Основные операции над множествами. Диаграммы Эйлера-Венна

Разделы: Информатика

1. Введение

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

Логическая связка Пример запроса Пояснение Круги Эйлера
& - “И” Париж & университет Будут отобраны все страницы, где упоминаются оба слова: Париж и университет Рис.1
| - “ИЛИ” Париж | университет Будут отобраны все страницы, где упоминаются слова Париж и/или университет Рис.2

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Рис.3 Рис.4

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Рис.5 Рис.6 Рис.7

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Код Запрос
А (Муха & Денежка) | Самовар
Б Муха & Денежка & Базар & Самовар
В Муха | Денежка | Самовар
Г Муха & Денежка & Самовар

Для каждого запроса построим диаграмму Эйлера-Венна:

Запрос А Запрос Б

Запрос В

Запрос Г

Ответ: ВАГБ.

Задача В12 из демо-версии ЕГЭ-2013.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц (в тысяч)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Ф – количество страниц (в тысячах) по запросу Фрегат ;

Э – количество страниц (в тысячах) по запросу Эсминец ;

Х – количество страниц (в тысячах) по запросу, в котором упоминается Фрегат и не упоминается Эсминец ;

У – количество страниц (в тысячах) по запросу, в котором упоминается Эсминец и не упоминается Фрегат.

Построим диаграммы Эйлера-Венна для каждого запроса:

Запрос Диаграмма Эйлера-Венна Количество страниц
Фрегат | Эсминец Рис.12

3400
Фрегат & Эсминец Рис.13

900
Фрегат Рис.14 2100
Эсминец Рис.15 ?

Согласно диаграммам имеем:

  1. Х+900+У = Ф+У = 2100+У = 3400. Отсюда находим У = 3400-2100 = 1300.
  2. Э = 900+У = 900+1300= 2200.

Ответ: 2200.

6. Решение логических содержательных задач методом диаграмм Эйлера-Венна

В классе 36 человек. Ученики этого класса посещают математический, физический и химический кружки, причем математический кружок посещают 18 человек, физический - 14 человек, химический - 10. Кроме того, известно, что 2 человека посещают все три кружка, 8 человек - и математический и физический, 5 и математический и химический, 3 - и физический и химический.

Сколько учеников класса не посещают никаких кружков?

Для решения данной задачи очень удобным и наглядным является использование кругов Эйлера.

Самый большой круг – множество всех учеников класса. Внутри круга три пересекающихся множества: членов математического (М ), физического (Ф ), химического (Х ) кружков.

Пусть МФХ – множество ребят, каждый из которых посещает все три кружка. МФ¬Х – множество ребят, каждый из которых посещает математический и физический кружки и не посещает химический. ¬М¬ФХ - множество ребят, каждый из которых посещает химический кружок и не посещает физический и математический кружки.

Аналогично введем множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Известно, что все три кружка посещают 2 человека, следовательно, в область МФХ впишем число 2. Т.к. 8 человек посещают и математический и физический кружки и среди них уже есть 2 человека, посещающих все три кружка, то в область МФ¬Х впишем 6 человек (8-2). Аналогично определим количество учащихся в остальных множествах:

Просуммируем количество человек по всем областям: 7+6+3+2+4+1+5=28. Следовательно, 28 человек из класса посещают кружки.

Значит, 36-28 = 8 учеников не посещают кружки.

После зимних каникул классный руководитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников класса двое не были ни в кино. ни в театре, ни в цирке. В кино побывало 25 человек, в театре - 11, в цирке 17 человек; и в кино, и в театре - 6; и в кино и в цирке - 10; и в театре и в цирке - 4.

Сколько человек побывало и в кино, и в театре, и в цирке?

Пусть х – количество ребят, которые побывали и в кино, и в театре, и в цирке.

Тогда можно построить следующую диаграмму и посчитать количество ребят в каждой области:

В кино и театре побывало 6 чел., значит, только в кино и театре (6-х) чел.

Аналогично, только в кино и цирке (10-х) чел.

Только в театре и цирке (4-х) чел.

В кино побывало 25 чел., значит, из них только в кино были 25 - (10-х) – (6-х) – х = (9+х).

Аналогично, только в театре были (1+х) чел.

Только в цирке были (3+х) чел.

Не были в театре, кино и цирке – 2 чел.

Значит, 36-2=34 чел. побывали на мероприятиях.

С другой стороны можем просуммировать количество человек, которые были в театре, кино и цирке:

(9+х)+(1+х)+(3+х)+(10-х)+(6-х)+(4-х)+х = 34

Отсюда следует, что только один человек побывал на всех трех мероприятиях.

Таким образом, круги Эйлера (диаграммы Эйлера-Венна) находят практическое применение при решении задач в формате ЕГЭ и ГИА и при решении содержательных логических задач.

Литература

  1. В.Ю. Лыскова, Е.А. Ракитина. Логика в информатике. М.: Информатика и Образование, 2006. 155 с.
  2. Л.Л. Босова. Арифметические и логические основы ЭВМ. М.: Информатика и образование, 2000. 207 с.
  3. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 8 класса: БИНОМ. Лаборатория знаний, 2012. 220 с.
  4. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 9 класса: БИНОМ. Лаборатория знаний, 2012. 244 с.
  5. Сайт ФИПИ: http://www.fipi.ru/

Если вы думаете, что ничего не знаете о кругах Эйлера, вы ошибаетесь. На самом деле вы наверняка не раз с ними сталкивались, просто не знали, как это называется. Где именно? Схемы в виде кругов Эйлера легли в основу многих популярных интернет-мемов (растиражированных в сети изображений на определенную тему).

Давайте вместе разберемся, что же это за круги, почему они так называются и почему ими так удобно пользоваться для решения многих задач.

Происхождение термина

– это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.

Пока не очень понятно, верно? Посмотрите на этот рисунок:

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Ну что, так стало понятнее? Именно поэтому круги Эйлера – это тот метод, который наглядно демонстрирует: лучше один раз увидеть, чем сто раз услышать. Его заслуга в том, что наглядность упрощает рассуждения и помогает быстрее и проще получить ответ.

Автор метода - ученый Леонард Эйлер (1707-1783). Он так и говорил о названных его именем схемах: «круги подходят для того, чтобы облегчить наши размышления». Эйлер считается немецким, швейцарским и даже российским математиком, механиком и физиком. Дело в том, что он много лет проработал в Петербургской академии наук и внес существенный вклад в развитие российской науки.

До него подобным принципом при построении своих умозаключений руководствовался немецкий математик и философ Готфрид Лейбниц.

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли на свой лад. Например, чешский математик Бернард Больцано использовал тот же метод, но с прямоугольными схемами.

Свою лепту внес также немецкий математике Эрнест Шредер. Но главные заслуги принадлежат англичанину Джону Венну. Он был специалистом в логике и издал книгу «Символическая логика», в которой подробно изложил свой вариант метода (использовал преимущественно изображения пересечений множеств).

Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна.

Зачем нужны круги Эйлера?

Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только.

Если говорить о видах кругов Эйлера, то можно разделить их на те, что описывают объединение каких-то понятий (например, соотношение рода и вида) – мы их рассмотрели на примере в начале статьи.

А также на те, что описывают пересечение множеств по какому-то признаку. Таким принципом руководствовался Джон Венн в своих схемах. И именно он лежит в основе многих популярных в интернете мемов. Вот вам один из примеров таких кругов Эйлера:

Забавно, правда? И главное, все сразу становится понятно. Можно потратить много слов, объясняя свою точку зрения, а можно просто нарисовать простую схему, которая сразу расставит все по местам.

Кстати, если вы не можете определиться, какую профессию выбрать, попробуйте нарисовать схему в виде кругов Эйлера. Возможно, чертеж вроде этого поможет вам определиться с выбором:

Те варианты, которые окажутся на пересечении всех трех кругов, и есть профессия, которая не только сможет вас прокормить, но и будет вам нравиться.

Решение задач с помощью кругов Эйлера

Давайте рассмотрим несколько примеров задач, которые можно решить с помощью кругов Эйлера.

Вот на этом сайте - http://logika.vobrazovanie.ru/index.php?link=kr_e.html Елена Сергеевна Саженина предлагает интересные и несложные задачи, для решения которых потребуется метод Эйлера. Используя логику и математику, разберем одну из них.

Задача про любимые мультфильмы

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах. Оказалось, что большинству из них нравятся «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны» и «Волк и теленок». В классе 38 учеников. «Белоснежка и семь гномов» нравится 21 ученику. Причем трем среди них нравятся еще и «Волк и теленок», шестерым - «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма. У «Волка и теленка» 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким же шестиклассникам нравится «Губка Боб Квадратные Штаны».

Решение:

Так как по условиям задачи у нас даны три множества, чертим три круга. А так как по ответам ребят выходит, что множества пересекаются друг с другом, чертеж будет выглядеть так:

Мы помним, что по условиям задачи среди фанатов мультфильма «Волк и теленок» пятеро ребят выбрали два мультфильма сразу:

Выходит, что:

21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов».

13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок».

Осталось только разобраться, сколько шестиклассников двум другим вариантам предпочитает мультфильм «Губка Боб Квадратные Штаны». От всего количества учеников отнимаем всех тех, кто любит два других мультфильма или выбрал несколько вариантов:

38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только «Губка Боб Квадратные Штаны».

Теперь смело можем сложить все полученные цифры и выяснить, что:

мультфильм «Губка Боб Квадратные Штаны» выбрали 8 + 2 + 1 + 6 = 17 человек. Это и есть ответ на поставленный в задаче вопрос.

А еще давайте рассмотрим задачу , которая в 2011 году была вынесена на демонстрационный тест ЕГЭ по информатике и ИКТ (источник - http://eileracrugi.narod.ru/index/0-6).

Условия задачи:

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» - символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет.

Запрос Найдено страниц (в тысячах)
Крейсер | Линкор 7000
Крейсер 4800
Линкор 4500

Какое количество страниц (в тысячах) будет найдено по запросу Крейсер & Линкор ?

Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение:

При помощи кругов Эйлера изобразим условия задачи. При этом цифры 1, 2 и 3 используем, чтобы обозначить полученные в итоге области.

Опираясь на условия задачи, составим уравнения:

  1. Крейсер | Линкор: 1 + 2 + 3 = 7000
  2. Крейсер: 1 + 2 = 4800
  3. Линкор: 2 + 3 = 4500

Чтобы найти Крейсер & Линкор (обозначенный на чертеже как область 2), подставим уравнение (2) в уравнение (1) и выясним, что:

4800 + 3 = 7000, откуда получаем 3 = 2200.

Теперь этот результат мы можем подставить в уравнение (3) и выяснить, что:

2 + 2200 = 4500, откуда 2 = 2300.

Ответ: 2300 - количество страниц, найденных по запросу Крейсер & Линкор.

Как видите, круги Эйлера помогают быстро и просто решить даже достаточно сложные или просто запутанные на первый взгляд задачи.

Заключение

Полагаю, нам удалось убедить вас, что круги Эйлера – не просто занимательная и интересная штука, но и весьма полезный метод решения задач. Причем не только абстрактных задач на школьный уроках, но и вполне себе житейских проблем. Выбора будущей профессии, например.

Вам еще наверняка будет любопытно узнать, что в современной массовой культуре круги Эйлера нашли отражение не только в виде мемов, но и в популярных сериалах. Таких, как «Теория большого взрыва» и «4исла».

Используйте это полезный и наглядный метод для решения задач. И обязательно расскажите о нем друзьям и одноклассникам. Для этого под статьей есть специальные кнопки.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

История

Определение 1

Леонарду Эйлеру задали вопрос: можно ли, прогуливаясь по Кенигсбергу, обойти через все мосты города, дважды не проходя ни через один из них. План города с семью мостами прилагался.

В письме знакомому итальянскому математику Эйлер дал краткое и красивое решение проблемы кенигсбергских мостов: при таком расположении задача неразрешима. При этом он указал, что вопрос показался ему интересным, т.к. «для его решения недостаточны ни геометрия, ни алгебра...» .

При решении многих задач Л. Эйлер изображал множества с помощью кругов, поэтому они и получили название «круги Эйлера» . Этим методом ещё ранее пользовался немецкий философ и математик Готфрид Лейбниц, который использовал их для геометрического объяснения логических связей между понятиями, но при этом чаще использовал линейные схемы. Эйлер же достаточно основательно развил метод. Особенно знаменитыми графические методы стали благодаря английскому логику и философу Джону Венну, который ввел диаграммы Венна и подобные схемы часто называют диаграммами Эйлера-Венна . Используются они во многих областях, например, в теории множеств, теории вероятности, логике, статистике и информатике.

Принцип построения диаграмм

До сих пор диаграммы Эйлера-Венна широко используют для схематичного изображения всех возможных пересечений нескольких множеств. На диаграммах изображают все $2^n$ комбинаций n свойств. Например, при $n=3$ на диаграмме изображают три круга с центрами в вершинах равностороннего треугольника и одинаковым радиусом, который приближенно равен длине стороны треугольника.

Логические операции задают таблицы истинности. На диаграмме изображается круг с названием множества, которое он представляет, например, $A$. Область в середине круга $A$ будет отображать истинность выражения $A$, а область вне круга -- ложь. Для отображения логической операции заштриховывают только те области, в которых значения логической операции при множествах $A$ и $B$ истинны.

Например, конъюнкция двух множеств $A$ и $B$ истинна только в том случае, когда оба множества истинны. В таком случае на диаграмме результатом конъюнкции $A$ и $B$ будет область в середине кругов, которая одновременно принадлежит множеству $A$ и множеству $B$ (пересечению множеств).

Рисунок 1. Конъюнкция множеств $A$ и $B$

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как применяется метод построения диаграмм Эйлера-Венна для доказательства логических равенств.

Докажем закон де Моргана, который описывается равенством:

Доказательство:

Рисунок 4. Инверсия $A$

Рисунок 5. Инверсия $B$

Рисунок 6. Конъюнкция инверсий $A$ и $B$

После сравнения области для отображения левой и правой части видим, что они равны. Из этого следует справедливость логического равенства. Закон де Моргана доказан с помощью диаграмм Эйлера-Венна.

Решение задачи поиска информации в Интернет с помощью диаграмм Эйлера-Венна

Для осуществления поиска информации в Интернет удобно использовать поисковые запросы с логическими связками, аналогичными по смыслу союзам "и", "или" русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью диаграмм Эйлера-Венна.

Пример 1

В таблице приведены примеры запросов к поисковому серверу. Каждый запрос имеет свой код -- буква от $A$ до $B$. Нужно расположить коды запросов в порядке убывания количества найденных страниц по каждому запросу.

Рисунок 7.

Решение:

Построим для каждого запроса диаграмму Эйлера-Венна:

Рисунок 8.

Ответ: БВА.

Решение логической содержательной задачи с помощью диаграмм Эйлера-Венна

Пример 2

За зимние каникулы из $36$ учеников класса $2$ не были ни в кино, ни в театре, ни в цирке. В кино сходило $25$ человек, в театр -- $11$, в цирк -- $17$ человек; и в кино, и в театре -- $6$; и в кино и в цирк -- $10$; и в театр и в цирк -- $4$.

Сколько человек побывало и в кино, и в театре, и в цирке?

Решение:

Обозначим количество ребят, побывавших и в кино, и в театре, и в цирке -- $x$.

Построим диаграмму и узнаем количество ребят в каждой области:

Рисунок 9.

Не были ни в театре, ни в кино, ни в цирке -- $2$ чел.

Значит, $36 - 2 = 34$ чел. побывали на мероприятиях.

В кино и театр сходило $6$ чел., значит, только в кино и театр ($6 - x)$ чел.

В кино и цирк сходило $10$ чел., значит, только в кино и цирк ($10 - x$) чел.

В театр и цирк сходило $4$ чел., значит, только в театре и цирк ($4 - x$) чел.

В кино сходило $25$ чел., значит, из них только в кино сходило $25 - (10 - x) - (6 - x) - x = (9+x)$.

Аналогично, только в театр сходило ($1+x$) чел.

Только в цирк сходило ($3+x$) чел.

Итак, сходили в театр, кино и цирк:

$(9+x)+(1+x)+(3+x)+(10-x)+(6-x)+(4-x)+x = 34$;

Т.е. только один человек сходил и в театр, и в кино, и в цирк.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Национальный исследовательский

Томский политехнический университет

Институт природных ресурсов

Кафедра ВМ

РЕФЕРАТ

Тема: «Диаграмма Эйлера-Венна »

Исполнитель:

Студент группы 2У00

Руководитель:

Введение……………………………………………………………….………..3

1. Из истории…………………………………………………………….….…..4

2. Диаграмма Эйлера-Венна……………………………………………….…..4

3. Операции над множествами диаграммы Эйлера-Венна………………….5

a) Объединение……………………….. ……………………………….……7

b) Пересечение, дополнение………………….……………………………..7

c) Стрелка Пирса, штрих Шеффера и разность...………………………….8

d) Разность……………………………………………………………………8

e) Симметрическая разность и эквивалентность…………………….…….9

Заключение………………………………………………………………………10

Список литературы…………………………………………………….………..11

Введение

Круги Эйлера - геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Круги были изобретены Леонардом Эйлером. Используется в математике, логике, менеджменте и других прикладных направлениях.

Важный частный случай кругов Эйлера - диаграммы Эйлера - Венна, изображающие все 2n комбинаций n свойств, то есть конечную булеву алгебру. При n = 3 диаграмма Эйлера - Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик (1646-1716). Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.

Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер (1841-1902) в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна (1843-1923), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Поэтому такие схемы иногда называют Диаграммы Эйлера - Венна.

1.Из истории

Леонард Эйлер (1707 - 1783, Санкт-Петербург, Российская империя) -математик, механик, физик. Адъюнкт по физиологии, профессор физики, профессор высшей математики, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук.

Эйлер - автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др.

Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. В 1726 году он был приглашён работать вСанкт-Петербург, куда переехал годом позже. С 1711 по 1741, а также с 1766 года был академиком Петербургской Академии Наук (в 1741-1766 годах работал в Берлине, оставаясь одновременно почётным членом Петербургской Академии). Хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С. К. Котельников) и астрономы (С. Я. Румовский) были учениками Эйлера. Некоторые из его потомков до сих пор живут в России.

Джон Венн (1, английский логик. Работал в области логики классов, где создал особый графический аппарат (так называемые диаграммы Венна), нашедший применение в логико-математической теории «формальных нейронных сетей». Венну принадлежит обоснование обратных операций в логическом исчислении Дж. Буля. Основной областью интереса Джона была логика, и он опубликовал три работы по этой теме. Это были "Логика случая", в которой вводится интерпретация частоты или частотная теория вероятностей в 1866; "Символьная логика", с которой были введены диаграммы Венна в 1881; "Принципы эмпирической логики" в 1889, в которой приводятся обоснования обратных операций в булевой логике.

В математике рисунки в виде кругов, изображающих множества, используются очень давно. Одним из первых, кто пользовался этим методом, был выдающийся немецкий математик и философ (1В его черновых набросках были обнаружены рисунки с такими кругами. Затем этот метод довольно основательно развил и Леонард Эйлер. Он долгие годы работал в Петербургской Академии наук. К этому времени относятся его знаменитые "Письма к немецкой принцессе", написанные в период с 1761 по 1768 год. В некоторых из этих "Писем..." Эйлер как раз и рассказывает о своем методе. После Эйлера этот же метод разрабатывал чешский математик Бернард Больцано (1Только в отличие от Эйлера он рисовал не круговые, а прямоугольные схемы. Методом кругов Эйлера пользовался и немецкий математик Эрнест Шредер (1Этот метод широко используется в книге "Алгебра логики". Но наибольшего расцвета графические методы достигли в сочинениях английского логика Джона Венна (1С наибольшей полнотой этот метод изложен им в книге "Символическая логика", изданной в Лондоне в 1881 году. В честь Венна вместо кругов Эйлера соответствующие рисунки называют иногда диаграммами Венна; в некоторых книгах их называют также диаграммами (или кругами) Эйлера-Венна.


2.Диаграмма Эйлера-Венна

Понятия множества и подмножества используются при определении многих понятий математики и, в частности, при определении геометрической фигуры. Определим как универсальное множество плоскость. Тогда можно дать следующее определение геометрической фигуры в планиметрии:

Геометрической фигурой называется всякое множество точек плоскости. Чтобы наглядно отображать множества и отношения между ними, рисуют геометрические фигуры, которые находятся между собой в этих отношениях. Такие изображения множеств и называют диаграммами Эйлера–Венна. Диаграммы Эйлера–Венна делают наглядными различные утверждения, касающиеся множеств. На них универсальное множество изображают в виде прямоугольника, а его подмножества – кругами. Используется в математике, логике, менеджменте и других прикладных направлениях.

Диаграммы Эйлера-Венна заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов (или каких-нибудь других замкнутых фигур), представляющих множества. Фигуры должны пересекаться в наиболее общем случае, требуемом в задаче, и должны быть соответствующим образом обозначены. Точки, лежащие внутри различных областей диаграммы, могут рассматриваться как элементы соответствующих множеств. Имея построенную диаграмму, можно заштриховать определенные области для обозначения вновь образованных множеств.

Основные операции над множествами:

    Пересечение Объединение Разность

3.Операции над множествами диаграммы Эйлера-Венна

Операции над множествами рассматриваются для получения новых множеств из уже существующих.

Определение. Объединением множеств А и В называется множество, состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А, В (рис. 1):

Определение. Пересечением множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат одновременно как множеству А, так и множеству В (рис. 2):

Определение. Разностью множеств А и В называется множество всех тех и только тех элементов А, которые не содержатся в В (рис. 3):

Определение. Симметрической разностью множеств А и В называется множество элементов этих множеств, которые принадлежат либо только множеству А, либо только множеству В (рис. 4):

Определение. Абсолютным дополнением множества А называется множество всех тех элементов, которые не принадлежат множеству А (рис. 5):

Теперь более подробно на примерах.

Пусть дана некоторая совокупность предметов, которую после пересчета можно было бы обозначить как

A = {1, 2, 4, 6} и B = {2, 3, 4, 8, 9}

круглых и белых предметов. Можно исходное множество называть фундаментальным , а подмножества A и B – просто множествами .

В результате получим четыре класса элементов:

C 0 = {5, 7, 10, 11} - элементы не обладают ни одним из названных свойств,

C 1 = {1, 6} - элементы обладают только свойством A (круглые),

C 2 = {3, 8, 9} - элементы обладают только свойством B (белые),

C 3 = {2, 4} - элементы обладают одновременно двумя свойствами A и B.

На рис. 1.1. указанные классы изображены с помощью диаграммы Эйлера - Венна .

Рис. 1.1

Часто диаграммы не имеют всей полноты общности, например та, что изображена на рис. 1.2. На ней уже множество A полностью включено в B. Для такого случая используется специальный символ включения (Ì): A Ì B = {1, 2, 4} Ì {1, 2, 3, 4, 6}.

Если одновременно выполняются два условия: A Ì B и B Ì A, то A = B, в этом случае говорят, что множества A и B полностью эквивалентны .

Рис. 1.2

После того, как определены четыре класса элементов и даны необходимые сведения о диаграммах Эйлера - Венна, введем операции на множествах. В качестве первой рассмотрим операцию объединения .

a)Объединение

Объединением множеств A = {1, 2, 4, 6} и B = {2, 3, 4, 8, 9}

назовем множество

A È B = {1, 2, 3, 4, 6, 8, 9},

где È - символ объединения множеств. Таким образом, объединением охватываются три класса элементов - C 1, C 2 и C 3, которые на диаграмме (рис. 1.3) заштрихованы.

Логически операцию объединения двух множеств можно охарактеризовать словами: элемент x принадлежит множеству A или множеству B. При этом связка «или» одновременно означает и связку «и». Факт принадлежности элемента x множеству A обозначается как x Î A. Поэтому то, что x принадлежит A или/и B, выражается формулой:

x Î A È B = (x Î A) Ú (x Î B),

где Ú - символ логической связки или, которая называется дизъюнкцией .

b)Пересечение, дополнение

Пересечением множеств A и B называется множество A Ç B, содержащее те элементы из A и B, которые входят одновременно в оба множества. Для нашего числового примера будем иметь:

A Ç B = {1, 2, 4, 6} Ç {2, 3, 4, 8, 9} = {2, 4} = C 3.

Диаграмма Эйлера – Венна для пересечения изображена на рис. 1.4.

То, что x принадлежит одновременно двум множествам A и B можно представить выражением:

x Î A Ç B = (x Î A) Ù (x Î B),

где Ù - символ логической связки «и», которая называется конъюнкцией .

Представим себе операцию, в результате которой окажутся заштрихованными области C 1 и C 3, образующие множество A (рис. 1.5). Затем еще одну операцию, которая охватит две другие области - C 0 и C 2, не входящие в A, что обозначается как A (рис.1.6).

Рис. 1.5

Рис. 1.6

Если объединить заштрихованные области на обеих диаграммах, то получим все заштрихованное множество 1; пересечение же A и A даст пустое множество 0, в котором не содержится ни одного элемента:

A È A = 1, A Ç A = 0.

Множество A дополняет множество A до фундаментального множества V (или 1); отсюда название: дополнительное множество A, или дополнение как операция. Дополнение к логической переменной x , т. е. x (не-x ), называется чаще всего отрицанием x .

После введения операций пересечения и дополнения все четыре области Ci на диаграмме Эйлера – Венна можно выразить следующим образом:

C 0 = A ÇB , C 1 = A Ç B , C 2 = A Ç B, C 3 = A Ç B.

Путем объединения соответствующих областей Ci можно представить любую множественную операцию, в том числе и само объединение:

A È B = (A Ç B ) È (A Ç B) È (A Ç B).

На диаграмме Эйлера - Венна для импликации (рис. 1.10) показано частичное включение множества A во множество B, которое нужно отличать от полного включения (рис. 1.2).

Если утверждается, что «элементы множества A включены во множество B», то область C 3 обязательно должна быть заштрихована, а область C 1 с такой же необходимостью должна быть оставлена белой. Относительно областей C 0 и C 1, находящихся в A , заметим, что мы не имеем права оставлять их белыми, но, мы обязаны все же области, попадающие в A , заштриховать.

Е)Симметрическая разность и эквивалентность

Остается привести еще две взаимно дополняющих операции - симметрическую разность и эквивалентность. Симметрическая разность двух множеств A и B есть объединение двух разностей:

A + B = (A – B) È (B – A) = C 1 È C 2 = {1, 3, 6, 8, 9}.

Эквивалентность определяется теми элементами множеств A и B, которые для них являются общими. Однако элементы, не входящие ни в A, ни в B, также считаются эквивалентными:

A ~ B = (A Ç B) È (A Ç B ) = C 0 È C 3 = {2, 4, 5, 7, 10, 11}.

На рис. 1.11 и 1.12 показана штриховка диаграмм Эйлера - Венна.

Рис. 1.11

Рис. 1.12

В заключение отметим, что симметрическая разность имеет несколько названий: строгая дизъюнкция , исключающая альтернатива , сумма по модулю два . Эту операцию можно передать словами - «либо А, либо В», т. е. это логическая связка «или», но без включенной в нее связки «и».

Заключение

Диаграммы Эйлера-Венна – геометрические представления множеств. Простое построение диаграммы обеспечивает наглядное изображение, представляющее универсальное множество U , а внутри его – кругов (или каких-нибудь других замкнутых фигур), представляющих множества. Фигуры пересекаются в наиболее общем случае, требуемом в задаче, и соответствуют образному изображению. Точки, лежащие внутри различных областей диаграммы, могут рассматриваться как элементы соответствующих множеств. Имея построенную диаграмму, можно заштриховать определенные области для обозначения вновь образованных множеств. Это позволяет нам иметь наиболее полное представление о задаче и ее решении. Простота диаграмм Эйлера-Венна позволяет использовать данный прием в таких направлениях, как математика, логика, менеджмент и других прикладных направлениях.

Список литературы

1. Словарь по логике. - М.: Туманит, изд. центр ВЛАДОС. , . 1997

2. Weisstein, Eric W. «Диаграмма Венна» (англ.) на сайте Wolfram MathWorld.

История

Определение 1

Леонарду Эйлеру задали вопрос: можно ли, прогуливаясь по Кенигсбергу, обойти через все мосты города, дважды не проходя ни через один из них. План города с семью мостами прилагался.

В письме знакомому итальянскому математику Эйлер дал краткое и красивое решение проблемы кенигсбергских мостов: при таком расположении задача неразрешима. При этом он указал, что вопрос показался ему интересным, т.к. «для его решения недостаточны ни геометрия, ни алгебра...» .

При решении многих задач Л. Эйлер изображал множества с помощью кругов, поэтому они и получили название «круги Эйлера» . Этим методом ещё ранее пользовался немецкий философ и математик Готфрид Лейбниц, который использовал их для геометрического объяснения логических связей между понятиями, но при этом чаще использовал линейные схемы. Эйлер же достаточно основательно развил метод. Особенно знаменитыми графические методы стали благодаря английскому логику и философу Джону Венну, который ввел диаграммы Венна и подобные схемы часто называют диаграммами Эйлера-Венна . Используются они во многих областях, например, в теории множеств, теории вероятности, логике, статистике и информатике.

Принцип построения диаграмм

До сих пор диаграммы Эйлера-Венна широко используют для схематичного изображения всех возможных пересечений нескольких множеств. На диаграммах изображают все $2^n$ комбинаций n свойств. Например, при $n=3$ на диаграмме изображают три круга с центрами в вершинах равностороннего треугольника и одинаковым радиусом, который приближенно равен длине стороны треугольника.

Логические операции задают таблицы истинности. На диаграмме изображается круг с названием множества, которое он представляет, например, $A$. Область в середине круга $A$ будет отображать истинность выражения $A$, а область вне круга -- ложь. Для отображения логической операции заштриховывают только те области, в которых значения логической операции при множествах $A$ и $B$ истинны.

Например, конъюнкция двух множеств $A$ и $B$ истинна только в том случае, когда оба множества истинны. В таком случае на диаграмме результатом конъюнкции $A$ и $B$ будет область в середине кругов, которая одновременно принадлежит множеству $A$ и множеству $B$ (пересечению множеств).

Рисунок 1. Конъюнкция множеств $A$ и $B$

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как применяется метод построения диаграмм Эйлера-Венна для доказательства логических равенств.

Докажем закон де Моргана, который описывается равенством:

Доказательство:

Рисунок 4. Инверсия $A$

Рисунок 5. Инверсия $B$

Рисунок 6. Конъюнкция инверсий $A$ и $B$

После сравнения области для отображения левой и правой части видим, что они равны. Из этого следует справедливость логического равенства. Закон де Моргана доказан с помощью диаграмм Эйлера-Венна.

Решение задачи поиска информации в Интернет с помощью диаграмм Эйлера-Венна

Для осуществления поиска информации в Интернет удобно использовать поисковые запросы с логическими связками, аналогичными по смыслу союзам "и", "или" русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью диаграмм Эйлера-Венна.

Пример 1

В таблице приведены примеры запросов к поисковому серверу. Каждый запрос имеет свой код -- буква от $A$ до $B$. Нужно расположить коды запросов в порядке убывания количества найденных страниц по каждому запросу.

Рисунок 7.

Решение:

Построим для каждого запроса диаграмму Эйлера-Венна:

Рисунок 8.

Ответ: БВА.

Решение логической содержательной задачи с помощью диаграмм Эйлера-Венна

Пример 2

За зимние каникулы из $36$ учеников класса $2$ не были ни в кино, ни в театре, ни в цирке. В кино сходило $25$ человек, в театр -- $11$, в цирк -- $17$ человек; и в кино, и в театре -- $6$; и в кино и в цирк -- $10$; и в театр и в цирк -- $4$.

Сколько человек побывало и в кино, и в театре, и в цирке?

Решение:

Обозначим количество ребят, побывавших и в кино, и в театре, и в цирке -- $x$.

Построим диаграмму и узнаем количество ребят в каждой области:

Рисунок 9.

Не были ни в театре, ни в кино, ни в цирке -- $2$ чел.

Значит, $36 - 2 = 34$ чел. побывали на мероприятиях.

В кино и театр сходило $6$ чел., значит, только в кино и театр ($6 - x)$ чел.

В кино и цирк сходило $10$ чел., значит, только в кино и цирк ($10 - x$) чел.

В театр и цирк сходило $4$ чел., значит, только в театре и цирк ($4 - x$) чел.

В кино сходило $25$ чел., значит, из них только в кино сходило $25 - (10 - x) - (6 - x) - x = (9+x)$.

Аналогично, только в театр сходило ($1+x$) чел.

Только в цирк сходило ($3+x$) чел.

Итак, сходили в театр, кино и цирк:

$(9+x)+(1+x)+(3+x)+(10-x)+(6-x)+(4-x)+x = 34$;

Т.е. только один человек сходил и в театр, и в кино, и в цирк.

Поделитесь с друзьями или сохраните для себя:

Загрузка...