Задачи из сборника Кузнецова Л. А

На этом уроке изучается тема «Исследование функции и сопутствующие задачи». На этом уроке рассматривается построение графиков функций с помощью производных. Проводится исследование функции , строится её график и решается ряд сопутствующих задач.

Тема: Производная

Урок: Исследование функции и сопутствующие задачи

Надо исследовать эту функцию, построить график, найти промежутки монотонности, максимумы минимумы и какие задачи сопутствуют знанию об этой функции.

Сначала полностью воспользуемся той информацией, которая дает функция без производной.

1. Найдем интервалы знакопостоянства функции и построим эскиз графика функции:

1) Найдем .

2) Корни функции: , отсюда

3) Интервалы знакопостоянства функции (см. рис.1):

Рис. 1. Интервалы знакопостоянства функции.

Теперь знаем, что на промежутке и график находится над ось Х, на промежутке - под осью Х.

2. Построим график в окрестности каждого корня (см. рис.2).

Рис. 2. График функции в окрестности корня.

3. Построим график функции в окрестности каждой точки разрыва области определения. Область определения разрывается в точке . Если значение близко к точке , то значение функции стремится к (см. рис.3).

Рис. 3. График функции в окрестности точки разрыва.

4. Определим, как ведет график в окрестности бесконечно удаленных точек:

Запишем с помощью пределов

. Важно, что при очень больших , функция почти не отличается от единицы.

Найдем производную, интервалы ее знакопостоянства и они будут интервалами монотонности для функции, найдем те точки, в которых производная равна нулю, и выясним, где точка максимума, где точка минимума.

Отсюда, . Эти точки являются внутренними точками области определения. Выясним, какой знак производной на интервалах, и какая из этих точек является точкой максимума, а какая - точкой минимума (см. рис.4).

Рис. 4. Интервалы знакопостоянства производной.

Из рис. 4 видно, что точка - точка минимума, точка - точка максимума. Значение функции в точке равно . Значение функции в точке равно 4. Теперь построим график функции (см. рис.5).

Рис. 5. График функции .

Таким образом, построили график функции . Опишем его. Запишем интервалы, на которых функция монотонно убывает: , - это те интервалы, где производная отрицательна. Функция монотонно возрастает на интервалах и . - точка минимума, - точка максимума.

Найти число корней уравнения в зависимости от значений параметра.

1. Построить график функции. График этой функции построен выше (см. рис.5).

2. Рассечь график семейством прямых и выписать ответ (см. рис.6).

Рис. 6. Пересечение графика функции с прямыми .

1) При - одно решение.

2) При - два решения.

3) При - три решения.

4) При - два решения.

5) При - три решения.

6) При - два решения.

7) При - одно решение.

Таким образом, решили одну из важных задач, а именно, нахождение числа решений уравнения в зависимости от параметра . Могут быть разные частные случаи, например, при каком будет одно решение или два решения, или три решения. Заметим, что эти частные случаи, все ответы на эти частные случаи содержатся в общем ответе.

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.

8. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

9. Карп А.П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

10. Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983

Дополнительные веб-ресурсы

2. Портал Естественных Наук ().

Сделай дома

№ 45.7, 45.10 (Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.)

Если в задаче необходимо произвести полное исследование функции f (x) = x 2 4 x 2 - 1 с построением его графика, тогда рассмотрим этот принцип подробно.

Для решения задачи данного типа следует использовать свойства и графики основных элементарных функций. Алгоритм исследования включает в себя шаги:

Нахождение области определения

Так как исследования проводятся на области определения функции, необходимо начинать с этого шага.

Пример 1

Заданный пример предполагает нахождение нулей знаменателя для того, чтобы исключить их из ОДЗ.

4 x 2 - 1 = 0 x = ± 1 2 ⇒ x ∈ - ∞ ; - 1 2 ∪ - 1 2 ; 1 2 ∪ 1 2 ; + ∞

В результате можно получить корни, логарифмы, и так далее. Тогда ОДЗ можно искать для корня четной степени типа g (x) 4 по неравенству g (x) ≥ 0 , для логарифма log a g (x) по неравенству g (x) > 0 .

Исследование границ ОДЗ и нахождение вертикальных асимптот

На границах функции имеются вертикальные асимптоты, когда односторонние пределы в таких точках бесконечны.

Пример 2

Для примера рассмотрим приграничные точки, равные x = ± 1 2 .

Тогда необходимо проводить исследование функции для нахождения одностороннего предела. Тогда получаем, что: lim x → - 1 2 - 0 f (x) = lim x → - 1 2 - 0 x 2 4 x 2 - 1 = = lim x → - 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · - 0 = + ∞ lim x → - 1 2 + 0 f (x) = lim x → - 1 2 + 0 x 2 4 x - 1 = = lim x → - 1 2 + 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · (+ 0) = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 0) · 2 = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (+ 0) · 2 = + ∞

Отсюда видно, что односторонние пределы являются бесконечными, значит прямые x = ± 1 2 - вертикальные асимптоты графика.

Исследование функции и на четность или нечетность

Когда выполняется условие y (- x) = y (x) , функция считается четной. Это говорит о том, что график располагается симметрично относительно О у. Когда выполняется условие y (- x) = - y (x) , функция считается нечетной. Значит, что симметрия идет относительно начала координат. При невыполнении хотя бы одного неравенства, получаем функцию общего вида.

Выполнение равенства y (- x) = y (x) говорит о том, что функция четная. При построении необходимо учесть, что будет симметричность относительно О у.

Для решениянеравенства применяются промежутки возрастания и убывания с условиями f " (x) ≥ 0 и f " (x) ≤ 0 соответственно.

Определение 1

Стационарные точки – это такие точки, которые обращают производную в ноль.

Критические точки - это внутренние точки из области определения, где производная функции равняется нулю или не существует.

При решении необходимо учитывать следующие замечания:

  • при имеющихся промежутках возрастания и убывания неравенства вида f " (x) > 0 критические точки в решение не включаются;
  • точки, в которых функция определена без конечной производной, необходимо включать в промежутки возрастания и убывания (к примеру, y = x 3 , где точка х = 0 делает функцию определенной, производная имеет значение бесконечности в этой точке, y " = 1 3 · x 2 3 , y " (0) = 1 0 = ∞ , х = 0 включается в промежуток возрастания);
  • во избежание разногласий рекомендовано пользоваться математической литературой, которая рекомендована министерством образования.

Включение критических точек в промежутки возрастания и убывания в том случае, если они удовлетворяют области определения функции.

Определение 2

Для определения промежутков возрастания и убывания функции необходимо найти :

  • производную;
  • критические точки;
  • разбить область определения при помощи критических точек на интервалы;
  • определить знак производной на каждом из промежутков, где + является возрастанием, а - является убыванием.

Пример 3

Найти производную на области определения f " (x) = x 2 " (4 x 2 - 1) - x 2 4 x 2 - 1 " (4 x 2 - 1) 2 = - 2 x (4 x 2 - 1) 2 .

Решение

Для решения нужно:

  • найти стационарные точки, данный пример располагает х = 0 ;
  • найти нули знаменателя, пример принимает значение ноль при x = ± 1 2 .

Выставляем точки на числовой оси для определения производной на каждом промежутке. Для этого достаточно взять любую точку из промежутка и произвести вычисление. При положительном результате на графике изображаем + , что означает возрастание функции, а - означает ее убывание.

Например, f " (- 1) = - 2 · (- 1) 4 - 1 2 - 1 2 = 2 9 > 0 , значит, первый интервал слева имеет знак + . Рассмотрим на числовой прямой.

Ответ:

  • происходит возрастание функции на промежутке - ∞ ; - 1 2 и (- 1 2 ; 0 ] ;
  • происходит убывание на промежутке [ 0 ; 1 2) и 1 2 ; + ∞ .

На схеме при помощи + и - изображается положительность и отрицательность функции, а стрелочки – убывание и возрастание.

Точки экстремума функции – точки, где функция определена и через которые производная меняет знак.

Пример 4

Если рассмотреть пример, где х = 0 , тогда значение функции в ней равняется f (0) = 0 2 4 · 0 2 - 1 = 0 . При перемене знака производной с + на - и прохождении через точку х = 0 , тогда точка с координатами (0 ; 0) считается точкой максимума. При перемене знака с - на + получаем точку минимума.

Выпуклость и вогнутость определяется при решении неравенств вида f "" (x) ≥ 0 и f "" (x) ≤ 0 . Реже используют название выпуклость вниз вместо вогнутости, а выпуклость вверх вместо выпуклости.

Определение 3

Для определения промежутков вогнутости и выпуклости необходимо:

  • найти вторую производную;
  • найти нули функции второй производной;
  • разбить область определения появившимися точками на интервалы;
  • определить знак промежутка.

Пример 5

Найти вторую производную из области определения.

Решение

f "" (x) = - 2 x (4 x 2 - 1) 2 " = = (- 2 x) " (4 x 2 - 1) 2 - - 2 x 4 x 2 - 1 2 " (4 x 2 - 1) 4 = 24 x 2 + 2 (4 x 2 - 1) 3

Находим нули числителя и знаменателя, где на примере нашего примера имеем, что нули знаменателя x = ± 1 2

Теперь необходимо нанести точки на числовую ось и определить знак второй производной из каждого промежутка. Получим, что

Ответ:

  • функция является выпуклой из промежутка - 1 2 ; 1 2 ;
  • функция является вогнутой из промежутков - ∞ ; - 1 2 и 1 2 ; + ∞ .

Определение 4

Точка перегиба – это точка вида x 0 ; f (x 0) . Когда в ней имеется касательная к графику функции, то при ее прохождении через x 0 функция изменяет знак на противоположный.

Иначе говоря, это такая точка, через которую проходит вторая производная и меняет знак, а в самих точках равняется нулю или не существует. Все точки считаются областью определения функции.

В примере было видно, что точки перегиба отсутствуют, так как вторая производная изменяет знак во время прохождения через точки x = ± 1 2 . Они, в свою очередь, в область определения не входят.

Нахождение горизонтальных и наклонных асимптот

При определении функции на бесконечности нужно искать горизонтальные и наклонные асимптоты.

Определение 5

Наклонные асимптоты изображаются при помощи прямых, заданных уравнением y = k x + b , где k = lim x → ∞ f (x) x и b = lim x → ∞ f (x) - k x .

При k = 0 и b , не равному бесконечности, получаем, что наклонная асимптота становится горизонтальной .

Иначе говоря, асимптотами считают линии, к которым приближается график функции на бесконечности. Это способствует быстрому построению графика функции.

Если асимптоты отсутствуют, но функция определяется на обеих бесконечностях, необходимо посчитать предел функции на этих бесконечностях, чтобы понять, как себя будет вести график функции.

Пример 6

На примере рассмотрим, что

k = lim x → ∞ f (x) x = lim x → ∞ x 2 4 x 2 - 1 x = 0 b = lim x → ∞ (f (x) - k x) = lim x → ∞ x 2 4 x 2 - 1 = 1 4 ⇒ y = 1 4

является горизонтальной асимптотой. После исследования функции можно приступать к ее построению.

Вычисление значения функции в промежуточных точках

Чтобы построение графика было наиболее точным, рекомендовано находить несколько значений функции в промежуточных точках.

Пример 7

Из рассмотренного нами примера необходимо найти значения функции в точках х = - 2 , х = - 1 , х = - 3 4 , х = - 1 4 . Так как функция четная, получим, что значения совпадут со значениями в этих точках, то есть получим х = 2 , х = 1 , х = 3 4 , х = 1 4 .

Запишем и решим:

F (- 2) = f (2) = 2 2 4 · 2 2 - 1 = 4 15 ≈ 0 , 27 f (- 1) - f (1) = 1 2 4 · 1 2 - 1 = 1 3 ≈ 0 , 33 f - 3 4 = f 3 4 = 3 4 2 4 3 4 2 - 1 = 9 20 = 0 , 45 f - 1 4 = f 1 4 = 1 4 2 4 · 1 4 2 - 1 = - 1 12 ≈ - 0 , 08

Для определения максимумов и минимумов функции, точек перегиба, промежуточных точек необходимо строить асимптоты. Для удобного обозначения фиксируются промежутки возрастания, убывания, выпуклость, вогнутость. Рассмотрим на рисунке, изображенном ниже.

Необходимо через отмеченные точки проводить линии графика, что позволит приблизить к асимптотам, следуя стрелочкам.

На этом заканчивается полное исследование функции. Встречаются случаи построения некоторых элементарных функций, для которых применяют геометрические преобразования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Решебник Кузнецова.
III Графики

Задание 7. Провести полное исследование функции и построить её график.

        Прежде, чем Вы начнёте скачивать свои варианты, попробуйте решить задачу по образцу, приведённому ниже для варианта 3. Часть вариантов заархивированы в формате.rar

        7.3 Провести полное исследование функции и построить её график

Решение.

        1) Область определения:         или        , то есть        .
.
Таким образом:         .

        2) Точек пересечения с осью Ox нет. Действительно, уравнение         не имеет решений.
Точек пересечения с осью Oy нет, так как        .

        3) Функция ни чётная, ни нечётная. Симметрии относительно оси ординат нет. Симметрии относительно начала координат тоже нет. Так как
.
Видим, что         и        .

        4) Функция непрерывна в области определения
.

; .

; .
Следовательно, точка         является точкой разрыва второго рода (бесконечный разрыв).

5) Вертикальные асимптоты:        

Найдём наклонную асимптоту        . Здесь

;
.
Следовательно, имеем горизонтальную асимптоту: y=0 . Наклонных асимптот нет.

        6) Найдём первую производную. Первая производная:
.
И вот почему
.
Найдём стационарные точки, где производная равна нулю, то есть
.

        7) Найдём вторую производную. Вторая производная:
.
И в этом легко убедится, так как

Поделитесь с друзьями или сохраните для себя:

Загрузка...