Сила мысли способна изменять генетический код организма. Генная инженерия человека Что меняет днк

С помощью CRISPR прямо сейчас происходит грандиозный прорыв в генной инженерии: ученые планируют скоро научиться избавлять нас навсегда от любых болезней, с перспективой любых контролируемых мутаций и вечной жизни.

На публикацию этого поста нас натолкнуло видео “CRISPR: редактирование генов изменит все и навсегда”, в котором рассказывается о переднем крае науки в части генной модификации человека: речь идет не просто об избавлении от болезней типа СПИД, рак и многие другие, но и о создании безупречного нового вида людей, людей со сверхспособностями и бессмертии. И это происходит прямо сейчас на наших глазах.

Все эти перспективы открываются благодаря недавнему революционному открытию белка CRISPR–Cas9, но обо всем по порядку.

Раньше считалось, что ДНК в каждой нашей клетке – абсолютно идентичны и содержат нашу точную и неизменную копию – какую клетку бы ни взять, но оказалось, что это не так: ДНК в разных клетках немного разные и они меняются в зависимости от разных обстоятельств.

Открытию белка CRISPR – Cas9 помогли наблюдения за выжившими после атаки вирусов бактериями.

Древнейшая война на земле

Бактерии и вирусы соперничают с начала жизни: вирусы-бактериофаги охотятся на бактерии. В океане они убивают 40% от общего числа бактерий каждый день. Вирус делает это, вставляя свой генетический код в бактерию и использует её в качестве фабрики.

Бактерии пытаются безуспешно сопротивляться, но в большинстве случаев их защитные механизмы оказываются слишком слабыми. Но иногда бактерии выживают. Тогда они могут активировать свою самую эффективную противовирусную систему. Они сохраняют часть ДНК вируса в своём генетическом коде, ДНК-архиве “CRISPR”. Здесь она хранится до необходимого момента.

Когда вирус снова атакует, бактерия создает РНК-копию из ДНК архива и
заряжает секретное оружие – белок Cas9. Этот протеин сканирует бактерию на предмет вмешательства вируса, сравнивая каждую часть найденного ДНК с архивом. Когда находится 100% соответствие, он активируется и отрезает ДНК вируса, делая его бесполезным, таким образом защищая бактерию.

Белок Cas9 сканирует ДНК клетки на предмет внедрения вируса и заменяет испорченную часть здоровым фрагментом.

Что характерно, Cas9 очень точен, словно ДНК хирург. Переворот произошел, когда ученые поняли, что система CRISPR программируема – можно просто дать копию ДНК, которую нужно изменить, и поместить систему в живую клетку.

Помимо точности, дешевизны и простоты использования, CRISPR позволяет включать и выключать гены живых клеток и изучать конкретные последовательности ДНК.
Этот метод также работает с любыми клетками, микроорганизмами, растениями, животными или людьми.

Ученые выяснили, что Cas9 можно программировать на любые замены в любой части ДНК – и это открывает практически безграничные возможности для человечества.

Болезням конец?

В 2015-м ученые использовали CRISPR для удаления вируса ВИЧ из клеток пациентов,
и доказали, что это возможно . Годом позже они провели более амбициозный эксперимент с крысами с вирусом ВИЧ в практически всех их клетках.

Учёные просто ввели CRISPR в их хвосты, и смогли удалить более 50% вируса из клеток по всему телу. Возможно, через несколько десятилетий CRISPR поможет избавиться от ВИЧ и других ретровирусов – вирусов, которые прячутся внутри человеческой ДНК, вроде герпеса. Возможно CRISPR сможет победить нашего худшего врага, рак .

Рак является результатом появления клеток, отказывающихся умирать и продолжающих делиться, попутно прячась от иммунной системы. CRISPR дает нам средство редактировать наши иммунные клетки и делать их лучшими охотниками на раковые клетки.

Возможно через некоторое время лечение от рака будет всего лишь парой уколов с несколькими тысячами ваших собственных клеток, созданных в лаборатории, чтобы вылечить вас навсегда.

Возможно через некоторое время вопрос лечения рака – вопрос пары уколов модифицированных клеток.

Первое клиническое испытание такой терапии на пациентах-людях было одобрено в начале 2016-го в США. Менее чем через месяц китайские ученые объявили, что будут лечить пациентов с раком легких иммунными клетками, модифицированными по этой же технологии, в августе 2016 . Дело быстро набирает обороты.

А еще есть генетические заболевания, тысячи их. Они разнятся от слегка раздражающих до крайне смертельных или приносящих годы страданий. С мощными инструментами вроде CRISPR однажды мы сможем покончить с этим.

Более 3000 генетических заболеваний вызываются единственной заменой в ДНК.
Мы уже создаем модифицированную версию Cas9, которая исправляет такие ошибки и избавляет клетку от заболевания. Через пару десятилетий мы может быть сможем навсегда уничтожить тысячи заболеваний. Однако у всех эти медицинских применений один недостаток – они ограничены одним пациентом и умрут вместе с ним, если мы не используем их на репродуктивных клетках или на ранней стадии развития плода.

CRISPR вероятно будет использоваться куда шире. Например для создания модифицированного человека, спроектированного ребенка. Это принесет плавные но необратимые изменения в человеческом генофонде.

Спроектированные дети

Средства изменения ДНК человеческого плода уже существуют,
но технология находится на раннем этапе развития. Однако, ее применяли уже дважды. В 2015-м и 2016-м эксперименты китайских ученых с человеческими эмбрионами достигли частичного успеха на второй попытке.

Они выявили гигантские трудности в редактировании генов эмбрионов, но множество ученых уже работают над решением этих проблем. Это то же самое, что и компьютеры 70-х: в будущем они станут лучше.

Вне зависимости от ваших взглядов на генную инженерию, она коснётся всех. Модифицированные люди могут изменить геном всего нашего вида, потому что их привитые качества будут переданы их детям, и через поколения медленно распространятся, медленно меняя генофонд человечества. Это начнется постепенно.

Первые спроектированные дети не будут сильно отличаться от нас. Скорее всего, их гены будут изменены для избавления от смертельных наследственных заболеваний.
По мере развития технологий все больше людей начнут думать, что неиспользование генетической модификации неэтично, потому что это обрекает детей
на страдание и смерть, которые можно предотвратить.

Как только первый такой ребенок родится, откроется дверь, которую уже не удастся закрыть. Сначала некоторые черты никто не будет трогать, но по мере роста одобрения технологии и наших знаний о генетическом коде, будет расти будет и соблазн.
Если вы сделаете свое потомство иммунным к болезни Альцгеймера, почему бы вдобавок не дать им улучшенный метаболизм? Почему бы до кучи не наградить их отличным зрением? Как насчет роста или мускул? Пышных волос? Как насчет дара исключительного интеллекта для вашего ребенка?

Огромные перемены придут как результат накопления личных решений миллионов людей.
Это скользкий склон, и модифицированные люди могут стать новой нормой. Пока генная инженерия становится все более привычной, а наши знания улучшаются, мы можем подойти к искоренению главной причины смертности – старения.

2/3 из примерно 150 000 человек, умерших сегодня, умерли по причинам, связанным со старением.

Сегодня считается, что старение вызывается накоплением повреждений в наших клетках
вроде разрывов ДНК или износа систем, ответственных за исправление этих повреждений.
Но есть также и гены, которые напрямую влияют на наше старение.

Генная инженерия и прочая терапия могли бы остановить или замедлить старение. Возможно даже обратить его вспять.

Типичная реакция на возможность вечной жизни (как и любой другой привычной сейчас, но революционной несколько сотен лет назад технологии).

Вечная жизнь и “люди икс”

Мы знаем, что в природе есть животные, которые не стареют. Может, мы могли бы занять у них пару генов. Некоторые ученые считают что однажды старение будет искоренено. Мы все равно будем умирать, но только не в больнице в 90 лет, а через пару тысяч лет, прожитых в окружении наших любимых.

Вызов огромен и, возможно, цель недостижима, но можно допустить, что люди, живущие сегодня, могут оказаться первыми, кто вкусит плоды анти-возрастной терапии. Возможно, нужно всего лишь убедить смышленого миллиардера в необходимости помочь решить эту большую проблему.

Если смотреть на это шире, мы могли бы решить множество задач с помощью специально измененных людей, например которые могли бы лучше справляться с высококалорийной едой, и избавиться от таких недугов цивилизации как ожирение.

Владея модифицированной иммунной системой с перечнем потенциальных угроз,
мы могли бы стать неуязвимыми для большинства заболеваний, преследующих нас сегодня. Ещё позже мы смогли бы создать людей для длительных космических перелетов и для адаптации к различным условиям на других планетах, что было бы крайне полезно для поддержания нашей жизни во враждебной вселенной.

Несколько щепоток соли

Есть несколько главных препятствий, технологических и этических. Многие почувствуют страх перед миром, где мы отсеиваем несовершенных людей, а потомство выбираем на основе того, что считается здоровым.

Но мы уже живем в таком мире. Тесты на десятки генетических заболеваний или осложнений стали нормой для беременных женщин во многих странах. Часто одно подозрение на генетический дефект может привести к прерыванию беременности.
Возьмем для примера синдром Дауна, один из самых распространенных генетических дефектов: в Европе около 90% беременностей с установленным наличием этого отклонения прерываются.

Генетический отбор в действии: уже сейчас синдром Дауна диагностируется на ранней стадии развития эмбриона и 90% беременности с этим диагнозом прерывается.

Решение о прерывании беременности является очень личным, но важно понимать, что мы уже сегодня отбираем людей, основываясь на состоянии здоровья. Нет смысла притворяться, что это изменится, поэтому нам необходимо действовать осторожно и этично, несмотря на растущую свободу выбора благодаря дальнейшему развитию технологий.

Однако, все это перспективы отдаленного будущего. Несмотря на мощность CRISPR, метод не лишен недостатков. Могут случиться ошибки при редактировании, неизвестные ошибки могут произойти в любой части ДНК и остаться незамеченными.

Изменение гена может достичь нужного результата и вылечить от заболевания, но вместе с этим спровоцировать нежелательные изменения. Мы попросту недостаточно знаем о сложных взаимосвязях наших генов, чтобы избежать непредсказуемых последствий.

Работа над точностью и методами наблюдения очень важна в предстоящих клинических испытаниях. И раз уж мы обсудили возможное светлое будущее, также стоит упомянуть и более мрачное видение. Представьте, что может страна вроде Северной Кореи сделать с таким уровнем технологий?

Важно, чтобы технология генной модификации не попала в руки тоталитарным режимам, которые гипотетически могут использовать ее во вред человечеству – например, создать армию генетически модифицированных солдат.

Может она навечно продлить свое правление с помощью принудительной инженерии? Что остановит тоталитарный режим от создания армии модифицированных суперсолдат?

Ведь это в теории возможно. Сценарии вроде этого лежат в далеком будущем, если они вообще возможны, но подтверждение работоспособности концепции такой инженерии уже существует. Технология и правда настолько могущественна.

Подобное может стать поводом для запрета инженерии и связанных с ней исследований, но это определенно было бы ошибкой. Запрет на генную инженерию человека только приведёт науку в области с такими правилами и законами, с которыми нам было бы не по себе. Только участвуя в процессе, мы сможем быть уверены, что исследование ведется с осторожностью, разумом, контролем и прозрачностью.

Мы можем исследовать и внедрять в человека любые генные модификации.

Заключение

Чувствуете беспокойство? Почти в каждом из нас есть какое-то несовершенство. Позволили бы нам существовать в подобном новом мире? Технология несколько устрашает, но нам есть что выиграть, да и генная инженерия может быть очередной ступенью в эволюции разумных видов жизни.

Возможно мы покончим с болезнями, увеличим продолжительность жизни на века и отправимся к звездам. Не стоит мелко мыслить, говоря о такой теме. Каким бы ни было ваше мнение о генной инженерии, будущее наступает несмотря ни на что.

То, что раньше было научной фантастикой, вскоре станет нашей новой реальностью.
Реальностью, полной возможностей и препятствий.

Вы можете также посмотреть непосредственно само видео:

Может показаться, что ДНК - главный центр молекулы, без которой ее жизнь невозможна. На самом деле ДНК - достаточно чувствительная сложная молекула, которая сама способна быстро изменяться и проявлять особенные свойства. На нее оказывают влияние как наши мысли и намерения, так и факторы воздействия физического и химического характера.

Сложные цепочки генетических кодов, каждое звено которых может перестать работать или активизироваться в любую минуту - вот что представляет собой сосредоточение генетического материала человека. Кроме того, спирали генов способны проявлять невероятные свойства и помогать сохранять энергию невероятно длительное время. Но как такое возможно и как можно настроить свой организм на исцеления путем влияния на ДНК?

Световая ловушка

Фотоны света не задерживаются, а постоянно рассеиваются. В растениях энергия света преобразуется в молекулы питательных веществ, а в организме человека для улавливания фотонов света может служить спиралевидная молекула ДНК. Это доказано в эксперименте с помещением ДНК в кварцевый контейнер и облучением его светом. Интересно, что сам свет приобретал также спиралевидную структуру и мог храниться в течение месяца даже после того, как молекулу ДНК удалили из контейнера. Такое преобразование и хранение световой энергии доступно только спиралевидным молекулам, которые ответственны за передачу генетической информации.

Самостоятельное исцеление

Многие люди считают, что наследственность играет основную роль в состоянии здоровья. На самом деле экспериментальные данные о значении позитивного мышления в управлении ДНК говорят о том, что гены определяют нас всего лишь отчасти, в остальном же человек сам отвечает за собственные болезни и склонности. При стрессах, раздражении, постоянных переживаниях гены перестают работать нормально, возникают предпосылки для развития болезней. Патологии могут затрагивать абсолютно любые органы и ткани, но все начинается с мышления и саморазрушающих механизмов воздействия сознания на спиралевидные молекулы.

Источником энергии для оздоровления клеточных молекул является любовь. Это способ направленного целительного омоложения клеток, предотвращения их старения и разрушения. Любовь позволяет усиливать позитивную энергию и делать мысли более сильными. Без любви организм не может развиваться нормально. Это доказывают экспериментальные наблюдения, когда дети не могу полноценно развиваться, если им не хватает родительской ласки и любви. Доказано, например, что дети из приютов чаще страдают от аутизма, чем малыши, о которых заботятся родители.

Мыслительные преобразовании

Воздействовать на структурные изменения в ДНК можно на расстоянии посредством намерения.
Если человек осознанно концентрируется на хороших мыслях, а его мозг начинает излучать гармоничные волны, но спирали ДНК начинают преобразовываться. Причем, если человек воздействует позитивными мыслями и намерениями, то изменения приводят к исцеляющим преобразованиям, а если в мыслях присутствует направленный гнев, злоба, раздражение, то ДНК настраиваются на волну умирания. Все дело в том, что мозг начинает преобразовывать мысли в потоки энергии, которые воспринимаются и интерпретируются ДНК как сигналы к восстановлению организма, или, наоборот, к самоуничтожению.

По данным экспериментов изменения в структуре ДНК, помещенной в изолированную пробирку с нейтральной средой, при отсутствии мыслительного воздействия практически не имели место. Зато при сосредоточении мыслей именно на пробирке с ДНК начинались изменения в 10% участков молекулы, которая несет генетическую информацию. Вот как работают целители. Они способны преобразовать позитивные мысли и настрои в энергию мозговых волн. Именно такие волны дают клеткам организма сигналы о необходимости исцеления органов и систем.

Могут ли полезные или вредные привычки, диеты и занятия спортом отразиться на детях или внуках? Не аукнется ли потомкам наш недосып или лишние бокалы шампанского - вдруг из-за наших неразумных решений у детей проявится склонность к алкоголизму, диабет или синдром запястного канала? Look At Me приводит основные аргументы учёных-генетиков, врачей и других специалистов, которые ответили на этот вопрос в разделе «Ask Science» на Reddit.

Влияет ли образ жизни на ДНК?


Хотя образ жизни не влияет на структуру ДНК, он может оказать воздействие на факторы, которые регулируют активность генов. Это явление называется эпигенетическим наследованием: в зависимости от того, какие факторы влияли на организм в течение жизни, у его потомства могут проявиться или, наоборот, не проявиться некоторые свойства, изначально заложенные в генетический код.

Структура самого генома, передающегося потомку, может быть изменена только во время беременности: плохое питание, стрессы или заболевания, перенесённые матерью в этот период, могут стать причиной мутаций на генном уровне и нарушения структуры ДНК - например, из-за таких мутаций могут родиться дети с лишней хромосомой. Но эти изменения довольно случайны, возникают не всегда и часто не связаны с образом жизни матери. Это генная аномалия, которую трудно предсказать до зачатия, но сегодня будущих родителей могут предупредить с помощью пренатальной диагностики - в программу исследований входит специальный тест, позволяющий проверить плод на 6000 возможных нарушений в развитии.

Однако не все свойства, передающиеся от родителей потомкам, заложены в ДНК. Механизм наследования вне структуры генетического кода изучает специальный раздел науки - эпигенетика. Сам термин был придуман англичанином Конрадом Уоддингтоном в 50-х. Учёный ещё не знал, как устроен геном человека, но догадывался о существовании некоего механизма, который управляет наследственным материалом живых существ. В 1990-е годы, когда был расшифрована ДНК человека, исследователи вспомнили про эпигенетику и нашли подтверждения гипотезам Уоддингтона. Сейчас эпигенетическим (дословно - «надгенным») наследованием называют все изменения, связанные с фенотипом или экспрессией генов, которые проявляются у потомков в первом поколении у живых существ и в нескольких поколениях у клеточных организмов.

учёные не знают, как именно происходит наследование у живых существ. Чтобы отследить причины проявления похожих признаков, нужно учесть бесконечное множество факторов: условия, в которых происходил рост и развитие животного, факторы внешней среды, экологию, космическое излучение и так далее. Исследователи не могут точно сказать, что влияет на экспрессию генов, и если у вас проявляются те же свойства, что у ваших родителей - это не значит, что они передались вам генетически. Возможно, на ваш фенотип влияет климат, ритм жизни в родном городе или потребление продуктов питания, привычных для вашей семьи.


Особенно трудно описать механизм наследования определённых признаков и черт характера у людей - в отличие от большинства животных, люди в своём развитии сильно зависят от социума, и на ребёнка в процессе взросления оказывают воздействие его родственники, сверстники, учителя, герои фильмов, принятые в обществе нормы и порядки. Грубо говоря, если в семье три поколения занимаются спортом, это не значит, что дети наследуют рельефные мышцы генетически: в первую очередь на них влияет воспитание и семейная традиция проводить вечера в спортзале.

Но что если передаваться от поколения к поколению могут не только физиологические характеристики, но и паттерны поведения? Благодаря этому вопросу совсем недавно появилось новое направление - поведенческая эпигенетика. Учёные, работающие в этой сфере, предполагают, что образ жизни родительского организма может повлиять на характер и поведенческие сценарии потомка.

В 2013 году в авторитетном журнале Neuroscience были опубликованы результаты эскпериментов, проведенных на лабораторных мышах: исследователи научили животное бояться запаха вишни (выбор аромата они, кажется, ничем не объясняют), а затем наблюдали проявление такого же страха у потомства этой мыши и даже последующих поколений.

Мы не можем точно знать, что послужило причиной этому: возможно, механизм генетической передачи поведенческих сценариев гораздо более сложен и у мышей проявляется совсем не так, как у людей. Но биологи говорят, что возможность передавать приобретённые навыки генетическим путём была бы неплохим акселератором эволюции, ведь таким образом более совершенные существа появлялись бы значительно быстрее, чем вследствие случайных генных мутаций. Если верить в то, что природа устроена логично, передача паттернов поведения была бы очень кстати для развития живых существ.


но передаются ли потомкам все поведенческие сценарии, или только те, что были полезными для родительского существа? Страх - это проявление инстинкта самосохранения, который помогает мыши защитить себя и будущее популяции, а привычка употреблять алкоголь, например, имеет прямо противоположный эффект. Генетики говорят, что присутствие в генеалогическом древе нескольких страдающих алкоголизмом родственников не увеличивает шансы ребёнка пристраститься к выпивке: скорее всего, в его ДНК будет предрасположенность к алкоголизму, но без побуждающего влияния социальной среды этот ген не проявится.

Получается, что опыт, полученный родителями, всё-таки может повлиять на потомство, но не может изменить ДНК. Так как эпигенетическое наследование открыто совсем недавно, у исследователей не было возможности отследить его на нескольких поколениях людей: сейчас феномен изучают на мышах, структура ДНК которых близка к человеческой, а скорость размножения позволяет отследить экспрессию генов на родителях, детях и внуках. Но вопрос о проецировании результатов экспериментов на людей остаётся открытым.

Занимаясь спортом или соблюдая правильный режим питания, вы не меняете свой генетический код, но используете возможности, заложенные в него природой. Можно сравнить это с игровыми приставками: вставляя разные картриджи, вы получите разные результаты, но без самой консоли с определёнными техническими характеристиками картриджи ничего не значат. В любом случае, заботиться о себе и своём здоровье - неплохая идея, даже если выработанные с таким трудом полезные привычки не передадутся вашим детям эпигенетически.

Определенные химические маркеры в геноме человека изменяются в течение всей его жизни. Такое заключение сделала международная группа исследователей после анализа образцов ДНК одних и тех же людей, полученных с интервалом в несколько лет. Ученые опубликовали свою работу в журнале Journal of the American Medical Association .

Молекулы ДНК человека несут информацию обо всех особенностях его организма. Информацию, содержащуюся в геноме, можно условно разделить на два типа. Первый - это информация, закодированная в составных блоках ДНК - азотистых основаниях. Она передается по наследству и остается неизменной в течение жизни человека (если в ДНК не появляются случайные изменения - мутации). Информация второго типа определяется так называемыми эпигенетическими маркерами - химическими "надстройками" азотистых оснований. Наследование эпигенетических маркеров не подчиняется классическим законам генетики, однако они оказывают существенное влияние на функционирование генома.

До сих пор у ученых не было единого мнения относительно изменения эпигенетических маркеров ДНК в течение жизни человека. Исследователи под руководством Эндрю Фейнберга (Andrew Feinberg) из Университета Джона Хопкинса в Балтиморе изучали этот вопрос на примере одного из видов эпигенетической маркировки - метилирования. Ученые анализировали образцы ДНК 111 человек из Исландии, взятые в начале 1990-х и 2000-х годов. Во время отбора второй серии образцов добровольцам было 69 лет и больше. Чтобы исследовать рисунок метилирования, ученые использовали особый фермент, который режет определенную последовательность ДНК только в том случае, если она метилирована. Оценивая количество разрезов в "старых" и "новых" образцах ДНК, исследователи определяли разницу в уровне метилирования.

Оказалось, что у двух третей добровольцев уровень метилирования изменился как минимум на пять процентов. Приблизительно у трети исследованных людей "накопилось" около десяти процентов изменений. Интересно, что увеличение и уменьшение количества метильных групп в геноме наблюдалось одинаково часто. Чтобы понять, носит ли изменение профиля метилирования наследственный характер, ученые сравнили ДНК 126 человек из 21 американской семьи. Образцы ДНК отбирались с интервалом в 16 лет.

Результаты этих тестов оказались примерно такими же, как и результаты предыдущего эксперимента: у двух пятых из добровольцев уровень метилирования изменился на пять процентов и частота "прибавок" и "вычетов" метильных групп была примерно одинаковой. Однако у членов одной семьи преимущественно наблюдалось либо уменьшение либо увеличение числа метильных групп в геноме.

Авторы работы признают, что несмотря на всю важность полученных результатов, на сегодняшний день оценить их значение не представляется возможным. Эпигенетические изменения оказывают существенное воздействие на функционирование генома в целом, однако механизмы действия этих изменений пока весьма слабо изучены.

ДНК - это химическое вещество, которое подвержено внешнему влиянию. Эти влияния могут быть физическими (температура, ультрафиолетовое и радиационное излучение) или химическими (свободные радикалы, канцерогены и т. п.).

## Температура

При повышении температуры на каждые 10 градусов скорость химической реакции увеличивается в 2 раза. Конечно, в клеточном ядре (там, где хранится ДНК) нет таких перепадов температуры. Но есть небольшие изменения, которые могут привести к тому, что ДНК прореагирует с каким-нибудь веществом, растворенным неподалеку.

## УЛЬТРАФИОЛЕТ

Ультрафиолет действует на нас почти всегда. Зимой это ничтожные дозы. Летом - значительные. Если ультрафиолетовый фотон попадает в молекулу ДНК, его энергии хватает для образования новой химической связи. Соседние звенья ДНК (нуклеотиды) могут образовать дополнительную связь друг с другом, что приведет к нарушению считывания и репликации ДНК. Или же УФ фотон может привести в разрыву нити ДНК из-за своей высокой энергии.

## РАДИАЦИЯ

Радиационное излучение. Вы думаете, оно только на реакторе? Есть так называемый нормальный радиационный фон, то есть вокруг и через нас каждую секунду пролетает несколько частиц, и не всегда это происходит бесследно для нашей ДНК. Чтобы понять масштабность радиационного фона, посмотрите сюда .

Но не стоит бояться. Фон не зря назван нормальным. Далеко не все частицы проходят через кожу, из проникнувших не все проникают глубоко, а те, что проникли, часто врезаются в другие молекулы и атомы в клетке, которых очень много. Лишь единицы добираются до ДНК, и то могут не оказать никакого эффекта на нее.

Кстати, чем выше над землей, тем радиационный фон ярче. Связано это с космической радиацией, от которой нас в большей степени защищает магнитное поле земли и атмосфера. Чем дальше от земли, тем магнитное поле слабее и слой атмосферы тоньше, и большее число высокоэнергетических частиц бомбардируют наше тело.

## СВОБОДНЫЕ РАДИКАЛЫ

Среди химических бОльшая роль отводится именно свободным радикалам, которые постоянно образуются в клетке. Это побочный продукт окислительно-восстановительных процессов, без которых невозможна жизнь. Конечно, за миллионы лет эволюции выжили только те организмы, у которых возникла система нейтрализации свободных радикалов. У нас она тоже есть. Но ничто не работает со 100% эффективность, и нет-нет, да несколько радикалов умудряются повредить ДНК.

Кстати о радиации. Она также ответственна за образование свободных радикалов. Те высокоэнергетические частицы, которые прореагировали с веществами, окружающими ДНК, часто приводят в образованию радикалов.

## КАНЦЕРОГЕНЫ

Что касается канцерогенов, то хорошим примером является бензпирен - вещество, образующееся при горении угля и углеводородов, например бензина. Он содержится в выхлопных газах и дыме от костра. Безпирен имеет высокое сродство к ДНК и встраивается в структуру ДНК, нарушая тем самым последовательность нуклеотидов. Есть и другие механизмы повреждения ДНК.

Внешними воздействиями причины не ограничены. Внутренняя кухня тоже не без изъяна. ДНК - динамичная молекула, которая часто удваивается, постоянно распутывается и спутывается, меняет свое положение в пространстве. Не все из этих процессов проходят гладко, и могут возникать разрывы нити ДНК, перестановка и даже потеря участков цепи, слияние нескольких молекул в одну. При делении клетки не все хромосомы могут поспеть за вновь образующимися клетками, и у одной из дочерних клеток может оказаться меньше хромосом, а у другой больше. Это тоже мутация.

Удвоение ДНК тоже происходит не точь-в-точь, а с ошибками. Более того, каждая копия немного короче оригинала, потому что края (теломеры) сложно скопировать. Рано или поздно (когда мы уже старые) теломеры укорачиваются настолько, что в "под нож" попадают кодирующие участки ДНК.

Все это звучит страшно, но во-первых, часто мутации являются безразличными и редко имеют негативные последствия, во-вторых в ходе эволюции возник механизм починки повреждений ДНК, который неплохо справляется со своими обязанностями, а в-третьих, мутационный процесс необходимый компонент для эволюции и позволяет появиться на свет тому, чего в природе еще не было.

Поделитесь с друзьями или сохраните для себя:

Загрузка...