривает, что тело, которое имеет огромную массу, но эта масса сконцентрирована в малом объеме, способно существенно искажать пространство вокруг себя, вплоть до его замыкания. То есть, предполагалось, что когда достигается критическая концентрация массы этого тела - такая, что размер тела будет меньше, чем так называемый гравитационный радиус, то вокруг этого тела пространство замкнется и топология его будет такой, что никакой сигнал с него за пределы замкнутого пространства распространиться не сможет.

"То есть, черная дыра, простыми словами, это массивный объект, который настолько тяжелый, что замыкает вокруг себя пространство-время", - говорит ученый.

И мы, по его словам, можем посылать любые сигналы этому объекту, а он нам - нет. То есть, никакие сигналы не могут выходить за пределы черной дыры.

Черная дыра живет по обычным физическим законам, но в результате сильной гравитации, ни одно материальное тело, даже фотон, не способно выйти за пределы этой критической поверхности. Черные дыры образуются в ходе эволюции обычных звезд, когда происходит коллапс центрального ядра и часть вещества звезды, коллапсируя, превращается в черную дыру, а другая часть звезды выбрасывается в виде оболочки Сверхновой звезды, превращаясь в так называемую "вспышку" Сверхновой звезды.

Как мы увидели гравитационную волну

Приведем пример. Когда на поверхности воды у нас есть два поплавка и вода спокойная - то расстояние между ними постоянное. Когда приходит волна, то она смещает эти поплавки и расстояние между поплавками изменится. Волна прошла - и поплавки возвращаются на свои прежние позиции, а расстояние между ними восстанавливается.

Аналогичным образом распространяется и гравитационная волна в пространстве-времени: она сжимает и растягивает тела и объекты, которые встречаются на ее пути. "Когда на пути волны встречается некий объект - он деформируется вдоль своих осей, а после ее прохождения - возвращается к прежней форме. Под действием гравитационной волны все тела деформируются, но эти деформации - очень незначительны", - говорит Гнатык.

Когда прошла волна, которую зафиксировали ученые, то относительный размер тел в пространстве изменился на величину порядка 1 умножить на 10 в минус 21-ой степени. Например, если взять метровую линейку, то она сжалась на такую ​​величину, которая составляла ее размер, умноженный на 10 в минус 21-ой степени. Это очень мизерная величина. И проблема заключалась в том, что ученым нужно было научиться это расстояние измерить. Обычные методы давали точность порядка 1 к 10 в 9 степени милионнам, а здесь необходима гораздо более высокая точность. Для этого создали так называемые гравитационные антенны (детекторы гравитационных волн).


Обсерватория LIGO (фото - EPA)

Антенна, которая зафиксировала гравитационные волны, построена таким образом: существует две трубы, примерно по 4 километра в длину, расположенные в форме буквы "Г", но с одинаковыми плечами и под прямым углом. Когда на систему падает гравитационная волна, она деформирует крылья антенны, но в зависимости от ее ориентации, она деформирует одно больше, а второе - меньше. И тогда возникает разность хода, интерференционная картина сигнала меняется - возникает суммарная положительная или отрицательная амплитуда.

"То есть, прохождение гравитационной волны аналогично волне на воде, проходящей между двумя поплавками: если бы мы мерили расстояние между ними во время и после прохождения волны, то мы бы увидели, что расстояние изменилось бы, а потом снова стало прежним", - рассказал Гнатык.

Здесь же измеряется относительное изменение расстояния двух крыльев интерферометра, из которых каждое имеет около 4 километров в длину. И только очень точные технологии и системы позволяют измерить такое микроскопическое смещение крыльев, вызванное гравитационной волной.

На границе Вселенной: откуда пришла волна

Ученые зафиксировали сигнал с помощью двух детекторов, которые в США расположены в двух штатах: Луизиане и Вашингтон на расстоянии около 3 тыс километров. Ученым удалось оценить, откуда и с какого расстояния пришел этот сигнал. Оценки показывают, что сигнал пришел с расстояния, которое составляет 410 Мегапарсеков. Мегапарсек - это расстояние, которое свет проходит за три миллиона лет.

Чтобы было легче представить: ближайшая к нам активная галактика со сверхмассивной черной дырой в центре - Центавр А, которая находится от нашей на расстоянии четыре Мегапарсека, в то же время Туманность Андромеды находится на расстоянии 0,7 Мегапарсеков. "То есть расстояние, с которого пришел сигнал гравитационной волны настолько велико, что сигнал шел к Земле примерно 1,3 млрд лет. Это космологические расстояния, которые достигают около 10% горизонта нашей Вселенной", - рассказал ученый.

На таком расстоянии в какой-то далекой галактике произошло слияние двух черных дыр. Эти дыры, с одной стороны, были относительно малыми по размерам, а с другой стороны, большая сила амплитуды сигнала свидетельствует, что они были очень тяжелые. Установлено, что массы их были соответственно 36 и 29 масс Солнца. Масса Солнца, как известно, составляет величину, которая равняется 2 умножить на 10 в 30 степени килограмм. После слияния эти два тела слились и теперь на их месте образовалась одна черная дыра, которая имеет массу, равную 62 массам Солнца. При этом, примерно три массы Солнца выплеснулось в виде энергии гравитационной волны.

Кто и когда сделал открытие

Обнаружить гравитационную волну удалось ученым из международного проекта LIGO 14 сентября 2015 года. LIGO (Laser Interferometry Gravitation Observatory) - это международный проект, в котором принимают участие ряд государств, осуществивших определенный финансовый и научный взнос, в частности США, Италия, Япония, которые являются передовыми в области этих исследований.


Професcоры Райнер Вайс и Кип Торн (фото - EPA)

Была зафиксирована следующая картина: произошло смещение крыльев гравитационного детектора, в результате реального прохождения гравитационной волны через нашу планету и через эту установку. Об этом не сообщили тогда, потому что сигнал нужно было обработать, "почистить", найти его амплитуду и проверить. Это стандартная процедура: от реального открытия, до объявления об открытии - проходит несколько месяцев для того, чтобы выдать обоснованное заявление. "Никто не хочет портить свою репутацию. Это все секретные данные, до обнародования которых - о них никто не знал, ходили только слухи", - отметил Гнатык.

История

Гравитационные волны исследуются с 70-х годов прошлого века. За это время был создан ряд детекторов и проведен ряд фундаментальных исследований. В 80-х годах американский ученый Джозеф Вебер построил первую гравитационную антенну в виде алюминиевого цилиндра, который имел размер порядка нескольких метров, оснащенный пьезо-датчиками, которые должны были зафиксировать прохождение гравитационной волны.

Чувствительность этого прибора была в миллион раз хуже, чем нынешние детекторы. И, конечно, он тогда реально зафиксировать волну не мог, хотя и Вебер заявил, что он это сделал: пресса об этом написала и произошел "гравитацонный бум" - в мире сразу начали строить гравитационные антенны. Вебер стимулировал других ученых заняться гравитационными волнами и продолжать эксперименты над этим явлением, благодаря чему удалось в миллион раз поднять чувствительность детекторов.

Однако само явление гравитационных волн было зарегистрировано еще в прошлом веке, когда ученые обнаружили двойной пульсар. Это была косвенная регистрация факта, что гравитационные волны существуют, доказанная благодаря астрономическим наблюдениям. Пульсар был открыт Расселом Халсом и Джозефом Тейлором в 1974 году, во время проведения наблюдений на радиотелескопе обсерватории Аресибо. Ученые были удостоены Нобелевской премии в 1993 году "за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации".

Исследования в мире и Украине

На территории Италии близок к завершению аналогичный проект, которые называется Virgo. Япония также намерена через год запустить аналогичный детектор, Индия также готовит такой эксперимент. То есть, во многих точках мира существуют подобные детекторы, но они еще не вышли на тот режим чувствительности, чтобы можно было говорить о фиксации гравитационных волн.

"Официально Украина не входит в LIGO и также не участвует в итальянском и японском проектах. Среди таких фундаментальных направлений Украина сейчас принимает участие в проекте LHC (БАК - Большой адронный коллайдер) и в CERN"е (официально станем участником только после уплаты вступительного взноса)", - рассказал ЛІГА.net доктор физико-математических наук Богдан Гнатык.

По его словам, Украина с 2015 года является полноправным членом международной коллаборации CTA (МЧТ- массив черенковских телескопов), которая строит современный телескоп мультиТеВ ного гамма диапазона (с энергиями фотонов до 1014 эВ). "Основными источниками таких фотонов как раз и являются окрестности сверхмассивных черных дыр, гравитационное излучение которых впервые зафиксировал детектор LIGO. Поэтому открытие новых окон в астрономии - гравитационно-волнового и мультиТеВ ного электромагнитного обещает нам еще много открытий в будущем", - добавляет ученый.

Что дальше и как новые знания помогут людям? Ученые расходятся во мнениях. Одни говорят, что это лишь очередная ступень в понимании механизмов Вселенной. Другие видят в этом первые шаги на пути к новым технологиям перемещения сквозь время и пространство. Так или иначе - это открытие в очередной раз доказало, как мало мы понимаем и как много еще предстоит узнать.

Напомним, на днях ученые LIGO объявили о крупном прорыве в области физики, астрофизики и нашего изучения Вселенной: открытие гравитационных волн, предсказанных еще Альбертом Эйнштейном 100 лет назад. Ресурсу Gizmodo удалось найти доктора Эмбер Ставер из обсерватории Ливингстона в Луизиане, коллаборации LIGO, и подробно расспросить о том, что это значит для физики. Понимаем, что за несколько статей к глобальному пониманию нового способа постигать наш мир прийти будет сложновато, но будем стараться.

Была проведена огромная работа по обнаружению одной-единственной гравитационной волны к настоящему времени, и это стало крупным прорывом. Похоже, открывается масса новых возможностей для астрономии - но является ли это первое обнаружение «простым» доказательством того, что обнаружение возможно само по себе, или вы уже можете извлекать из него дальнейшие научные достижения? Что вы надеетесь получить от этого в будущем? Появятся ли методы обнаружения этих волн попроще в будущем?

Это действительно первое обнаружение, прорыв, но целью всегда было использовать гравитационные волны, чтобы делать новую астрономию. Вместо того чтобы искать во Вселенной видимый свет, теперь мы можем чувствовать едва заметные изменения в гравитации, которые вызываются крупнейшими, сильнейшими и (на мой взгляд) наиболее интересными вещами во Вселенной - включая и те, информацию о которых мы никогда не смогли бы получить с помощью света.

Мы смогли применить этот новый тип астрономии к волнам первого обнаружения. Используя то, что мы уже знаем об ОТО (общей теории относительности), мы смогли предсказать, на что похожи гравитационные волны объектов вроде черных дыр или нейтронных звезд. Сигнал, который мы обнаружили, соответствует предсказанному для пары черных дыр, одна из которых в 36, а другая в 29 раз массивнее Солнца, закручивающихся по мере приближения друг к другу. Наконец, они сливаются в одну черную дыру. Так что это не только первое обнаружение гравитационных волн, но и первое прямое наблюдение черных дыр, ведь их нельзя наблюдать с помощью света (только по веществу, которое вращается вокруг них).

Почему вы уверены, что посторонние эффекты (вроде вибрации) не влияют на результаты?

В LIGO мы записываем гораздо больше данных, связанных с нашей окружающей средой и оборудованием, чем данных, которые могут содержать гравитационно-волновой сигнал. Причина этого в том, что мы хотим быть максимально уверены в том, что нас не водят за нос посторонние эффекты и не вводят в заблуждение относительно обнаружения гравитационной волны. Если в момент обнаружения сигнала гравитационной волны мы почувствуем ненормальную почву, скорее всего, мы откажемся от этого кандидата.

Видео: Вкратце о гравитационных волнах

Другая мера, которую мы предпринимаем, чтобы не увидеть что-то случайное, заключается в том, что оба детектора LIGO должны увидеть один и тот же сигнал с промежутком времени, которое необходимо для перемещения гравитационной волны между двумя объектами. Максимальное время для такого путешествия - примерно 10 миллисекунд. Чтобы убедиться в возможном обнаружении, мы должны увидеть сигналы одной формы, почти в одно время, и данные, которые мы собираем о нашей окружающей среде, должны быть лишены аномалий.

Есть много других тестов, которые проходит кандидат, но это основные.

Существует ли практический способ генерировать гравитационные волны, которые могут быть обнаружены с помощью подобных устройств? Сможем ли мы построить гравитационное радио или лазер?

Вы предлагаете то же, что Генрих Герц сделал в конце 1880-х для обнаружения электромагнитных волн в форме радиоволн. Но гравитация - самая слабая из фундаментальных сил, которые удерживают Вселенную вместе. По этой причине, движение масс в лаборатории или на другом объекте с целью создания гравитационных волн будет слишком слабым, чтобы его мог уловить даже такой детектор, как LIGO. Чтобы создать достаточно сильные волны, нам придется раскрутить гантель с такой скоростью, что она разорвет любой известный материал. Но во Вселенной много крупных объемов массы, которая движется чрезвычайно быстро, поэтому мы строим детекторы, которые будут заниматься их поиском.

Изменит ли это подтверждение наше будущее? Сможем ли мы использовать силу этих волн для исследования космического пространства? Будет ли возможность общаться с помощью этих волн?

Из-за количества массы, которая должна двигаться с чрезвычайной скоростью, чтобы производить гравитационные волны, которые способны обнаружить детекторы вроде LIGO, единственным известным механизмом этого являются пары нейтронных звезд или черных дыр, вращающихся перед слиянием (могут быть и другие источники). Шансы того, что это некая продвинутая цивилизация манипулирует веществом, чрезвычайно малы. Лично я не думаю, что будет прекрасно обнаружить цивилизацию, способную использовать гравитационные волны как средство общения, поскольку она сможет играючи прикончить нас.

Когерентны ли гравитационные волны? Можно ли сделать их когерентными? Можно ли сфокусировать их? Что будет с массивным объектом, на который воздействует сфокусированный пучок гравитации? Можно ли использовать этот эффект для улучшения ускорителей частиц?

Некоторые виды гравитационных волн могут быть когерентны. Представим нейтронную звезду, которая почти идеально сферическая. Если она вращается быстро, небольшие деформации менее дюйма будут производить гравитационные волны определенной частоты, что будет делать их когерентными. Но сфокусировать гравитационные волны весьма трудно, поскольку Вселенная прозрачна для них; гравитационные волны проходят через материю и выходят неизменными. Вам нужно изменить путь по меньшей мере части гравитационных волн, чтобы их сфокусировать. Возможно, экзотическая форма гравитационного линзирования сможет хотя бы частично сфокусировать гравитационные волны, но будет сложно, если вообще возможно, их использовать. Если их можно будет сфокусировать, они по-прежнему будут настолько слабыми, что я не представляю никакого практического применения оных. Но также говорили и о лазерах, которые по сути просто сфокусированный когерентный свет, так что кто его знает.

Какова скорость гравитационной волны? Есть ли у нее масса? Если нет, может ли она двигаться быстрее скорости света?

Гравитационные волны, как полагают, движутся со скоростью света. Это скорость, ограниченная общей теорией относительности. Но эксперименты вроде LIGO должны это проверить. Возможно, они движутся чуть медленнее скорости света. Если так, то теоретическая частица, которую ассоциируют с гравитацией, гравитон, будет обладать массой. Поскольку гравитация сама по себе действует между массами, это добавит теории сложности. Но не невозможности. Мы используем бритву Оккама: простейшее объяснение, как правило, является самым верным.

Как далеко нужно быть от слияния черных дыр, чтобы суметь о них рассказать?

В случае с нашими бинарными черными дырами, которые мы обнаружили по гравитационным волнам, они произвели максимальное изменение длины наших 4-километровых рукавов на 1х10 -18 метра (это 1/1000 диаметра протона). Мы также считаем, что эти черные дыры в 1,3 миллиарда световых лет от Земли.

Теперь предположим, что наш рост два метра и мы плаваем на расстоянии Земли до Солнца от черной дыры. Думаю, вы испытали бы попеременное сплющивание и растяжение примерно на 165 нанометров (ваш рост изменяется на большее значение в течение суток). Это можно пережить.

Если использовать новый способ услышать космос, что больше всего интересует ученых?

Потенциал до конца неизвестен, в том смысле, что может быть куда больше мест, чем мы думали. Чем больше мы узнаем о Вселенной, тем лучше мы сможем отвечать на ее вопросы при помощи гравитационных волн. К примеру, на эти:

  • Что является причиной гамма-всплесков?
  • Как вещество ведет себя в экстремальных условиях коллапсирующей звезды?
  • Какими были первые мгновения после Большого Взрыва?
  • Как ведет себя вещество в нейтронных звездах?

Но мне больше интересно, что из неожиданного можно обнаружить с помощью гравитационных волн. Каждый раз, когда люди наблюдали Вселенную по-новому, мы открывали много неожиданных вещей, которые переворачивали наше представление о Вселенной. Я хочу найти эти гравитационные волны и обнаружить что-то, о чем мы понятия не имели раньше.

Поможет ли это нам сделать настоящий варп-двигатель?

Поскольку гравитационные волны слабо взаимодействуют с веществом, их вряд ли можно использовать для движения этого вещества. Но даже если бы вы могли, гравитационная волна движется всего лишь со скоростью света. Для варп-двигателя они не подойдут. Хотя было бы круто.

Как насчет антигравитационных устройств?

Чтобы создать антигравитационное устройство, нам нужно превратить силу притяжения в силу отталкивания. И хотя гравитационная волна распространяет изменения гравитации, это изменение никогда не будет отталкивающим (или отрицательным).

Гравитация всегда притягивает, поскольку отрицательной массы, похоже, не существует. В конце концов, существует положительный и отрицательный заряд, северный и южный магнитный полюс, но только положительная масса. Почему? Если бы отрицательная масса существовала, шар вещества падал бы вверх, а не вниз. Он бы отталкивался от положительной массы Земли.

Что это означает для возможности путешествий во времени и телепортации? Можем ли мы найти практическое применение этому явлению, кроме изучения нашей Вселенной?

Сейчас лучший способ путешествия во времени (и только в будущее) - это путешествовать с околосветовой скоростью (вспомним парадокс близнецов в ОТО) либо отправиться в область с повышенной гравитацией (такого рода путешествие во времени было продемонстрировано в «Интерстелларе»). Поскольку гравитационная волна распространяет изменения в гравитации, будут рождаться и очень малые флуктуации в скорости времени, но поскольку гравитационные волны по сути слабые, слабые также и временные флуктуации. И хотя я не думаю, что можно применить это к путешествиям во времени (или телепортации), никогда не говори никогда (спорю, у вас перехватило дыхание).

Настанет ли день, когда мы перестанем подтверждать Эйнштейна и снова начнем поиски странных вещей?

Конечно! Поскольку гравитация самая слабая из сил, с ней также трудно экспериментировать. До сих пор каждый раз, когда ученые подвергали ОТО проверке, они получали точно спрогнозированные результаты. Даже обнаружение гравитационных волн в очередной раз подтвердило теорию Эйнштейна. Но я полагаю, когда мы начнем проверять мельчайшие детали теории (может, с гравитационными волнами, может, с другим), мы будем находить «забавные» вещи, вроде не совсем точного совпадения результата эксперимента с прогнозом. Это не будет означать ошибочность ОТО, лишь необходимость уточнения ее деталей.

Видео: Как гравитационные волны взорвали интернет?

Каждый раз, когда мы отвечаем на один вопрос о природе, появляются новые. В конце концов, у нас появятся вопросы, которые будет круче, чем ответы, которые может позволить ОТО.

Можете ли вы объяснить, как это открытие может быть связано или повлияет на теорию единого поля? Мы оказались ближе к ее подтверждению или же развенчанию?

Сейчас результаты сделанного нами открытия в основном посвящают проверке и подтверждению ОТО. Единая теория поля ищет способ создать теорию, которая объяснит физику очень малого (квантовая механика) и очень большого (общая теория относительности). Сейчас эти две теории можно обобщить, чтобы объяснить масштабы мира, в котором мы живем, но не более. Поскольку наше открытие сосредоточено на физике очень большого, само по себе оно мало продвинет нас в направлении единой теории. Но вопрос не в этом. Сейчас только-только родилась область гравитационно-волновой физики. Когда мы узнаем больше, мы обязательно расширим наши результаты и в области единой теории. Но перед пробежкой нужно пройтись.

Теперь, когда мы слушаем гравитационные волны, что должны услышать ученые, чтобы буквально выс*ать кирпич? 1) Неестественные паттерны/структуры? 2) Источники гравитационных волн из регионов, которые мы считали пустыми? 3) Rick Astley - Never gonna give you up?

Когда я прочитала ваш вопрос, я сразу вспомнила сцену из «Контакта», в которой радиотелескоп улавливает паттерны простых чисел. Вряд ли такое можно встретить в природе (насколько нам известно). Так что ваш вариант с неестественным паттерном или структурой был бы наиболее вероятен.

Не думаю, что мы когда-то будем уверены в пустоте в определенном регионе космоса. В конце концов, система черных дыр, которую мы обнаружили, была изолирована, и из этого региона не приходил никакой свет, но мы все равно обнаружили там гравитационные волны.

Что касается музыки… Я специализируюсь на отделении сигналов гравитационных волн от статического шума, который мы постоянно измеряем на фоне окружающей среды. Если бы я нашла в гравитационной волне музыку, особенно которую слышала раньше, это был бы розыгрыш. Но музыка, которую на Земле никогда не слышали… Это было бы как с простыми случаями из «Контакта».

Раз эксперимент регистрирует волны по изменению расстояния между двумя объектами, амплитуда одного направления больше, чем другого? В противном случае не означают ли считываемые данные, что Вселенная меняется в размерах? И если так, подтверждает ли это расширение или что-нибудь неожиданное?

Нам нужно увидеть множество гравитационных волн, приходящих из множества разных направлений во Вселенной, прежде чем мы сможем ответить на этот вопрос. В астрономии это создает модель популяции. Как много различных типов вещей существует? Это главный вопрос. Как только мы заимеем много наблюдений и начнем видеть неожиданные паттерны, к примеру, что гравитационные волны определенного типа приходят из определенной части Вселенной и больше ниоткуда, это будет крайне интересный результат. Некоторые паттерны могли бы подтвердить расширение (в котором мы весьма уверены), либо другие явления, о которых мы пока не знали. Но сначала нужно увидеть много больше гравитационных волн.

Мне совершенно непонятно, как ученые определили, что измеренные ими волны принадлежат двум сверхмассивным черным дырам. Как можно с такой точностью определить источник волн?

Методы анализа данных используют каталог предсказанных сигналов гравитационных волн для сравнения с нашими данными. Если имеется сильная корреляция с одним из таких прогнозов, или шаблонов, то мы не только знаем, что это гравитационная волна, но и знаем, какая система ее образовала.

Каждый отдельный способ создания гравитационной волны, будь то слияние черных дыр, вращение или смерть звезд, все волны имеют разные формы. Когда мы обнаруживаем гравитационную волну, мы используем эти формы, как предсказывала ОТО, чтобы определить их причину.

Откуда мы знаем, что эти волны произошли из столкновения двух черных дыр, а не какого-нибудь другого события? Возможно ли предсказать, где или когда произошло такое событие, с любой степенью точности?

Как только мы узнаем, какая система произвела гравитационную волну, мы можем предсказать, насколько сильной была гравитационная волна вблизи от места своего рождения. Измеряя ее силу по мере достижения Земли и сравнивая наши измерения с предсказанной силой источника, мы можем рассчитать, как далеко находится источник. Поскольку гравитационные волны движутся со скоростью света, мы также можем рассчитать, как долго гравитационные волны двигались к Земле.

В случае с обнаруженной нами системой черных дыр, мы измерили максимальное изменение длины рукавов LIGO на 1/1000 диаметра протона. Эта система расположена в 1,3 миллиарда световых лет. Гравитационная волна, обнаруженная в сентябре и анонсированная на днях, двигалась к нам 1,3 миллиарда лет. Это произошло до того, как на Земле образовалась животная жизнь, но уже после возникновения многоклеточных.

Во время объявления было заявлено, что другие детекторы будут искать волны с более длинным периодом - некоторые из них будут вовсе космическими. Что вы можете рассказать об этих крупных детекторах?

В разработке действительно находится космический детектор. Он называется LISA (Laser Interferometer Space Antenna). Поскольку он будет в космосе, он будет достаточно чувствительным к низкочастотным гравитационным волнам, в отличие от земных детекторов, вследствие естественных вибраций Земли. Будет сложно, поскольку спутники придется разместить дальше от Земли, чем бывал человек. Если что-то пойдет не так, мы не сможем отправить астронавтов на ремонт, как с Хабблом в 1990-х. Чтобы проверить необходимые технологии, в декабре запустили миссию LISA Pathfinder. Пока что она справилась со всеми поставленными задачами, но миссия еще далека от завершения.

Можно ли преобразовать гравитационные волны в звуковые? И если да, на что они будут похожи?

Можно. Конечно, вы не услышите просто гравитационную волну. Но если взять сигнал и пропустить через динамики, то услышать можно.

Что нам делать с этой информацией? Излучают ли эти волны другие астрономические объекты с существенной массой? Можно ли использовать волны для поиска планет или простых черных дыр?

При поиске гравитационных значений имеет значение не только масса. Также ускорение, которое присуще объекту. Обнаруженные нами черные дыры вращались друг вокруг друга со скоростью в 60% световой, когда сливались. Поэтому мы смогли обнаружить их во время слияния. Но теперь от них больше не поступает гравитационных волн, поскольку они слились в одну малоподвижную массу.

Так что все, что обладает большой массой и движется очень быстро, создает гравитационные волны, которые можно уловить.

Экзопланеты вряд ли будут обладать достаточной массой или ускорением, чтобы создать обнаружимые гравитационные волны. (Я не говорю, что они их не создают вообще, только то, что они будут недостаточно сильными или с другой частотой). Даже если экзопланета будет достаточно массивной, чтобы производить нужные волны, ускорение разорвет ее на части. Не забывайте, что самые массивные планеты, как правило, представляют собой газовых гигантов.

Насколько верна аналогия волн в воде? Можем ли мы «оседлать» эти волны? Существуют ли гравитационные «пики», как уже известные «колодцы»?

Поскольку гравитационные волны могут двигаться через вещество, нет никакого способа оседлать их или использовать их для движения. Так что никакого гравитационно-волнового серфинга.

«Пики» и «колодцы» - это прекрасно. Гравитация всегда притягивает, поскольку не существует отрицательной массы. Мы не знаем почему, но ее никогда не наблюдали в лаборатории или во Вселенной. Поэтому гравитацию обычно представляют в виде «колодца». Масса, которая движется вдоль этого «колодца», будет сваливаться вглубь; так работает притяжение. Если у вас будет отрицательная масса, то вы получите отталкивание, а вместе с ним и «пик». Масса, которая движется на «пике», будет изгибаться от него. Так что «колодцы» существуют, а «пики» нет.

Аналогия с водой прекрасна, пока мы говорим о том, что сила волны уменьшается вместе с пройденным расстоянием от источника. Водяная волна будет становиться меньше и меньше, а гравитационная волна - слабее и слабее.

Как это открытие повлияет на наше описание инфляционного периода Большого Взрыва?

На данный момент это открытие пока практически никак не затрагивает инфляцию. Чтобы делать заявления вроде этого, необходимо наблюдать реликтовые гравитационные волны Большого Взрыва. Проект BICEP2 полагал, что косвенно наблюдал эти гравитационные волны, но оказалось, что виной всему космическая пыль. Если он получит нужные данные, вместе с ними подтвердится и существование короткого периода инфляции вскоре после Большого Взрыва.

LIGO сможет непосредственно увидеть эти гравитационные волны (это также будет самый слабый тип гравитационных волн, который мы надеемся обнаружить). Если мы их увидим, то сможем заглянуть глубоко в прошлое Вселенной, как не заглядывали раньше, и по полученным данным судить об инфляции.

Что такое гравитационные волны?

Гравитационные волны - изменения гравитационного поля, распространяющиеся подобно волнам. Излучаются движущимися массами, но после излучения отрываются от них и существуют независимо от этих масс. Математически связаны с возмущением метрики пространства-времени и могут быть описаны как «рябь пространства-времени».

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

Гравитационные волны предсказываются общей теорией относительности (ОТО). Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами обсерватории LIGO, на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух чёрных дыр и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов - ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем двойных звёзд за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

Если представить себе наше пространство-время как сеть координат, то гравитационные волны - это возмущения, рябь, которая будет бежать по сетке, когда массивные тела (например, черные дыры) искажают пространство вокруг себя.

Это можно сравнить с землетрясением. Представьте, что вы живете в городе. В нем есть какие-то маркеры, которые создают городское пространство: дома, деревья и так далее. Они неподвижны. Когда где-то поблизости от города происходит крупное землетрясение, колебания доходят до нас - и колебаться начинают даже неподвижные дома и деревья. Вот эти колебания и являются гравитационными волнами; а объекты, которые колеблются, - это пространство и время.

Почему ученые так долго не могли зарегистрировать гравитационные волны?

Конкретные усилия по обнаружению гравитационных волн начались в послевоенный период с несколько наивных устройств, чувствительности которых, очевидно, не могло хватить для регистрации таких колебаний. Со временем стало понятно, что детекторы для поиска должны быть очень масштабные - и они должны использовать современную лазерную технику. Именно с развитием современных лазерных технологий появилась возможность контролировать геометрию, возмущения которой и являются гравитационной волной. Мощнейшее развитие технологий сыграло ключевую роль в этом открытии. Какими бы гениальными ни были ученые, еще 30–40 лет назад сделать это было технически просто невозможно.

Почему обнаружение волн так важно для физики?

Гравитационные волны были предсказаны Альбертом Эйнштейном в общей теории относительности около ста лет назад. Все XX столетие находились физики, которые ставили под сомнение эту теорию, хотя появлялось все больше и больше подтверждений. И наличие гравитационных волн - это такое критическое подтверждение теории.

Кроме того, до регистрации гравитационных волн о том, как ведет себя гравитация, мы знали только на примере небесной механики, взаимодействия небесных тел. Но было понятно, что гравитационное поле имеет волны и пространство-время может деформироваться подобным образом. То, что мы до этого не видели гравитационных волн, было белым пятном в современной физике. Сейчас это белое пятно закрыто, положен еще один кирпич в основание современной физической теории. Это фундаментальнейшее открытие. Ничего сравнимого за последние годы не было.

«В ожидании волн и частиц» - документальный фильм про поиск гравитационных волн (автор Dmitry Zavilgelskiy)

Есть в регистрации гравитационных волн и практический момент. Наверное, после дальнейшего развития технологий можно будет говорить о гравитационной астрономии - о том, чтобы наблюдать следы наиболее высокоэнергичных событий во Вселенной. Но сейчас говорить об этом рано, речь идет только о самом факте регистрации волн, а не о выяснении характеристик объектов, которые генерируют эти волны.

Поделитесь с друзьями или сохраните для себя:

Загрузка...