Световой год и космические масштабы. Какое расстояние между нами и сверхновой можно считать безопасным? К окраинам Вселенной

Проксима Центавра.

Вот классический вопрос на засыпку. Спросите друзей, "Какая является ближайшей к нам? ", а затем смотрите, как они будут перечислять ближайшие звёзды . Может быть Сириус? Альфа что-то там? Бетельгейзе? Ответ очевиден - это ; массивный шар плазмы, расположенный примерно в 150 миллионах километров от Земли. Давайте уточним вопрос. Какая звезда самая близкая к Солнцу ?

Ближайшая звезда

Вы, наверное, слышали, что - третья по яркости звезда в небе на расстоянии всего 4,37 световых года от . Но Альфа Центавра не одиночная звезда, это система из трёх звёзд. Во-первых, двойная звезда (бинарная звезда) с общим центром гравитации и орбитальным периодом 80 лет. Альфа Центавра А лишь немного массивнее и ярче Солнца, а Альфа Центавра B чуть мене массивна, чем Солнце. Также в этой системе присутствует третий компонент, тусклый красный карлик Проксима Центавра (Proxima Centauri) .


Проксима Центавра - это и есть самая близкая звезда к нашему Солнцу , расположенная на расстоянии всего 4,24 световых года.

Проксима Центавра.

Кратная звёздная система Альфа Центавра расположена в созвездии Центавра, которое видно только в южном полушарии. К сожалению, даже если вы увидите эту систему, вы не сможете разглядеть Проксиму Центавра . Эта звезда настолько тусклая, что вам понадобится достаточно мощный телескоп, чтобы разглядеть её.

Давайте выясним масштаб того, насколько далека Проксима Центавра от нас. Подумайте о . движется со скоростью почти 60 000 км/ч, самый быстрый в . Этот путь он преодолел в 2015 году за 9 лет. Путешествуя с такой скоростью, чтобы добраться до Проксимы Центавра , "Новым Горизонтам" потребуется 78 000 световых лет.

Проксима Центавра - это ближайшая звезда на протяжении 32 000 световых лет, и она будет удерживать данный рекорд ещё 33 000 лет. Она совершит свой самый близкий подход к Солнцу примерно через 26700 лет, когда расстояние от этой звезды до Земли будет всего 3,11 световых года. Через 33 000 лет ближайшей звездой станет Ross 248 .

Что насчёт северного полушария?

Для тех из нас, кто живёт в северном полушарии, ближайшей видимой звездой является Звезда Барнарда , ещё один красный карлик в созвездии Змееносца (Ophiuchus). К сожалению, как и Проксима Центавра, Звезда Барнарда слишком тусклая, чтобы видеть её невооружённым глазом.


Звезда Барнарда.

Ближайшая звезда , которую вы сможете увидеть невооружённым глазом в северном полушарии - это Сириус (Альфа Большого Пса) . Сириус в два раза больше Солнца по размеру и по массе, и самая яркая звезда в небе. Расположенная в 8,6 световых лет от нас в созвездии Большого Пса (Canis Major) - это самая известная звезда, преследующая Орион на ночном небе зимой.

Как астрономы измерили расстояние до звёзд?

Они используют метод, называемый . Давайте проведём небольшой эксперимент. Держите одну руку вытянутой в длину и поместите свой палец так, чтобы рядом находился какой-то отдалённый объект. Теперь поочерёдно открывайте и закрывайте каждый глаз. Обратите внимание, кажется, что ваш палец прыгает туда и обратно, когда вы смотрите разными глазами. Это и есть метод параллакса.

Параллакс.

Чтобы измерить расстояние до звёзд, вы можете измерить угол до звезды по отношению к , когда Земля находится на одной стороне орбиты, скажем летом, затем через 6 месяцев, когда Земля передвинется на противоположную сторону орбиты, а затем измерить угол до звезды по сравнению с каким-нибудь отдалённым объектом. Если звезда близко к нам, данный угол можно будет измерить и вычислить расстояние.

Вы можете действительно можете измерить расстояние таким способом до ближайших звёзд , но этот метод работает только до 100"000 световых лет.

20 ближайших звёзд

Вот список из 20 ближайших звёздных систем и их расстояние до них в световых годах. Некоторые из них имеют несколько звёзд, но они часть одной и той же системы.

Звезда Расстояние, св. лет
Альфа Центавра (Alpha Centauri) 4,2
Звезда Барнарда (Barnard’s Star) 5,9
Вольф 359 (Wolf 359; CN Льва) 7,8
Лаланд 21185 (Lalande 21185) 8,3
Сириус (Sirius) 8,6
Лейтен 726-8 (Luyten 726-8) 8,7
Росс 154 (Ross 154) 9,7
Росс 248 (Ross 248 10,3
Эпсилон Эридана (Epsilon Eridani) 10,5
Лакайль 9352 (Lacaille 9352) 10,7
Росс 128 (Ross 128) 10,9
EZ Водолея (EZ Aquarii) 11,3
Процион (Procyon) 11,4
61 Лебедя (61 Cygni) 11,4
Струве 2398 (Struve 2398) 11,5
Грумбридж 34 (Groombridge 34) 11,6
Эпсилон Индейца (Epsilon Indi) 11,8
DX Рака (DX Cancri) 11,8
Тау Кита (Tau Ceti) 11,9
GJ 106 11,9

По данным NASA в радиусе 17 световых лет от Солнца существует 45 звёзд. В насчитывается более 200 миллиардов звёзд. Некоторые из них настолько тусклые, что их почти невозможно обнаружить. Возможно, с новыми технологиями учёные найдут звёзды ещё ближе к нам.

Название прочитанной вами статьи "Ближайшая звезда к Солнцу" .

22 февраля 2017 года NASA сообщило, что у одиночной звезды TRAPPIST-1 найдены 7 экзопланет. Три из них находятся в том диапазоне расстояний от звезды, в котором планета может иметь жидкую воду, а вода - это ключевой условие для жизни. Сообщается также, что данная звездная система находится на расстоянии в 40 световых лет от Земли.

Это сообщение наделало много шума в СМИ, кое-кому даже показалось, что человечество находится в шаге от строительства новых поселений у новой звезды, но это не так. Но 40 световых лет - это много, это МНОГО, это слишком много километров, то есть это чудовищно колоссальное расстояние!

Из курса физики известна третья космическая скорость - это такая скорость, которую должно иметь тело у поверхности Земли, чтобы выйти за пределы Солнечной системы. Значение этой скорости равно 16,65 км/сек. Обычные орбитальные космические корабли стартуют со скоростью 7,9 км/сек, и вращаются вокруг Земли. В принципе, скорость в 16-20 км/сек, является вполне доступной современным земным технологиям, но не более!

Человечество еще не научилось разгонять космические корабли быстрее, чем 20 км/сек.

Рассчитаем, сколько лет понадобиться звездолету, летящему со скоростью в 20 км/сек, чтобы преодолеть 40 световых лет и достичь звезды TRAPPIST-1.
Один световой год - это расстояние, которое проходит луч света в вакууме, а скорость света равна примерно 300 тыс. км/сек.

Космический корабль, сделанный руками людей, летит со скоростью в 20 км/сек, то есть в 15000 раз медленнее скорости света. 40 световых лет такой корабль преодолеет за время равное 40*15000=600000 лет!

Земной корабль (при современном уровне технологии) долетит до звезды TRAPPIST-1 примерно за 600 тыс. лет! Человек разумный существует на Земле (по мнению ученых) всего 35-40 тыс. лет, а тут целых 600 тыс. лет!

В ближайшее время технологии не позволят человеку достичь звезды TRAPPIST-1. Даже перспективные двигатели (ионные, фотонные, космические паруса и т.д.), которых нет в земной реальности, оценочно, могут разогнать корабль до скорости в 10000 км/сек, а значит, время полета до системы TRAPPIST-1 сократится до 120 лет. Это уже более-менее приемлемое время для полета с помощью анабиоза или для нескольких поколений переселенцев, но на сегодняшний день все эти двигатели - фантастика.

Даже ближайшие звезды пока еще слишком далеки от людей, слишком далеки, не говоря уже о звездах нашей Галактики или других галактиках.

Поперечник нашей галактики Млечный Путь составляет примерно 100 тыс. световых лет, то есть путь из конца в конец для современного земного корабля составит 1,5 млрд. лет! Наука предполагает, что нашей Земле 4,5 млрд. лет, а многоклеточной жизни примерно 2 млрд. лет. Расстояние до ближайшей к нам галактики - Туманности Андромеды - 2,5 млн. световых лет от Земли - какие чудовищные расстояния!

Как видно, из всех ныне живущих людей никто и никогда не ступит ногой на землю планеты у другой звезды.

Вследствие годичного движения Земли по орбите близкие звезды немного перемещаются относительно далеких «неподвижных» звезд. За год такая звезда описывает на небесной сфере малый эллипс, размеры которого тем меньше, чем звезда дальше. В угловой мере большая полуось этого эллипса приблизительно равна величине максимального угла, под каким со звезды видна 1 а. е. (большая полуось земной орбиты), перпендикулярная направлению на звезду. Этот угол (), называемый годичным или тригонометрическим параллаксом звезды, равный половине ее видимого смещения за год, служит для измерения расстояния до нее на основе тригонометрических соотношений между сторонами и углами треугольника ЗСА, в котором известен угол и базис - большая полуось земной орбиты (см. рис. 1).

Рисунок 1. Определение расстояния до звезды методом параллакса (А - звезда, З - Земля, С - Солнце).

Расстояние r до звезды, определяемое по величине ее тригонометрического параллакса, равно:

r = 206265""/ (а. е.),

где параллакс выражен в угловых секундах.

Для удобства определения расстояний до звезд с помощью параллаксов в астрономии применяют специальную единицу длины - парсек (пс). Звезда, находящаяся на расстоянии 1 пс, имеет параллакс, равный 1"". Согласно вышеназванной формуле, 1 пс = 206265 а. е. = 3,086·10 18 см.

Наряду с парсеком применяется еще одна специальная единица расстояний - световой год (т. е. расстояние, которое свет проходит за 1 год), он равен 0,307 пс, или 9,46·10 17 см.

Ближайшая к Солнечной системе звезда - красный карлик 12-й звездной величины Проксима Центавра - имеет параллакс 0,762, т. е. расстояние до нее равно 1,31 пс (4,3 световых года).

Нижний предел измерения тригонометрических параллаксов ~0,01"", поэтому с их помощью можно измерять расстояния, не превышающие 100 пс с относительной погрешностью 50%. (При расстояниях до 20 пс относительная погрешность не превышает 10%.) Этим методом до настоящего времени определены расстояния до около 6000 звезд. Расстояния до более далеких звезд в астрономии определяют в основном фотометрическим методом.

Таблица 1. Двадцать ближайших звезд.

Название звезды

Параллакс в секундах дуги

Расстояние, пс

Видимая звездная величина, m

Абсолютная звездная величина, М

Спектральный класс

Проксима Центавра

б Центавра А

б Центавра В

Звезда Барнарда

Лаланд 21185

Спутник Сириуса

Лейтен 7896

е Эридана

Спутник Проциона

Спутник 61 Лебедя

е Индейца

  • 0,762
  • 0,756
  • 0,756
  • 0,543
  • 0,407
  • 0,403
  • 0,388
  • 0,376
  • 0,376
  • 0,350
  • 0,334
  • 0,328
  • 0,303
  • 0,297
  • 0,297
  • 0,296
  • 0,296
  • 0,294
  • 0,288
  • 1/206256

Звезды являются самым распространенным типом небесных тел во Вселенной. Звезд до 6-й звездной величины насчитывается около 6000, до 11-й звездной величины примерно миллион, а до 21-й звездной величины их на всем небе около 2 млрд.

Все они, как и Солнце, являются горячими самосветящимися газовыми шарами, в недрах которых выделяется огромная энергия. Однако звезды даже в самые сильные телескопы видны как светящиеся точки, так как они находятся очень далеко от нас.

1. Годичный параллакс и расстояния до звезд

Радиус Земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звезд и для определения расстояний до них. Еще во времена Коперника было ясно, что если Земля действительно обращается вокруг Солнца, то видимые положения звезд на небе должны меняться. За полгода Земля перемещается на величину диаметра своей орбиты. Направления на звезду с противоположных точек этой орбиты должны различаться. Иначе говоря, у звезд должен быть заметен годичный параллакс (рис. 72).

Годичным параллаксом звезды ρ называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), если она перпендикулярна лучу зрения.

Чем больше расстояние D до звезды, тем меньше ее параллакс. Параллактическое смещение положения звезды на небе в течение года происходит по маленькому эллипсу или кругу, если звезда находится в полюсе эклиптики (см. рис. 72).

Коперник пытался, но не смог обнаружить параллакс звезд. Он правильно утверждал, что звезды слишком далеки от Земли, чтобы существовавшими тогда приборами можно было заметить их параллактическое смещение.

Впервые надежное измерение годичного параллакса звезды Веги удалось осуществить в 1837 г. русскому академику В. Я. Струве. Почти одновременно с ним в других странах определили параллаксы еще у двух звезд, одной из которых была α Центавра. Эта звезда, которая в СССР не видна, оказалась ближайшей к нам, ее годичный параллакс ρ= 0,75". Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Неудивительно, что так долго не могли заметить у звезд столь малые угловые смещения.

Расстояние до звезды где а - большая полуось земной орбиты. При малых углах если р выражено в секундах дуги. Тогда, приняв а = 1 а. е., получим:


Расстояние до ближайшей звезды α Центавра D=206 265" : 0,75" = 270 000 а. е. Свет проходит это расстояние за 4 года, тогда как от Солнца до Земли он идет только 8 мин, а от Луны около 1 с.

Расстояние, которое свет проходит в течение года, называется световым годом . Эта единица используется для измерения расстояния наряду с парсеком (пк).

Парсек - расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1".

Расстояние в парсеках равно обратной величине годичного параллакса, выраженного в секундах дуги. Например, расстояние до звезды α Центавра равно 0,75" (3/4"), или 4/3 пк.

1 парсек = 3,26 светового года = 206 265 а. е. = 3*10 13 км.

В настоящее время измерение годичного параллакса является основным способом при определении расстояний до звезд. Параллаксы измерены уже для очень многих звезд.

Измерением годичного параллакса можно надежно установить расстояние до звезд, находящихся не далее 100 пк, или 300 световых лет.

Почему не удается точно измерить годичный параллакс более o далеких звезд?

Расстояние до более далеких звезд в настоящее время определяют другими методами (см. §25.1).

2. Видимая и абсолютная звездная величина

Светимость звезд. После того как астрономы получили возможность определять расстояния до звезд, было установлено, что звезды отличаются по видимой яркости не только из-за различия расстояния до них, но и вследствие различия их светимости .

Светимостью звезды L называется мощность излучения световой энергии по сравнению с мощностью излучения света Солнцем.

Если две звезды имеют одинаковую светимость, то звезда, которая находится дальше от нас, имеет меньшую видимую яркость. Сравнивать звезды по светимости можно лишь в том случае, если рассчитать их видимую яркость (звездную величину) для одного и того же стандартного расстояния. Таким расстоянием в астрономии принято считать 10 пк.

Видимая звездная величина, которую имела бы звезда, если бы находилась от нас на стандартном расстоянии D 0 =10 пк, получила название абсолютной звездной величины М.

Рассмотрим количественное соотношение видимой и абсолютной звездных величин звезды при известном расстоянии D до нее (или ее параллаксе р). Вспомним сначала, что разность в 5 звездных величин соответствует различию яркости ровно в 100 раз. Следовательно, разность видимых звездных величин двух источников равна единице, когда один из них ярче другого ровно в раз (эта величина примерно равна 2,512). Чем ярче источник, тем его видимая звездная величина считается меньшей. В общем случае отношение видимой яркости двух любых звезд I 1:I 2 связано с разностью их видимых звездных величин m 1 и m 2 простым соотношением:


Пусть m - видимая звездная величина звезды, находящейся на расстоянии D. Если бы она наблюдалась с расстояния D 0 = 10 пк, ее видимая звездная величина m 0 по определению была бы равна абсолютной звездной величине М. Тогда ее кажущаяся яркость изменилась бы в

В то же время известно, что кажущаяся яркость звезды меняется обратно пропорционально квадрату расстояния до нее. Поэтому

(2)

Следовательно,

(3)

Логарифмируя это выражение, находим:

(4)

где р выражено в секундах дуги.

Эти формулы дают абсолютную звездную величину М по известной видимой звездной величине m при реальном расстоянии до звезды D. Наше Солнце с расстояния 10 пк выглядело бы примерно как звезда 5-й видимой звездной величины, т. е. для Солнца М ≈5.

Зная абсолютную звездную величину М какой-нибудь звезды, легко вычислить ее светимость L. Принимая светимость Солнца L =1, по определению светимости можно записать, что

Величины М и L в разных единицах выражают мощность излучения звезды.

Исследование звезд показывает, что по светимости они могут отличаться в десятки миллиардов раз. В звездных величинах это различие достигает 26 единиц.

Абсолютные величины звезд очень высокой светимости отрицательны и достигают М =-9. Такие звезды называются гигантами и сверхгигантами. Излучение звезды S Золотой Рыбы мощнее излучения нашего Солнца в 500 000 раз, ее светимость L=500 000, наименьшую мощность излучения имеют карлики с М=+17 (L=0,000013).

Чтобы понять причины значительных различий в светимости звезд, необходимо рассмотреть и другие их характеристики, которые можно определить на основе анализа излучения.

3. Цвет, спектры и температура звезд

Во время наблюдений вы обратили внимание на то, что звезды имеют различный цвет, хорошо заметный у наиболее ярких из них. Цвет нагреваемого тела, в том числе и звезды, зависит от его температуры. Это дает возможность определить температуру звезд по распределению энергии в их непрерывном спектре.

Цвет и спектр звезд связаны с их температурой. В сравнительно холодных звездах преобладает излучение в красной области спектра, отчего они и имеют красноватый цвет. Температура красных звезд низкая. Она растет последовательно при переходе от красных звезд к оранжевым, затем к желтым, желтоватым, белым и голубоватым. Спектры звезд крайне разнообразны. Они разделены на классы, обозначаемые латинскими буквами и цифрами (см. задний форзац). В спектрах холодных красных звезд класса М с температурой около 3000 К видны полосы поглощения простейших двухатомных молекул, чаще всего оксида титана. В спектрах других красных звезд преобладают оксиды углерода или циркония. Красные звезды первой величины класса М - Антарес , Бетельгейзе .

В спектрах желтых звезд класса G , к которым относится и Солнце (с температурой 6000 К на поверхности), преобладают тонкие линии металлов: железа, кальция, натрия и др. Звездой типа Солнца по спектру, цвету и температуре является яркая Капелла в созвездии Возничего.

В спектрах белых звезд класса А , как Сириус, Вега и Денеб, наиболее сильны линии водорода. Есть много слабых линий ионизованных металлов. Температура таких звезд около 10 000 К.

В спектрах наиболее горячих, голубоватых звезд с температурой около 30 000 К видны линии нейтрального и ионизованного гелия.

Температуры большинства звезд заключены в пределах от 3000 до 30 000 К. У немногих звезд встречается температура около 100 000 К.

Таким образом, спектры звезд очень сильно отличаются друг от друга и по ним можно определить химический состав и температуру атмосфер звезд. Изучение спектров показало, что в атмосферах всех звезд преобладающими являются водород и гелий.

Различия звездных спектров объясняются не столько разнообразием их химического состава, сколько различием температуры и других физических условий в звездных атмосферах. При высокой температуре происходит разрушение молекул на атомы. При еще более высокой температуре разрушаются менее прочные атомы, они превращаются в ионы, теряя электроны. Ионизованные атомы многих химических элементов, как и нейтральные атомы, излучают и поглощают энергию определенных длин волн. Путем сравнения интенсивности линий поглощения атомов и ионов одного и того же химического элемента теоретически определяют их относительное количество. Оно является функцией температуры. Так, по темным линиям спектров звезд можно определить температуру их атмосфер.

У звезд одинаковой температуры и цвета, но разной светимости спектры в общем одинаковы, однако можно заметить различия в относительных интенсивностях некоторых линий. Это происходит от того, что при одинаковой температуре давление в их атмосферах различно. Например, в атмосферах звезд-гигантов давление меньше, они разреженнее. Если выразить эту зависимость графически, то по интенсивности линий можно найти абсолютную величину звезды, а далее по формуле (4) определить расстояние до нее.

Пример решения задачи

Задача. Какова светимость звезды ζ Скорпиона, если ее видимая звездная величина 3, а расстояние до нее 7500св. лет?


Упражнение 20

1. Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?

2. Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин?

3. Параллакс Веги 0,11". Сколько времени свет от нее идет до Земли?

4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе?

5. Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий видимую звездную величину -1,6? Чему равны абсолютные величины этих звезд, если расстояние до обеих составляет 3 пк?

6. Назовите цвет каждой из звезд приложения IV по их спектральному классу.

В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к звездам? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей галактике.

Ближайшей звездой к нашей Земле является Солнце, вполне себе «средняя» звезда по схеме «главной последовательности» Герцшпрунга – Рассела. Это означает, что звезда весьма стабильна и обеспечивает достаточно солнечного света, чтобы на нашей планете развивалась жизнь. Мы знаем, что вокруг звезд рядом с нашей Солнечной системой вращаются и другие планеты, и многие из этих звезд похожи на нашу собственную.

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы попасть, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Дотянуться до звезды
Как уже отмечалось, ближайшая звезда к нашей Солнечной системе - это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 световых лет (1,3 парсек) от Земли. Альфа Центавра - это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 световых лет от Земли - тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую миссией «Новых горизонтов», 16 двигателей на гидразиновом монотопливе, можно добраться до Луны всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.

От быстрого ракетного космического аппарата до экономного ионного двигателя, у нас есть парочка вариантов передвижения по местному космосу - плюс можно использовать Юпитер или Сатурн как огромную гравитационную рогатку. Тем не менее, если мы планируем выбраться чуть подальше, нам придется наращивать мощь технологий и изучать новые возможности.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства - пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 световых года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенностью сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 световых года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий - это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.

Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 - постоянную скорость в 240 000 км/ч - ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 световых года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий - это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет - использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.

Ракета с ядерным электрическим приводом включает тот же реактор, преобразующий тепло и энергию в электроэнергию, которая затем питает электродвигатель. В обоих случаях ракета будет полагаться на ядерный синтез или ядерное деление для создания тяги, а не на химическое топливо, на котором работают все современные космические агентства.

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН·c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на Марс всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.

Поделитесь с друзьями или сохраните для себя:

Загрузка...