Что такое доза излучения в каких единицах. В чём измеряется радиация: радиационный фон и дозы облучения

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже (в таблице 1.) дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.

Таблица 1.

Основные радиологические величины и единицы

Величина

Наименование и обозначение единицы измерения

Соотношения между единицами

Внесистемные

Активность нуклида, А

Кюри (Ки, Ci)

Беккерель (Бк, Bq)

  • 1 Ки = 3.7*1010Бк1 Бк = 1 расп/с
  • 1 Бк=2.7*10-11Ки

Экспозиционная доза, X

Рентген (Р, R)

Кулон/кг (Кл/кг, C/kg)

1 Р=2.58*10-4 Кл/кг1 Кл/кг=3.88*103 Р

Поглощенная доза, D

Рад (рад, rad)

Грей (Гр, Gy)

1 рад-10-2 Гр1 Гр=1 Дж/кг

Эквивалентная доза, Н

Бэр (бэр, rem)

Зиверт (Зв, Sv)

1 бэр=10-2 Зв 1 Зв=100 бэр

Интегральная доза излучения

Рад-грамм (рад*г, rad*g)

Грей- кг (Гр*кг, Gy*kg)

1 рад*г=10-5 Гр*кг1 Гр*кг=105 рад*г

Для описания влияния ионизирующих излучений на вещество используются следующие понятия и единицы измерения:

Активность радионуклида в источнике (А). Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt):

Единица активности в системе СИ - Беккерель (Бк).

Внесистемная единица - Кюри (Ки).

Число радиоактивных ядер N(t) данного изотопа уменьшается со временем по закону:

N(t) = N0 exp(-tln2 / T1/2) = N0 exp(-0.693t / T1/2)

где No - число радиоактивных ядер в момент времени t = 0, Т1/2 период полураспада - время, в течение которого распадается половина радиоактивных ядер.

Массу m радионуклида активностью А можно рассчитать по формуле:

m = 2.4*10-24 M T1/2 A

где М - массовое число радионуклида, А - активность в Беккерелях, T1/2 - период полураспада в секундах. Масса получается в граммах. Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц:

Единица экспозиционной дозы - Рентген (Р). Рентген - это экспозиционная доза рентгеновского и -излучения, создающая в 1куб.см воздуха при температуре О°С и давлении 760 мм рт.ст. суммарный заряд ионов одного знака в одну электростатическую единицу количества электричества.

Экспозиционной дозе 1 Р соответствует 2.08*109 пар ионов (2.08*109 = 1/(4.8*10-10)). Если принять среднюю энергию образования 1 пары ионов в воздухе равной 33.85 эВ, то при экспозиционной дозе 1 Р одному кубическому сантиметру воздуха передается энергия, равная:

(2.08*109)*33.85*(1.6*10-12) = 0.113 эрг,

а одному грамму воздуха:

0.113 /возд = 0.113/0.001293 = 87.3 эрг.

Поглощение энергии ионизирующего излучения является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы.

Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме:

Единица поглощенной дозы - Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1грамм облученного вещества.

Эквивалентная доза (Н). Для оценки возможного ущерба здоровью человека в условиях хронического облучения в области радиационной безопасности введено понятие эквивалентной дозы Н, равной произведению поглощенной дозы Dr, созданной облучением - r и усредненной по анализируемому органу или по всему организму, на весовой множитель wr (называемый еще - коэффициент качества излучения) (таблица 2).

Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв).

Таблица 2.

Весовые множители излучения

Вид излучения и диапазон энергий

Весовой множитель

Фотоны всех энергий

Электроны и мюоны всех энергий

Нейтроны с энергией < 10 КэВ

Нейтроны от 10 до 100 КэВ

Нейтроны от 100 КэВ до 2 МэВ

Нейтроны от 2 МэВ до 20 МэВ

Нейтроны > 20 МэВ

Протоны с энергий > 2 МэВ (кроме протонов отдачи)

Частицы, осколки деления и другие тяжелые ядра

Влияние облучения носит неравномерный характер. Для оценки ущерба здоровью человека за счет различного характера влияния облучения на разные органы (в условиях равномерного облучения всего тела) введено понятие эффективной эквивалентной дозы Е эфф применяемое при оценке возможных стохастических эффектов - злокачественных новообразований.

Эффективная доза равна сумме взвешенных эквивалентных доз во всех органах и тканях:

где w t - тканевый весовой множитель (таблица 3), а H t -эквивалентная доза, поглощенная в ткани - t. Единица эффективной эквивалентной дозы - Зиверт.

Таблица 3

Коллективная эффективная эквивалентная доза. Для оценки ущерба здоровью персонала и населения от стохастических эффектов, вызванных действием ионизирующих излучений, используют коллективную эффективную эквивалентную дозу S, определяемую как:

где N(E) - число лиц, получивших индивидуальную эффективную эквивалентную дозу Е. Единицей S является человеко-Зиверт (чел-Зв).

Радионуклиды - радиоактивные атомы с данным массовым числом и атомным номером, а для изомерных атомов - и с данным определенным энергетическим состоянием атомного ядра. Радионуклиды (и нерадиоактивные нуклиды) элемента иначе называют его изотопами.

Помимо названных выше величин для сравнения степени радиационного повреждения вещества при воздействии на него различных ионизирующих частиц с разной энергией используется также величина линейной передачи энергии (ЛПЭ), определяемая соотношением:

где - средняя энергия, локально переданная среде ионизирующей частицей вследствие столкновений на элементарном пути dl. Пороговая энергия обычно относится к энергии электрона. Если в акте столкновения первичная заряженная частица образует -электрон с энергией больше, то эта энергия не включается в значение dE, и -электроны с энергией больше рассматриваются как самостоятельные первичные частицы.

Выбор пороговой энергии является произвольным и зависит от конкретных условий.

Из определения следует, что линейная передача энергии является некоторым аналогом тормозной способности вещества. Однако между этими величинами есть различие. Заключается оно в следующем:

  • 1. ЛПЭ не включает энергию, преобразованную в фотоны, т.е. радиационные потери.
  • 2. При заданном пороге ЛПЭ не включает в себя кинетическую энергию частиц, превышающую.

Величины ЛПЭ и тормозной способности совпадают, если можно пренебречь потерями на тормозное излучение и

дозиметр ионизирующий излучение

Таблица 4

По величине линейной передачи энергии можно определить весовой множитель данного вида излучения (таблица 5)

Таблица 5

Предельно допустимые дозы облучения согласно НРБ-99

По отношению к облучению население делится на 3 категории:

Категория Б облучаемых лиц или ограниченная часть населения - лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующих излучений.

  • - основные пределы доз (ПД), приведенные в таблице 6;
  • - допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз: пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и другие;
  • - контрольные уровни (дозы, уровни, активности, плотности потоков и др.). Их значения должны учитывать достигнутый в организации уровень радиационной безопасности и обеспечивать условия, при которых радиационное воздействие будет ниже допустимого.

Таблица 6 Основные пределы доз

Примечания:

  • * Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.
  • ** Основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б, равны 1/4 значений для персонала группы А. Далее в тексте все нормативные значения для категории персонал приводятся только для группы А.
  • *** Относится к дозе на глубине 300 мг/см2.
  • **** Относится к среднему по площади в I см2 значению в базальном слое кожи толщиной 5 мг/см2 под покровным слоем толщиной 5 мг/см2 . На ладонях толщина покровного слоя - 40 мг/см2. Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см2 площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает непревышение предела дозы на хрусталик от бета-частиц.

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) - 1000 мЗв, а для населения за период жизни (70 лет) - 70 мЗв. Начало периодов вводится с 1 января 2000 года.

При одновременном воздействии на человека источников внешнего и внутреннего облучения годовая эффективная доза не должна превышать пределов доз, установленных в табл. 6.

Устанавливается три группы критических органов:

  • 1 группа - все тело, гонады и красный костный мозг;
  • 2 группа - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталики глаз и другие органы, за исключением тех, которые относятся к 1 и 3 группам;
  • 3 группа - кожный покров, костная ткань, кисти, предплечья, голени и стопы.

Дозовые пределы облучения для разных категорий лиц даны в таблице 7.

Таблица 7

Помимо основных дозовых пределов для оценки влияния излучения используют производные нормативы и контрольные уровни. Нормативы рассчитаны с учетом непревышения дозовых пределов ПДД (предельно допустимая доза) и ПД (предел дозы). Расчет допустимого содержания радионуклида в организме проводят с учетом его радиотоксичности и непревышения ПДД в критическом органе. Контрольные уровни должны обеспечивать такие низкие уровни облучения, какие можно достичь при соблюдении основных дозовых пределов.

  • - предельно допустимое годовое поступление ПДП радионуклида через органы дыхания;
  • - допустимое содержание радионуклида в критическом органе ДСА;
  • - допустимая мощность дозы излучения ДМДА;
  • - допустимая плотность потока частиц ДППА;
  • - допустимая объемная активность (концентрация) радионуклида в воздухе рабочей зоны ДКА;
  • - допустимое загрязнение кожных покровов, спецодежды и рабочих поверхностей ДЗА.
  • - предел годового поступления ПГП радионуклида через органы дыхания или пищеварения;
  • - допустимая объемная активность (концентрация) радионуклида ДКБ в атмосферном воздухе и воде;
  • - допустимая мощность дозы ДМДБ;
  • - допустимая плотность потока частиц ДППБ;
  • - допустимое загрязнение кожных покровов, одежды и поверхностей ДЗБ.

Численные значения допустимых уровней в полном объеме содержатся в "Нормах радиационной безопасности".

2Характеристика измерительного прибора ДКС-101

Универсальный дозиметр (далее дозиметр) предназначен для абсолютных измерений поглощенной и эквивалентной дозы и мощности поглощенной и эквивалентной дозы для широкого диапазона энергий фотонного и электронного излучений, прецизионное измерение дозовых полей ионизирующих излучений медицинских и промышленных приборов и аппаратов.

Прибор может применяться для проведения дозиметрических и физических исследований в лабораторных и производственных условиях, в т.ч. для поверки дозиметрической аппаратуры, аттестация рентгеновских кабинетов и промышленных рентгеновских и электронных установок и т. д.

Дозиметр может быть аттестован в качестве рабочего эталона 1-го или 2-го разряда.

Дозиметр устойчиво работает при изменении температуры окружающей среды от +10С до +40С и в условиях относительной влажности окружающей среды до 80% при температуре +30С без конденсации влаги, атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм.рт.ст.).

Комплектуется ионизационными камерами, контрольными источникам и водным фантомом по требованию заказчика.

Состоит из электрометрического блока со встроенным управляемым высоковольтным источником и персонального компьютера.

Встроенные системы самодиагностики, набор функций математической обработки и протоколирование результатов измерений, программное обеспечение в среде Windows98 обеспечивают удобство в работе и широкий набор сервисных функций.

Технические данные

Дозиметр обеспечивает следующие типы измерений: поглощенная доза в воде (Гр), эквивалентная доза (Зв), соответствующие мощности дозы, заряд (Кл), ток (А) (погрешности измерений тока и заряда не нормируются). Дозиметр имеет автоматическую остановку измерений при достижения заданных порогов по дозе и времени. Обеспечение измерения воздушной кермы (Гр), экспозиционной дозы (Р) и соответствующих мощности доз может быть выполнена по требованию заказчика.

Цифровое разрешение, стабильность нуля, диапазон напряжения высоковольтного источника и максимальное время измерения дозиметра приведены в таблице 2.1.

Таблица 2.1

Дозиметр имеет диапазоны измерений, указанные в Таблице 2.2.

Таблица 2.2

Уровень собственного фона дозиметра.

После времени установления рабочего режима (без подключения ионизационной камеры) не более 510-15 А.

За 8 часов непрерывной работы после времени установления рабочего режима (без подключения ионизационной камеры) не более 110-14 А.

От показаний в нормальных условиях (без подключения ионизационной камеры) при изменении температуры в рабочем диапазоне температур от +10 до +40С не более 210-14 А.

От показаний в нормальных условиях (без подключения ионизационной камеры) при изменении относительной влажности воздуха до 80% при температуре 30 С не более 110-14 А.

Нестабильность показаний дозиметра за 8 часов непрерывной работы после времени установления рабочего режима не более 0,2 % на чувствительном диапазоне измерения МПД (интеграла МПД и ПД).

Время установления показаний не более:

  • 100 с - на чувствительном диапазоне;
  • 10 с - на остальных диапазонах.

Пределы допускаемой дополнительной погрешности измерений составляют:

от показаний в нормальных условиях при изменении температуры в рабочем диапазоне температур от +10 до +40С при измерении МПД (интеграла МПД и ПД) - 0,2 %.

от показаний в нормальных условиях при изменении относительной влажности воздуха до 80% при температуре 30С при измерении МПД (интеграла МПД и ПД) - 0,2 %.

от показаний в нормальных условиях работе в постоянном магнитном поле напряженностью не более 400 А/м при измерении МПД (интеграла МПД и ПД) - 0,2 %.

Питание дозиметра осуществляется от однофазной сети переменного тока с частотой 50 Гц 1 Гц, содержанием гармоник до 5% и номинальным напряжением 220 В с допустимым отклонением от - 15% до +10%.

Мощность, потребляемая от сети электрометрическим блоком, при номинальном напряжении питания не более 4 ВА.

Изоляция между корпусом электрометрического блока и контактами вилки кабеля сетевого питания выдерживает в течение 1 минуты без пробоя действие испытательного напряжения постоянного тока 4000 В. Сопротивление изоляции вышеуказанных цепей не менее 20 МОм при нормальных условиях.

Наработка на отказ не менее 3000 часов.

Средний срок службы не менее 6 лет.

Исполнение электрометрического блока IP30С (по ГОСТ 14254-96).

Габаритные размеры и масса установки приведены в табл. 2.3.

Таблица 2.3

Вид климатического исполнения дозиметра В1 ГОСТ 12997-84.

Дозиметр устойчиво работает при изменении температуры окружающей среды от +10С до 40С и в условиях относительной влажности окружающей среды до 80% при температуре +30С без конденсации влаги, атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм.рт.ст.).

Электрометрический блок обладает механической прочностью в соответствии с требованиями к изделиям группы L1 ГОСТ 12997-84.

Стали появляться и единицы их измерений. Например: рентген, кюри. Но они не были связаны какой-либо системой, а потому и называются внесистемными единицами. Во всем мире сейчас действует единая система измерений - СИ (система интернациональная). У нас она подлежит обязательному применению с 1 января 1982 г. К 1 января 1990 г. этот переход надо было завершить. Но в связи с экономическими и другими трудностями процесс затягивается. Однако вся новая аппаратура, в том числе и дозиметрическая, как правило, градуируется в новых единицах.

Единицы радиоактивности. В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - один распад в секунду (расп./с) В системе СИ эта единица получила название беккерель (Бк). В практике радиационного контроля, в том числе и в Чернобыле , до последнего времени широко использовалась внесистемная единица активности - кюри (Ки). Один кюри - это 3,7.10 10 распадов в секунду.

Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы: Ки/т, мКи/г, кБк/кг и т.п. (удельная активность). На единицу объема: Ки/м 3 , мКи/л, Бк/см 3 и т.п. (объемная концентрация) или на единицу площади: Ки/км 2 , мКи/см 2 , Бк/м 2 и т.п.

Мощность дозы (мощность поглощенной дозы) - приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе Си - грей в секунду. Эта такая мощность поглощенной дозы излучения, при которой за 1 секунду в веществе создается доза излучения в 1 Гр.


На практике для оценки поглощенной дозы излучения до сих пор широко используют внесистемную единицу мощности поглощенной дозы - рад в час (рад/ч) или рад в секунду (рад/с). 1 Гр = 100 рад.

Эквивалентная доза - это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов излучений. Определяется она по формуле Д экв = Q . Д, где Д - поглощенная доза данного вида излучения, Q - коэффициент качества излучения, который для различных видов ионизирующих излучений с неизвестным спектральным составом принят для рентгеновского и гамма-излучения - 1, для бета-излучения - 1, для нейтронов с энергией от 0,1 до 10 МэВ - 10, для альфа-излучений с энергией менее 10 МэВ - 20. Из приведенных цифр видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают, соответственно, в 10 и 20 раз больший поражающий эффект. В системе СИ эквивалентная доза измеряется в зивертах (Зв).

Зиверт равен одному грею, деленному на коэффициент качества. При Q = 1 получаем

1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Бэр (биологический эквивалент рентгена) - это внесистемная единица эквивалентной дозы, такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения.

Мощность эквивалентной дозы - отношение приращения эквивалентной дозы за какой-то интервал времени. Выражается в зивертах в секунду. Поскольку время пребывания человека в поле излучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в микрозивертах в час (мкЗв/час).

Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает ОЛБ.

Мощность эквивалентной дозы, создаваемая естественным излучением (земного и космического происхождения), колеблется в пределах 1,5 - 2 мЗв/год и плюс искусственные источники (медицина, радиоактивные осадки) от 0,3 до 0,5 мЗв/год. Вот и выходит, что человек в год получает от 2 до 3 мЗв. Эти цифры примерные и зависят от конкретных условий. По другим источникам, они выше и доходят до 5 мЗв/год.

Экспозиционная доза - мера ионизационного действия фотонного излучения, определяемая по ионизации воздуха в условиях электронного равновесия. В системе СИ единицей экспозиционной дозы является один кулон на килограмм (Кл/кг). Внесистемной единицей является рентген (Р), 1 Р = 2,58 . 10 -4 Кл/кг. В свою очередь 1 Кл/кг = 3,876 . 10 3 Р.

Мощность экспозиционной дозы - приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ - ампер на килограмм (А/кг). Однако в переходный период можно пользоваться внесистемной единицей - рентген в секунду (Р/сек).

С середины прошлого века в науку пришло новое слово - радиация. Ее открытие совершило переворот в умах физиков всего мира и позволило отбросить некоторые ньютоновские теории и сделать смелые предположения относительно строения Вселенной, ее образования и нашего места в ней. Но это все - для специалистов. Обыватели же только вздыхают и пытаются сложить воедино такие разрозненные знания об этом предмете. Усложняет процесс тот факт, что единиц измерения радиации существует довольно много, и все они правомочны.

Терминология

Первый термин, с которым стоит познакомиться, - это, собственно, радиация. Так называют процесс излучения каким-либо веществом мельчайших частиц, таких как электроны, протоны, нейтроны, атомы гелия и другие. В зависимости от вида частицы свойства излучения отличаются друг от друга. Излучение наблюдают либо при распаде веществ на более простые, либо при их синтезе.

Единицы измерения радиации - это условные понятия, которые указывают, сколько элементарных частиц высвобождается из вещества. На данный момент физика оперирует семью разными единицами и их комбинациями. Это позволяет описывать различные процессы, происходящие с материей.

Радиоактивный распад - произвольное изменение строения нестабильных ядер атомов при помощи высвобождения микрочастиц.

Постоянная распада - это статистическое понятие, предсказывающее вероятность разрушения атома на определенный отрезок времени.

Период полураспада - это временной промежуток, за который распадается половина всего количества вещества. У некоторых элементов он исчисляется минутами, а у других - годами, и даже десятилетиями.

В чем измеряется радиация

Единицы измерения радиации - не единственные, которые используются для оценки свойств Кроме них применяют такие величины, как:
- активность источника радиации;
- плотность потока (количество ионизирующих частиц на единицу площади).

Кроме этого, существует разница в описании воздействия радиации на живые и неживые объекты. Так, если вещество неживое, то к нему применимы понятия:

Поглощенная доза;
- экспозиционная доза.

Если же излучение подействовало на живую ткань, то используют следующие термины:

Эквивалентная доза;
- эффективная эквивалентная доза;
- мощность дозы.

Единицами измерения радиации являются, как уже говорилось выше, условные числовые значения, принятые учеными для облегчения расчетов и построения гипотез и теорий. Возможно, именно поэтому не существует единой общепринятой единицы измерения.

Кюри

Одной из единиц измерения радиации является кюри. Она не относится к системным (не принадлежит к системе СИ). В России ее используют в ядерной физике и медицине. Активность вещества будет равняться одному кюри, если за одну секунду в нем будет происходить 3,7 миллиардов радиоактивных распадов. То есть можно сказать, что один кюри равен трем миллиардам семистам миллионам беккерелей.

Такое число получилось благодаря тому, что Мария Кюри (которая и ввела в науку данный термин) проводила свои опыты на радии и взяла за основу его скорость распада. Но со временем физики решили, что числовое значение этой единицы лучше привязать к другой - беккерелю. Это позволило избежать некоторых погрешностей в математических расчетах.

Помимо кюри, часто можно встретить кратные или дольные единицы, такие как:
- мегакюри (равен 3,7 на 10 в 16 степени беккерелей);
- килокюри (3,7 тысячи миллиардов беккерелей);
- милликюри (37 миллионов беккерелей);
- микрокюри (37 тысяч беккерелей).

При помощи этой единицы можно выразить объемную, поверхностную или удельную активность вещества.

Беккерель

Единица измерения дозы радиации беккерель является системной и входит в Международную систему единиц (СИ). Она является самой простой, потому что активность радиации в один беккерель означает, что в веществе происходит всего один радиоактивный распад за секунду.

Она получила свое название в честь Антуана французского физика. Название было одобрено в конце прошлого века и используется до сих пор. Так как это достаточно маленькая единица, то для обозначения активности используют десятичные приставки: кило-, милли-, микро- и другие.

В последнее время вместе с беккерелями стали использоваться такие внесистемные единицы, как кюри и резерфорд. Один резерфорд равняется миллиону беккерелей. В описании объемной или поверхностной активности можно встретить обозначения беккерель на килограмм, беккерель на метр (квадратный или кубический) и различные их производные.

Рентген

Единица измерения радиации рентген тоже не является системной, хоть и используется повсеместно для обозначения экспозиционной дозы полученного гамма-излучения. Один рентген равен такой дозе излучения, при которой один кубический сантиметр воздуха при стандартном атмосферном давлении и нулевой температуре несет в себе заряд, равный 3,3*(10*-10). Это равно двум миллионам пар ионов.

Несмотря на то, что по законодательству РФ большинство внесистемных единиц использовать запрещено, рентген используется в маркировке дозиметров. Но и они скоро перестанут использоваться, так как более практичным оказалось записывать и вычислять все в греях и зивертах.

Рад

Единица измерения радиации рад находится вне системы СИ и равняется такому количеству излучения, при котором одному грамму вещества передается одна миллионная джоуля энергии. То есть один рад - это 0,01 джоуль на килограмм материи.

Материалом, который поглощает энергию, может быть как живая ткань, так и другие органические и неорганические вещества и субстанции: почва, вода, воздух. Как самостоятельная единица рад был введен в 1953 году и в России имеет право использоваться в физике и медицине.

Грей

Это еще одна единица измерения уровня радиации, которая признана Международной системой единиц. Она отражает поглощенную дозу радиации. Считается, что вещество получило дозу в один грей, если энергия, которая передалась с излучением, равна одному джоулю на килограмм.

Эта единица получила свое название в честь английского ученого Льюиса Грея и была официально введена в науку в 1975 году. По правилам, полное название единицы пишется с маленькой буквы, но ее сокращенное обозначение - с большой. Один грей равен ста радам. Помимо простых единиц, в науке используют еще кратные и дольные их эквиваленты, такие как килогрей, мегагрей, децигрей, сантигрей, микрогрей и другие.

Зиверт

Единица измерения радиации зиверт используется для обозначения эффективной и эквивалентной доз излучения и также входит в систему СИ, как грей и беккерель. Используется в науке с 1978 года. Один зиверт равен энергии, которую поглотил килограмм ткани после воздействия одного грея гамма-лучей. Название свое единица получила в честь Рольфа Зиверта, ученого из Швеции.

Судя по определению, зиверты и греи равны, то есть эквивалентная и поглощенная дозы имеют одинаковые размеры. Но разница между ними все-таки есть. При определении эквивалентной дозы необходимо учитывать не только количество, но и другие свойства излучения, такие как длина волны, амплитуда и какие частицы ее представляют. Поэтому числовое значение поглощенной дозы умножают на коэффициент качества излучения.

Так, например, при всех прочих равных условиях поглощенный эффект альфа-частиц будет в двадцать раз сильнее, чем такая же доза гамма-излучения. Помимо этого, необходимо учитывать тканевой коэффициент, который показывает, как органы реагируют на излучение. Поэтому эквивалентная доза используется в радиобиологии, а эффективная - в гигиене труда (для нормирования воздействия излучения).

Солнечная постоянная

Существует теория, что жизнь на нашей планете появилась благодаря солнечной радиации. Единицы измерения излучения от звезды - калории и ватты, деленные на единицу времени. Так было решено потому, что величина радиации от Солнца определяется по количеству тепла, которое получают объекты, и интенсивности, с которой оно поступает. До Земли доходит всего половина миллионной доли от общего количества выбрасываемой энергии.

Радиация от звезд распространяется в космосе со скоростью света и в нашу атмосферу попадет в виде лучей. Спектр этого излучения довольно широкий - от «белого шума», то есть радиоволн, до рентгеновских лучей. Частицы, которые тоже попадают вместе с излучением, - это протоны, но иногда могут быть и электроны (если выброс энергии был большим).

Излучение, получаемое от Солнца, является движущей силой всех живых процессов на планете. Количество получаемой нами энергии зависит от времени года, положения звезды над горизонтом и прозрачности атмосферы.

Воздействие радиации на живых существ

Если одинаковые по своим характеристикам живые ткани облучать разными видами радиации (в одинаковой дозе и интенсивности), то результаты будут разниться. Поэтому для определения последствий мало только поглощенной или экспозиционной дозы, как в случае с неживыми объектами. На сцене появляются единицы измерения проникающей радиации, такие как зиверты бэры и греи, которые указывают на эквивалентную дозу радиации.

Эквивалентной называется доза, поглощенная живой тканью и умноженная на условный (табличный) коэффициент, который учитывает, насколько опасен тот или иной вид радиации. Чаще всего для ее измерения используется зиверт. Один зиверт равняется ста бэрам. Чем больше коэффициент тем, соответственно, опаснее излучение. Так, для фотонов это - единица, а для нейтронов и альфа-частиц - двадцать.

Со времени аварии на Чернобыльской АЭС в России и других странах СНГ стали особое внимание уделять уровню радиационного воздействия на человека. Эквивалентная доза от естественных источников излучения не должна быть выше пяти миллизивертов в год.

Действие радионуклидов на не живые объекты

Радиоактивные частицы несут в себе заряд энергии, который они передают веществу, когда сталкиваются с ним. И чем больше частиц соприкоснется на своем пути с определенным количеством вещества, тем больше оно получит энергии. Количество ее оценивается в дозах.

  1. Поглощенная доза - это то которое было получено единицей вещества. Измеряется в греях. Эта величина не учитывает тот факт, что воздействие разных видов излучения на материю отличается.
  2. Экспозиционная доза - представляет собой поглощенную дозу, но с учетом степени ионизации вещества от воздействия разных радиоактивных частиц. Измеряется в кулонах на килограмм или рентгенах.

Дозиметрия — это измерение дозы или ее мощности.

Доза ионизирующего излучения — количество энергии ионизирующей радиации, поглощенной единицей массы любой облучаемой среды. Мощность дозы — доза излучения в единицу времени.

Основная задача дозиметрии — определение дозы излучения в различных средах и в тканях живого организма.

Значение дозиметрии :

— необходима для количественной и качественной оценки биологического эффекта доз ионизирующих излучений при внешнем и внутреннем облучении организма

— необходима для обеспечения радиационной безопасности при ра­боте с радиоактивными веществами

— с ее помощью можно обнаружить источник излучения, определить его вид, количество энергии, а также степень воздействия излучения на облучаемый объект.

Виды доз :

А) Экспозиционная доза (Х) — количественная характеристика поля источника ионизирующего излучения (гамма или рентгеновского), характеризующая величину ионизации сухого воздуха при атмосферном давлении.

Кулон на килограмм (Кл/кг, C/kg) — Системная единица экспозиционной дозы ; 1 Кл/кг равен экспозиционной дозе фотонного излучения, при которой сумма электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе массой 1 кг, при полном использовании ионизирующей способности всех электронов, равна 1 Кл.

Рентген (Р, R ) Традиционная (внесистемная) единица экспозиционной дозы ; 1 рентген равен экспозиционной дозе рентгеновского или гамма-излучения в воздухе, при которой в результате полной ионизации в 1 см3 сухого атмосферного воздуха при температуре 0о С и давлении 760 мм рт. ст. (т. е. в 0,001293 г сухого атмосферного воздуха) образуются ионы, несущие заряд, равный 1 единице заряда СГС каждого знака.

СГС — система единиц измерения, в которой существуют три независимые величины: сантиметр-грамм-секунда.

Соотношение единиц: 1 Р = 2,58*10-4 Кл/кг (точно); 1 Кл/кг = 3,88*103 Р (приблизительно).

Мощность экспозиционной дозы — величина, выраженная в мР/ч или мкР/ч. Обычные Фоновые показатели мощности экспозиционной дозы для Беларуси — до 18-20 мкР/ч .

По традиции экспозиционную дозу использовали в рентгенодиагностике благодаря тому, что Ионизирующая способность рентгеновского излучения для воздуха и биологической ткани приблизительно одинакова . Однако, при переходе к высокоэнергетическим типам излучения, выяснилась ограниченность использования этой характеристики при оценке поглощенной дозы, особенно в живых организмах. В связи с этим Экспозиционная доза Применяется для оценки поля источника излучения , а Для определения взаимодействия ионизирующих излучений со средой используется Поглощенная доза .

Б) поглощенная доза (D ) — количество энергии, поглощаемое единицей массы облучаемого вещества.

Джоуль на килограмм (Грей, Гр, Gy ) — системная единица поглощенной дозы. 1 Дж/кг = 1 Гр.

Рад (rad, rd — radiation absorbed dose — поглощенная доза излучения) — традиционная (внесистемная) единица поглощенной дозы.

Соотношение единиц: 1 рад = 0,01 Гр.

Для мягких тканей человека в поле рентгеновского или g-излучения поглощенная доза в 1 рад примерно соответствует экспозиционной в 1 P.

Поглощенная доза Не зависит от вида и энергии ионизирующего излучения и определяет степень радиационного воздействия , т. е. является мерой ожидаемых последствий облучения.

Учитывая существенные различия в механизме взаимодействия разных типов излучения с веществом, ионизирующей способности и т. д., следует ожидать, что Одна и та же поглощенная доза может дать разный биологический эффект . Для количественной оценки такого различия вводятся понятия: “взвешивающие коэффициенты для различных видов излучения (WR)” и “эквивалентная доза”.

В) эквивалентная доза (HTR ) — мера выраженности биологического эффекта облучения. При расчете эквивалентной дозы используют взвешивающие коэффициенты как множители поглощенной дозы:

Где HTR Эквивалентная доза в органе или ткани Т, созданная излучением R; DTR — средняя поглощенная доза от излучения R в ткани или органе T; WR – взвешивающий коэффициент для излучения R.

Взвешивающие коэффициенты (WR) позволяют учесть Относительную эффективность различных видов излучения в индуцировании биологических эффектов .

Так как WR — безразмерный множитель, Системная единица для эквивалентной дозы та же, что и для поглощенной дозы — Дж/кг (специальное название — Зиверт: Зв, Sv)

Бэр (Rem ) — Внесистемная единица эквивалентной дозы (бэр — биологический эквивалент рада).

Соотношение единиц: 1 бэр = 0,01 Зв.

Взвешивающие коэффициенты для отдельных видов излучения.

Риск развития стохастических последствий облучения организма человека зависит не только от эквивалентной дозы, но и от радиочувствительности тканей или органов, подвергшихся облучению. Радиочувствительность органов и тканей учитывает эффективная доза.

Г) эффективная доза (Е) — величина воздействия ионизирующего излучения, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов С учетом их радиочувствительности ; представляет сумму произведений эквивалентных доз в тканях и органах тела на соответствующие взвешивающие коэффициенты:

,

Где HT — эквивалентная доза в ткани или органе T; WT — взвешивающий коэффициент для органа или ткани T.

Взвешивающий коэффициент WT характеризует относительный вклад данного органа или ткани в суммарный ущерб здоровью из-за развития стохастических эффектов. Сумма WT равна 1 .

Системная единица эффективной дозы — зиверт (Зв, Sv); Внесистемная единица – бэр. 1 Зв равен 100 бэр.

Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (WT ).

Соотношение между системными и внесистемными единицами доз.

Для оценки эффектов облучения группы людей используют коллективные дозы:

А) Коллективная эквивалентная доза (ST ) в ткани T — используется для выражения общего облучения конкретной ткани или органа у группы лиц; она равна произведению числа облученных лиц на среднюю эквивалентную дозу в органе или ткани.

Б) Коллективная эффективная доза (S) — относится к облученной популяции в целом; она равна произведению числа облученных лиц на среднюю эффективную дозу.

В определении коллективной эквивалентной и коллективной эффективной доз не указано время, за которое получена доза. Поэтому при расчете коллективных доз всегда должно быть Четкое указание на период времени и группу лиц, по которым проводился данный расчет .

Коллективные дозы используют Для оценки лучевой нагрузки на популяцию и риска развития стохастических последствий действия ионизирующих излучений. Единицы коллективных доз – Человеко-зиверт и человеко-бэр.

«Подушная доза» (per caput dose, Зв) — значение коллективной дозы, разделенное на число членов облученной группы.

Результат радиационного воздействия зависит от целого ряда факторов: количества радиоактивности во внешней среде и внутри организма, вида излучения и его энергии при распаде ядер радиоактивных изотопов, накопления радиоактивных веществ в организме и их выведении и др. Наибольшее значение при этом имеет количество поглощенной энергии излучения в расс-матриваемой массе вещества. В результате взаимодействия радиоактивного излучения со средой, включая биологические объекты, происходит передача ей определенной величины энергии излучения, которая затрачивается на процессы ионизации и возбуждения атомов и молекул среды. Часть излучения проходит через среду свободно, без поглощения, не оказывая на нее действия. Поэтому существует прямая зависимость между действием излучения и величиной поглощенной энергии. Это определяет дозу излучения.

Под дозой понимают меру действия ионизирующего излучения в опреде-ленной среде.

Доза – величина энергии излучения переданная веществу и рассчитанная на единицу массы или объема вещества.

С увеличением времени облучения объекта величина дозы увеличивается.

Для измерения количества поглощенной энергии необходимо подсчитать число пар ионов, образующихся под действием ионизирующего излучения. В связи с этим для количественной характеристики рентгеновского и гамма-излучений, действующих на объект, было введено понятие «экспозиционная доза» .

Экспозиционная доза (Х) – доза, которая характеризует ионизационную способность рентгеновского или гамма-излучения (фотонного излучения) в воздухе при энергии квантов не более 3 МэВ. Ее еще называют физической.

Экспозиционная доза представляет собой отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха с массой dm, полностью остановились в воздухе, к массе воздуха в указанном объеме:

Экспозиционную дозу используют для оценки радиационной обстановки на местности, в рабочем или жилом помещении, обусловленной действием рентгеновского или гамма-излучения, а также для определения степени защит-ных свойств материалов экранов.

За единицу экспозиционной дозы в Международной системе единиц (СИ) принят кулон на килограмм (Кл/кг).

Кулон на килограмм это такая экспозиционная доза рентгеновского или гамма-излучения, при которой сопряженная корпускулярная эмиссия (все электроны и позитроны, освобожденные фотонами) в объеме воздуха массой 1 кг производит ионы, несущие электрический заряд один кулон (Кл) каждого знака (+ и -).

С 1.01.1990 г. должны были быть изъяты из употребления внесистемные единицы, выражающие дозу и активность (Р, Рад, Бэр, Ки и др.). Однако они все еще употребляются, что объясняется, в частности, использованием на практике парка дозиметрических и радиометрических приборов, имеющих градуировку регистрирующих устройств во внесистемных единицах измерения.


Внесистемной единицей измерения экспозиционной дозы является рентген (Р). Эта единица принята в обращении с 1928 года.

Рентген – экспозиционная доза рентгеновского или гамма-излучения, при которой в 1 см 3 (0,001293 г) воздуха при нормальных условиях (температура 0 о С и давление 760 мм рт. ст.) образуется 2,08·10 9 пар ионов. Или рентген – экспозиционная доза рентгеновского или гамма-излучения, при которой сопряженная корпускулярная эмиссия в 1 см 3 воздуха при нормальных условиях создает ионы, несущие заряд в одну электростатическую единицу электричества каждого знака.

1 Р = 2,58·10 -4 Кл/кг; 1 Кл/кг = 3,88·10 3 Р

Экспозиционную дозу в 1 рентген создает гамма-излучение источника радия с активностью 1 Ки на расстоянии 1 метр за 1 час.

Производные единицы рентгена: килорентген (1 кР = 10 3 Р), миллирент-ген (1 мР = 10 -3 Р), микрорентген (1 мкР = 10 -6 Р).

Для корпускулярного ионизирующего излучения (альфа- и бета-частицы, нейтроны) была предложена внесистемная единица – физический эквивалент рентгена (фэр), при которой в воздухе образуется столько же пар ионов как и при экспозиционной дозе рентгеновского или гамма-излучения в 1 Р. Единица фэр не получила практического применения и в настоящее время не исполь-зуется. Для характеристики полей излучения лучше использовать плотность потока частиц (в том числе и фотонов) и интенсивность излучения (плотность потока энергии).

Экспозиционная доза неприемлема к корпускулярным видам излучения (альфа- и бета-частицам и др.), ограничена областью энергии квантов до 3 МэВ и отражает лишь меру количества фотонного излучения. Она не отражает коли-чество энергии излучения, поглощенной объектом облучения. В тоже время очень важно для оценки радиационного воздействия знать количество энергии излучения, которое поглотилось объектом. Для определения меры поглощенной энергии любого вида излучения в среде было введено понятие «поглощенная доза». По величине поглощенной дозы, зная атомный состав вещества, энергию излучения, можно рассчитать поглощенную дозу рентгеновского и гамма-излучения в любом веществе. Энергетический эквивалент рентгена равен 88 эрг/г (энергия, затраченная на образование 2,08·10 9 пар ионов).

Поглощенная доза (D) – величина энергии ионизирующего излучения, переданная веществу:

где de – средняя энергия, переданная ионизирующим излучением вещест-ву, находящемуся в элементарном объеме, dm – масса вещества в этом объеме.

Или поглощенная доза – количество энергии любого вида ионизирующего излучения, поглощенное в определенном органе или ткани и рассчитанное на единицу массы.

Если обозначить энергию которая падает на объект значением Е, а энергию, прошедшую через объект – Е 1 , то ∆Е будет поглощенной энергией:

∆Е = Е - Е 1 .

Вместо термина «поглощенная доза излучения» допускается применение сокращенной формы «доза излучения».

Единицей измерения поглощенной дозы в Международной системе единиц является джоуль на килограмм (Дж/кг).

Джоуль на килограмм – такая единица поглощенной дозы, при которой в 1 кг массы облученного вещества любым видом ионизирующего излучения поглощается энергия в 1 джоуль.

Эта единица по другому получила название грей (Гр).

Грей – единица, как и внесистемная единица рентген, является эпоними-ческой, то есть, образована от имени ученого. Луи Гарольд Грей – английский радиобиолог, который занимался вопросами связи между физическими и биологическими эффектами излучения и внес большой вклад в развитие радиа-ционной дозиметрии.

Грей равен поглощенной дозе излучения, при которой веществу массой 1 кг передается энергия ионизирующего излучения равная 1 Дж (1 Гр = 1 дж/кг).

Используются и производные единицы от грея: мкГр, мГр и др.

С 1953 года была введена внесистемная единица поглощенной дозы – рад (от англ. radiation absorbed dose – поглощенная доза излучения), которая еще широко используется на практике в настоящее время.

Рад – поглощенная доза любого вида ионизирующего излучения, при которой в 1 г вещества поглощается энергия излучения равная 100 эрг.

1 рад = 100 эрг/г = 10 -2 дж/кг; 100 рад = 1 Гр.

Применяются дольные и кратные единицы рада: килорад (1 крад = 10 3 рад), миллирад (1 мрад = 10 -3 рад), микрорад (1 мкрад = 10 -6 рад).

Для расчета поглощенной дозы используют формулу:

где D – поглощенная доза, Х – экспозиционная доза, F – коэффициент переходный, устанавливаемый опытным путем на фантоме (для воды и мягкой ткани F равен 0,93 или ≈ 1).

В воздухе доза излучения в 1 рентген энергетически эквивалентна 88 эрг/г, поглощенная доза из определения равна 100 эрг/г, следовательно, поглощенная доза в воздухе составит 0,88 рад (88:100 = 0,88).

В условиях лучевого равновесия, при котором сумма энергий заряженных частиц, покидающих рассматриваемый объем, соответствует сумме энергий заряженных частиц, входящих в этот объем, можно установить энергетический эквивалент экспозиционной дозы.

Экспозиционной дозе в воздухе Х = 1 Р соответствует поглощенная доза D = 0,873 рад, а 1 Кл/кг = 33,85 Гр. В биологической ткани: 1 Р соответствует 0,96 рад и 1 Кл/кг соответствует 33,85 Гр. Таким образом, с небольшой погрешностью (до 5%) при равномерном облучении фотонным излучением поглощенная доза в биологической ткани совпадает с экспозиционной дозой, измеренной в рентгенах.

При облучении живых организмов возникают различные биологические эффекты, разница между которыми при одной и той же поглощенной дозе объясняется степенью опасности для организма разных видов излучения.

Принято сравнивать биологические эффекты, вызываемые любыми иони-зирующими излучениями, с эффектами от фотонного, то есть рентгеновского и гамма-излучения, а также пространственное распределение в облучаемом объекте поглощенной энергии. При одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- или гамма-излучения. Для учета этого явления введено понятие «эквивалентная доза».

Эквивалентная доза ‌ (Н)‌ – поглощенная доза в органе или ткани, умно-женная на соответствующий взвешивающий коэффициент для данного вида излучения (W R):

Н TR = D TR ·W R ,

где D TR – средняя поглощенная доза в органе или ткани Т, W R – взвешивающий коэффициент для излучения R.

При воздействии на объект различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.

Эквивалентная доза является основной величиной, определяющей уро-вень радиационной опасности при хроническом облучении человека и живот-ных в малых дозах.

В международной системе единиц (СИ) за единицу эквивалентной дозы принят зиверт (Зв). Единица зиверт предназначена только для использования в области радиационной безопасности.

Эта единица измерения эквивалентной дозы получила название в честь шведского ученого Рольфа Зиверта, который занимался исследованиями в области дозиметрии и радиационной безопасности.

Зиверт – эквивалентная доза любого вида излучения, поглощенная 1 кг биологической ткани и создающая такой же биологический эффект как и поглощенная доза в 1 Гр фотонного излучения.

Внесистемной единицей измерения эквивалентной дозы является бэр (аббревиатура – биологический эквивалент рентгена).

Бэр – эквивалентная доза любого вида ионизирующего излучения, при которой в биологической ткани создается такой же биологический эффект, как и при дозе рентгеновского или гамма-излучения в 1 рентген.

1 бэр = 1·10 -2 Дж/кг;

100 бэр = 1 Зв.

Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (W R) – используемые в радиационной защите множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения в индуцировании биологических эффектов. Ранее с этой целью использовали коэффициент качества (Q) или относительной биологической эффективности (ОБЭ).

Коэффициент качества излучения предназначен для учета влияния микрораспределения поглощенной энергии на степень проявления вредного биологического эффекта и выбирается на основе имеющихся значений коэф-фициента ОБЭ.

Коэффициент ОБЭ, или (Q) показывает, во сколько раз эффективность биологического действия данного вида излучения больше, чем рентгеновского или гамма-излучения при одинаковой поглощенной дозе в тканях. Чем выше удельная ионизация, тем больше значения коэффициента ОБЭ, или (Q).

Взвешивающие коэффициенты (W R) для отдельных видов излучения:

Фотоны любых энергий (рентгеновское или гамма-излучение) ……1

Электроны (бета-частицы)……………………………………………..1

Альфа-частицы, осколки деления, тяжелые ядра …………….…… 20

Различают также следующие виды доз: эффективную, эффективную ожидаемую при внутреннем облучении, эффективную коллективную и эффективную годовую.

Доза эффективная (Е) – величина, используемая как мера риска возни-кновения отдаленных последствий облучения всего тела, и отдельных его орга-нов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе Н tТ на соответствующий взвешивающий коэффициент для данного органа или ткани:

Е = ∑W Т ·Н tТ,

где Н tТ – эквивалентная доза в ткани за время t, а W Т – взвешивающий коэффициент для ткани Т.

Таким образом, умножив эквивалентную дозу на соответствующие коэф-фициенты и просуммировав по всем органам и тканям, получим эффективную дозу.

Единица измерения эффективной дозы в СИ – зиверт (Зв).

Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (W Т) – множители эквивалентной дозы в органах и тканях, используемые в радиационной защите для учета различной чувствительности разных органов и тканей в возникновении стохастических эффектов радиации:

Гонады…………………………………….0,20

Костный мозг (красный)………………....0,12

Легкие, желудок, толстый кишечник.…..0,12

Пищевод, печень………………………….0,05

Мочевой пузырь…………………………..0,05

Грудная железа……………………………0,05

Щитовидная железа………………………0,05

Кожа, клетки костных поверхностей…... 0,01

Остальные органы………………………...0,05

Доза эффективная ожидаемая при внутреннем облучении – доза за время, прошедшее после поступления радиоактивных веществ в организм.

Доза эффективная коллективная (S) – мера коллективного риска возникновения стохастических эффектов облучения. Она определяется как сумма индивидуальных эффективных доз, или величина, характеризующая полное воздействие излучения на группу людей: S = ∑Е n ·N n ,

где Е n – средняя эффективная доза на n-ю подгруппу группы людей; N n – число людей в подгруппе. Она измеряется в человеко-зивертах (чел.-Зв).

Доза эффективная (эквивалентная) годовая – сумма эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год. Единица эффективной годовой дозы в СИ – зиверт (Зв).

Надо отметить, что существую и другие виды доз. Например, различают дозу в воздухе, на поверхности или в глубине облучаемого объекта, очаговую и интегральную дозы. Для оценки радиочувствительности и радиопоражаемости организма животных принято использовать термины – ЛД 50 / 30 и ЛД 100 / 30 – дозы облучения, которые вызывают смерть (гибель) соответственно 50% и 100% животных в течение 30 суток.

Поделитесь с друзьями или сохраните для себя:

Загрузка...