Нитросоединения химические свойства. Строение нитрогруппы

Нитросоединения

Нитросоединения - органические соединения, содержащие одну или несколько нитрогрупп -NO2. Под нитросоединениями обычно подразумевают C-нитросоединения, в которых нитрогруппа связана с атомом углерода (нитроалканы, нитроалкены, нитро арены). O-нитросоединения и N-нитросоединения выделяют в отдельные классы - нитроэфиры (органические нитраты) и нитрамины.

В зависимости от радикала R, различают алифатические (предельные и непредельные), ациклические, ароматические и гетероциклические нитросоединения. По характеру углеродного атома, с которым связана нитрогруппа, нитросоединения подразделяются на первичные, вторичные и третичные.

Нитросоединения изомерны эфирам азотистой кислоты HNO2 (R-ONO)

При наличии α-атомов водорода (в случае первичных и вторичных алифатических нитросоединений) возможна таутомерия между нитросоединениями и нитроновыми кислотами (аци-формами нитросоединений):

Из галогенпроизводных:

Нитрование

Нитрование - реакция введения нитрогруппы -NO2 в молекулы органических соединений.

Реакция нитрование может протекать по электрофильному, нуклеофильному или радикальному механизму, при этом активной частицей в данных реакциях являются соответственно катион нитрония NO2+, нитрит-ион NO2- или радикал NO2 . Процесс заключается в замещении атома водорода у атомов C, N, O или присоединении нитрогруппы по кратной связи.

Электрофильное нитрование[править | править исходный текст]

При электрофильном нитровании основным нитрующим агентом является азотная кислота. Безводная азотная кислота подвергается автопротолизу по реакции:

Вода сдвигает равновесие влево, поэтому в 93-95 % азотной кислоте катион нитрония уже не обнаруживается. В связи с этим азотная кислота используется в смеси со связывающей воду концентрированной серной кислотой илиолеумом: в 10%-ном растворе азотной кислоты в безводной серной кислоте равновесие практически полностью сдвинуто вправо.

Кроме смеси серной и азотной кислот используются различные комбинации оксидов азота и органических нитратов с кислотами Льюиса (AlCl3, ZnCl2, BF3). Сильными нитрующими свойствами обладает смесь азотной кислоты с уксусным ангидридом, в которой образуется смесь ацетилнитрата и оксида азота(V), а также смесь азотной кислоты с оксидом серы(VI) или оксидом азота(V).

Процесс проводят либо при непосредственном взаимодействии нитрующей смеси с чистым веществом, либо в растворе последнего в полярном растворителе (нитрометан, сульфолан, уксусная кислота). Полярный растворитель кроме того, что растворяет реагирующие вещества, сольватирует ион + и способствует его диссоциации.

В лабораторных условиях чаще всего используются нитраты и соли нитрония, нитрующая активность которых возрастает в следующем ряду:

Механизм нитрования бензола:

Кроме замещения атома водорода нитрогруппой применяется также заместительное нитрование, когда нитрогруппа вводится вместо сульфо-, диазо- и других групп.

Нитрование алкенов при действии апротонных нитрующих агентов идёт по нескольким направлениям, которое зависит от условий реакции и строения исходных реагентов. В частности, могут протекать реакции отщепления протона и присоединения функциональных групп молекул растворителя и противоионов:

Нитрование аминов приводит к N-нитроаминам. Этот процесс является обратимым:

Нитрование аминов проводят концентрированной азотной кислотой, а также её смесями с серной кислотой, уксусной кислотой или уксусным ангидридом. Выход продукта увеличивается при переходе от сильноосновных аминов к слабоосновным. Нитрование третичных аминов идёт с разрывом связи C-N (реакция нитролиза); эта реакция используется для получения взрывчатых веществ - гексогена и октогена - из уротропина.

Заместительное нитрование ацетамидов, сульфамидов, уретанов, имидов и их солей протекает по схеме

Реакцию ведут в апротонных растворителях с использованием апротонных нитрующих агентов.

Спирты нитруются любыми нитрующими агентами; реакция является обратимой:

Нуклеофильное нитрование[править | править исходный текст]

Эта реакция используется для синтеза алкилнитритов. Нитрующими агентами в этом типе реакций являются соли нитриты щелочных металлов в апротонных диполярных растворителях (иногда - в присутствии краун-эфиров). Субстратами являются алкилхлориды и алкилиодиды, α-галогенкарбоновые кислоты и их соли, алкилсульфаты. Побочными продуктами реакции являются органические нитриты.

Радикальное нитрование[править | править исходный текст]

Радикальное нитрование применяется для получения нитроалканов и нитроалкенов. Нитрующими агентами являются азотная кислота или оксиды азота:

Параллельно протекает реакция окисления алканов ввиду взаимодействия радикала NO2 с алкильным радикалом по атому не азота, а кислорода. Реакционноспособность алканов возрастает при переходе от первичных к третичным. Реакцию проводят как в жидкой фазе (азотной кислотой при нормальном давлении или оксидами азота, при 2-4,5 МПа и 150-220°C), так и в газовой (пары азотной кислоты, 0,7-1,0 МПа, 400-500°C)

Нитрование алкенов по радикальному механизму проводят 70-80%-ной азотной кислотой, иногда - разбавленной азотной кислотой в присутствии оксидов азота. Циклоалкены, диалкил- и диарилацетилены нитруют оксидом N2O4, при этом образуются цис- и транс-нитросоединения, побочные продукты образуются ввиду окисления и деструкции исходных субстратов.

Анион-радикальный механизм нитрования наблюдается при взаимодействии тетранитрометана солей моно-нитросоединений.

Реакция Коновалова(для алифатических углеводородов)

Реакция Коновалова - нитрование алифатических, алициклических и жирноароматических соединений разбавленной НNО3 при повышенном или нормальном давлении (свободнорадикальный механизм). Реакция с алканамивпервые осуществлена М. И. Коноваловым в 1888 году (по другим данным, в 1899 году) с 10-25%-ной кислотой в запаянных ампулах при температуре 140-150°C.

Обычно образуется смесь первичных, вторичных и третичных нитросоединений. Жирноароматические соединения легко нитруются в α-положение боковой цепи. Побочными реакциями являются образование нитратов, нитритов, нитрозо- и полинитросоединений.

В промышленности реакцию проводят в паровой фазе. Этот процесс разработан Х. Гессом (1930). Пары алкана и азотной кислоты на 0,2-2 секунды нагревают до 420-480°C, затем следует быстрое охлаждение. Метан даёт нитрометан, а его гомологи претерпевают также разрыв связей C--C, так что получается смесь нитроалканов. Её разделяют перегонкой.

Активный радикал в этой реакции - O2NO·, продукт термического расщепления азотной кислоты. Механизм реакции дан ниже.

2HNO3 -t°→ O2NO· + ·NO2 + H2O

R-H + ·ONO2 → R· + HONO2

R· + ·NO2 → R-NO2

Нитрование ароматических углеводородов.

Химические свойства[править | править исходный текст]

По химическому поведению нитросоединения обнаруживают определенное сходство с азотной кислотой. Это сходство проявляется при окислительно-восстановительных реакциях.

Восстановление нитросоединений (Реакция Зинина):

Реакции конденсации

Таутомерия нитросоединений.

Таутомери́я (от греч. ταύτίς - тот же самый и μέρος - мера) - явление обратимой изомерии, при которой два или более изомера легко переходят друг в друга. При этом устанавливается таутомерное равновесие, и вещество одновременно содержитмолекулы всех изомеров (таутомеров) в определённом соотношении.

Чаще всего при таутомеризации происходит перемещение атомовводорода от одного атома в молекуле к другому и обратно в одном и том же соединении. Классическим примером является ацетоуксусный эфир, представлющий собой равновесную смесь этилового эфира ацетоуксусной (I) и оксикротоновой кислот (II).

Таутомерия сильно проявляется для целого круга веществ, производных циановодорода. Так уже сама синильная кислота существует в двух таутомерных формах:

При комнатной температуре равновесие превращения циановодорода в изоциановодород смещено влево. Показано, что менее стабильный изоциановодород более токсичен.

Таутомерные формы фосфористой кислоты

Аналогичное превращение известно для циановой кислоты, которая известна в трёх изомерных формах, однако таутомерное равновесие связывает только две из них: циановую и изоциановуюкислоты:

Для обеих таутомерных форм известны сложные эфиры, то есть продукты замещения в циановой кислоте водорода на углеводородные радикалы. В отличие от указанных таутомеров третий изомер - гремучая (фульминовая) кислотане способна к самопроизвольному превращению в другие формы.

С явлением таутомерии связаны многие химико-технологические процессы, особенно в области синтезалекарственных веществ и красителей (производство витамина С - аскорбиновой кислоты в др.). Очень важна роль таутомерии в процессах, протекающих в живых организмах.

Амид-иминольную таутомерию лактамов называют лактам-лактимной таутомерией. Она играет большую роль в химии гетероциклических соединений. Равновесие в большинстве случаев смещено в сторону лактамной формы.

Особенно велик перечень органических загрязняющих веществ. Их разнообразие и большая численность делают практически невозможным контроль за содержанием каждого из них. Поэтому выделяют приоритетные загрязнители (около 180 соединений, объединенные в 13 групп): ароматические углеводороды, полиядерные ароматические углеводороды (ПАУ), пестициды (4 группы), летучие и малолетучие хлорорганические соединения, хлорфенолы, хлоранилины и хлорнитроароматические соединения, полихлорированные и полибромированные бифенилы, металлорганические соединения и другие. Источниками этих веществ являются атмосферные осадки, поверхностные стоки и производственные и коммунально-бытовые СВ.


Похожая информация.


Нитрогруппа имеет строение, промежуточное между двумя предельными резонансными структурами:

Группа планарна; атомы N и О имеют, sр 2 -гибридизацию, связи N-О равноценные и практически полуторные; длины связей, напр. для CH 3 NO 2 , 0,122 нм (N-О), 0,147 нм (С-N), угол ONO 127°. Система С-NO 2 плоская с низким барьером вращения вокруг связи С-N.

Н итросоединения, имеющие хотя бы один а-Н-атом, могут существовать в двух таутомерных формах с общим мезомерным анионом . О-форма наз. аци-нитросоединением или нитроновой к-той:



Известны разл. производные нитроновых к-т: соли ф-лы RR"C=N(O)O - M + (соли нитросоединений), эфиры (нитроновые эфиры) и т.д. Эфиры нитроновых к-т существуют в виде иис- и транс-изомеров. Существуют циклич. эфиры, напр. N-оксиды изоксазолинов.

Назв. нитросоединений производят прибавлением префикса "нитро" к назв. соединения-основы, по необходимости добавляя цифровой указатель, напр. 2-нитропропан. Назв. солей нитросоединений производят из назв. либо С-формы, либо аци-формы, или нитроновой к-ты.

Физические свойства. Простейшие нитроалканы-бесцв. жидкости . Физ. св-ва нек-рых алифатических нитросоединений приведены в таблице. Ароматические нитросоединения-бесцв. или светло-желтые высококипящие жидкости или низкоплавкие твердые в-ва, обладающие характерным запахом, плохо раств. в воде , как правило, перегоняются с паром .

ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ АЛИФАТИЧЕСКИХ НИТРОСОЕДИНЕНИЙ



* При 25°С. ** При 24°С. *** При 14°С.

В ИК спектрах нитросоединений присутствуют две характеристич. полосы, соответствующие антисимметричным и симметричным валентным колебаниям связи N-О: для первичных нитросоединений соотв. 1560-1548 и 1388-1376 см -1 , для вторичных 1553-1547 и 1364-1356 см -1 , для третичных 1544-1534 и 1354-1344см -1 ; для нитроолефинов RCH=CHNO 2 1529-1511 и 1351-1337 см -1 ; для динитроалканов RCH(NO 2) 2 1585-1575 и 1400-1300 см -1 ; для тринитроалканов RC(NO 2) 3 1610-1590 и 1305-1295 см -1 ; для ароматических нитросоединений 1550-1520 и 1350-1330 см -1 (электроноакцепторные заместители сдвигают высокочастотную полосу в область 1570 -1540, а электронодонорные - в область 1510-1490 см -1); для солей нитросоединений 1610-1440 и 1285-1135 см -1 ; нитроновые эфиры имеют интенсивную полосу при 1630-1570 см, связь С-N-слабую полосу при 1100-800 см -1 .

В УФ спектрах алифатических нитросоединений l макс 200-210 нм (интенсивная полоса) и 270-280 нм (слабая полоса); для солей и эфиров нитроновых к-т соотв. 220-230 и 310-320 нм; для гем-динитросоед. 320-380 нм; для ароматических нитросоединений 250-300 нм (интенсивность полосы резко снижается при нарушении копланарности).

В спектре ПМР хим. сдвиги a-Н-атома в зависимости от строения 4-6 м.д. В спектре ЯМР 14 N и 15 N хим. сдвиг 5 от - 50 до + 20 м.д.

В масс-спектрах алифатических нитросоединений (за исключением CH 3 NO 2) пик мол. иона отсутствует или очень невелик; осн. процесс фрагментации - отщепление NO 2 или двух атомов кислорода с образованием фрагмента, эквивалентного нитрилу . Для ароматических нитросоединений характерно присутствие пика мол. иона ; осн. пик в спектре соответствует иону , получаемому при отщеплении NO 2 .

Химические свойства. Нитрогруппа - одна из наиб. сильных электроноакцепторных групп и способна эффективно делокализовать отрицат. заряд. В ароматич. соед. в результате индукционного и особенно мезомерного эффектов она влияет на распределение электронной плотности : ядро приобретает частичный положит. заряд, к-рый локализован гл. обр. в орто- и пара-положениях; константы Гаммета для группы NO 2 s м 0,71, s n 0,778, s + n 0,740, s - n 1,25. Т. обр., введение группы NO 2 резко увеличивает реакц. способность орг. соед. по отношению к нуклеоф. реагентам и затрудняет р-ции с электроф. реагентами . Это определяет широкое применение нитросоединений в орг. синтезе: группу NO 2 вводят в нужное положение молекулы орг. соед., осуществляют разл. р-ции, связанные, как правило, с изменением углеродного скелета, и затем трансформируют в др. ф-цию или удаляют. В ароматич. ряду часто используют и более короткую схему: нитрование-трансформация группы NO 2 .

Мн. превращения алифатических нитросоединений проходят с предварит. изомеризацией в нитроновые к-ты или образованием соответствующего аниона . В р-рах равновесие обычно практически полностью сдвинуто в сторону С-формы; при 20 °С доля аци-формы для нитрометана 1 10 -7 , для нитропропана 3 . 10 -3 . Нитроновые к-ты в своб. виде, как правило, неустойчивы; их получают осторожным подкислением солей нитросоединений. В отличие от нитросоединений они проводят ток в р-рах и дают красное окрашивание с FeCl 3 . Аци-нитросоединения-более сильные СН-кислоты (рК а ~ 3-5), чем соответствующие нитросоединения (рК а ~ 8-10); кислотность нитросоединений повышается с введением электроноакцепторных заместителей в a-положение к группе NO 2 .

Образование нитроновых к-т в ряду ароматических нитросоединений связано с изомеризацией бензольного кольца в хиноидную форму; напр., нитробензол образует с конц. H 2 SO 4 окрашенный солеобразный продукт ф-лы I, о-нитротолуол проявляет фотохромизм в результате внутримол. переноса протона с образованием ярко-синего О-производного:



При действии оснований на первичные и вторичные нитросоединения образуются соли нитросоединений; амбидентные анионы солей в р-циях с электрофилами способны давать как О-, так и С-производ-ные. Так, при алкилировании солей нитросоединений алкилгалогенидами, триалкилхлорсиланами или R 3 O + BF - 4 образуются продукты О-алкилирования. Последние м.б. получены также при действии диазометана либо N,О-бис-(триметилсилил)аце-тамида на нитроалканы с рК а < 3 или нитроновые к-ты, напр.:



Ациклич. алкиловые эфиры нитроновых к-т термически нестабильны и распадаются по внутримол. механизму:

; эту

р-цию можно использовать для получения карбонильных соединений . Более стабильны силиловые эфиры. Об образовании продуктов С-алкилирования см. ниже.

Для нитросоединений характерны р-ции с разрывом связи С-N, по связям N=O, O=N О, C=N -> О и р-ции с сохранением группы NO 2 .

Р-ц и и с р а з р ы в о м с в я з и С-N. Первичные и вторичные нитросоединения при нагр. с минер. к-тами в присут. спиртового или водного р-ра щелочи образуют карбонильные соед. (см. Нефа реакция). Р-ция проходит через промежут. образование нитроновых к-т:



В качестве исходных соед. можно использовать силиловые нитроновые эфиры. Действие сильных к-т на алифатические нитросоединения может приводить к гидроксамовым к-там, напр.:



Метод используют в пром-сти для синтеза СН 3 СООН и гидроксиламина из нитроэтана . Ароматические нитросоединения инертны к действию сильных к-т.

При действии восстановителей (напр., TiCl 3 -H 2 O, VCl 2 -Н 2 О-ДМФА) на нитросоединения или окислителей (KMnO 4 -MgSO 4 , O 3) на соли нитросоединений образуются кетоны и альдегиды .

Алифатические нитросоединения, содержащие подвижный атом Н в b-положении к группе NO 2 , при действии оснований легко элиминируют ее в виде HNO 2 с образованием олефинов . Аналогично протекает термич. разложение нитроалканов при т-рах выше 450°. Вицинальные динитросоед. при обработке амальгамой Са в гексамстаноле отщепляют обе группы NO 2 , Ag-соли непредельных нитросоединений при потере групп NO 2 способны димеризоваться:



Нуклеоф. замещение группы NO 2 не характерно для нитроалканов, однако при действии тиолат-ионов на третичные нитроалканы в апротонных р-рителях группа NO 2 замещается на атом водорода . Р-ция протекает по анион-радикальному механизму. В алифатич. и гетероциклич. соед. группа NO 2 при кратной связи относительно легко замещается на нуклеофил, напр.:


В ароматич. соед. нуклеоф. замещение группы NO 2 зависит от ее положения по отношению к др. заместителям: группа NO 2 , находящаяся в мета-положении по отношению к электроноакцепторным заместителям и в орто- и пара-положениях к электронодонорным, обладает низкой реакц. способностью; реакц. способность группы NO 2 , находящейся в орто- и пара-положениях к электроноакцепторным заместителям, заметно увеличивается. В нек-рых случаях заместитель вступает в орто-положение к уходящей группе NO 2 (напр., при нагр. ароматических нитросоединений со спиртовым р-ром KCN, р-ция Рихтера):



Р-ц и и п о с в я з и N = O. Одна из важнейших р-ций-вос-становление, приводящее в общем случае к набору продуктов:



Азокси-(II), азо-(III) и гидразосоед. (IV) образуются в щелочной среде в результате конденсации промежуточно возникающих нитрозосоед. с аминами и гидроксиламинами . Проведение процесса в кислой среде исключает образование этих в-в. Нитрозосоед. восстанавливаются быстрее, чем соответствующие нитросоединения, и выделить их из реакц. смеси, как правило, не удается. Алифатические нитросоединения восстанавливаются в азокси- или азосоединения при действии алкоголятов Na, ароматические-при действии NaBH 4 , обработка последних LiAlH 4 приводит к азосоединениям . Электрохим. восстановление ароматических нитросоединений при определенных условиях позволяет получить любое из представленных производных (за исключением нитрозосоед.); этим же методом удобно получать гидроксиламины из мононитроалканов и амидоксимы из солей гем-динитроалканов:

Известно много методов восстановления нитросоединений до аминов . Широко используют железные опилки , Sn и Zn в присут. к-т; при каталитич. гидрировании в качестве катализаторов используют Ni-Ренея, Pd/C или Pd/PbCO 3 и др. Алифатические нитросоединения легко восстанавливаются до аминов LiAlH 4 и NaBH 4 в присут. Pd, амальгамами Na и Аl, при нагр. с гидразином над Pd/C; для ароматических нитросоединений иногда применяют ТlСl 3 , СrСl 2 и SnCl 2 , ароматич. поли-нитросоединения избирательно восстанавливаются до нитраминов гидросульфидом Na в СН 3 ОН. Существуют способы избират. восстановления группы NO 2 в полифункциональных нитросоединениях без затрагивания др. ф-ций.

При действии Р(III) на ароматические нитросоединения происходит последоват. дезоксигенирование группы NO 2 с образованием высокореакционноспособных нитренов. Р-цию используют для синтеза конденсир. гетероциклов, напр.:

В этих же условиях силиловые эфиры нитроновых к-т трансформируются в силильные производные оксимов . Обработка первичных нитроалканов РСl 3 в пиридине или NaBH 2 S приводит к нитрилам . Ароматические нитросоединения, содержащие в орто-положении заместитель с двойной связью или циклопропильный заместитель, в кислой среде перегруппировываются в о-нитрозокетоны, напр.:



Н итросоединения и нитроновые эфиры реагируют с избытком реактива Гриньяра, давая производные гидроксиламина :

Р-ции по связям O = N О и C = N О. Нитросоединения вступают в р-ции 1,3-диполярного циклоприсоединения , напр.:



Наиб. легко эта р-ция протекает между нитроновыми эфира-ми и олефинами или ацетиленами . В продуктах циклоприсоединения (моно- и бициклич. диалкоксиаминах) под действием нуклеоф. и электроф. реагентов связи N - О легко расщепляются, что приводит к разл. алифатич. и гетеро-циклич. соед.:



В препаративных целях в р-ции используют стабильные силиловые нитроновые эфиры.

Р-ц и и с с о х р а н е н и е м г р у п п ы NO 2 . Алифатические нитросоединения, содержащие a-Н-атом, легко алкилируются и ацилируются с образованием, как правило, О-производных. Однако взаи-мод. дилитиевых солей первичных нитросоединений с алкилгалогенидами, ангидридами или галогенангидридами карбоновых к-т приводит к продуктам С-алкилирования или С-ацилирования, напр.:

Известны примеры внутримол. С-алкилирования, напр.:

Первичные и вторичные нитросоединения реагируют с алифатич. аминами и СН 2 О с образованием р-аминопроизводных (р-ция Манниха); в р-ции можно использовать предварительно полученные метилольные производные нитросоединений или аминосоед.:



Активирующее влияние группы NO 2 на нуклеоф. замещение (особенно по орто-положению) широко используют в орг. синтезе и пром-сти. Р-ция протекает по схеме присоединение-отщепление с промежут. образованием s-комплек-са (комплекс Майзенхаймера). По этой схеме атомы галогенов легко замещаются на нуклеофилы:



Известны примеры замещения по анион-радикальному механизму с захватом электрона ароматич. соединением и выбросом галогенид-иона или др. групп, напр. алкокси, амино , сульфатной, NO - 2 . В последнем случае р-ция проходит тем легче, чем больше отклонение группы NO 2 от копланарности, напр.: в 2,3-динитротолуоле замещается в осн. группа NO 2 в положении 2. Атом Н в ароматических нитросоединениях также способен к нуклеоф. замещению-нитробензол при нагр. с NaOH образует o-нитрофенол.

Нитрогруппа облегчает перегруппировки ароматич. соед. по механизму внутримол. нуклеоф. замещения или через стадию образования карбанионов (см. Смайлса перегруп-пировка).

Введение второй группы NO 2 ускоряет нуклеоф. замещение. Н итросоединения в присут. оснований присоединяются к альдегидам и кетонам , давая нитроспирты (см. Анри реакции), первичные и вторичные нитросоединения-к соед., содержащим активир. двойную связь (р-ция Михаэля), напр.:


Первичные нитросоединения могут вступать в р-цию Михаэля со второй молекулой непредельного соед.; эту р-цию с послед. транс формацией группы NO 2 используют для синтеза поли-функцион. алифатич. соединений. Комбинация р-ций Анри и Михаэля приводит к 1,3-динитросоединениям, напр.:

К неактивир. двойной связи присоединяются лишь Hg-производные гем-ди- или тринитросоединений, а также IC(NO 2) 3 и C(NO 2) 4 , при этом образуются продукты С- или О-алкилирования; последние могут вступать в р-цию цикло-присоединения со второй молекулой олефина :



Легко вступают в р-ции присоединения нитроолефины: с водой в слабокислой или слабощелочной среде с послед. ретрореакцией Анри они образуют карбонильные соед. и нитроалканы; с нитросоединениями, содержащими a-Н-атом,-поли-нитросоединения; присоединяют и др. СН-кислоты, такие, как ацетилацетон , эфиры ацетоуксусной и малоновой к-т, реактивы Гриньяра, а также нуклеофилы типа OR - , NR - 2 и др., напр.:



Нитроолефины могут выступать в роли диенофилов или диполярофилов в р-циях диенового синтеза и циклоприсое-динения, а 1,4-динитродиены-в роли диеновых компонентов, напр.:



Получение. В пром-сти низшие нитроалканы получают жидкофазным (р-ция Коновалова) или парофазным (метод Хэсса) нитрованием смеси этана , пропана и бутана , выделяемых из природного газа или полученных переработкой нефти (см. Нитрование). Таким методом получают и высшие нитросоединения, напр. нитроциклогексан - полупродукт в произ-ве капролактама .

В лаборатории для получения нитроалканов применяют нитрование азотной к-той соед. с активир. метиленовой группой; удобный метод синтеза первичных нитроалканов -нитрование 1,3-индандиона с послед. щелочным гидролизом a-нитрокетона:



Алифатические нитросоединения получают также взаимод. AgNO 2 с алкилгалогенидами или NaNO 2 с эфирами a-галогенкарбо-новых к-т (см. Мейера реакция). Алифатические нитросоединения образуются при окислении аминов и оксимов ; окисление оксимов -способ получения гем-ди- и гем-тринитросоединений, напр.:

Предельные нитросоединения с открытой цепью (нециклические) имеют общую формулу С n H 2n+1 NO 2 . Они изомерны алкилнитритам (эфирам азотистой кислоты) с общей формулой R-ONO. Различия следующие:

Алкилнитриты имеют более низкие температуры кипения

Нитросоелинения сильно полярны и имеют большой дипольный момент

Алкилнитриты легко омыляются щелочами и минеральными кислотами с образованием соответствующих спиртов и азотистой кислоты или ее соли.

Восстановление нитросоединений приводит к аминам, алкилнитритов - к спиртам и гидроксиламину.

Получение

По реакции Коновалова - нитрованием парафинов разбавленной азотной кислотой при нагревании. В реакцию жидкофазного нитрования вступают все углеводороды, однако скорость реакции невелика и выходы малы. Реакция сопровождается окислением и образованием полиниросоединений. Наилучшие результаты получаются с углеводородами, содержащими третичный атом углерода. Парофазное нитрование протекает при 250-500 о С с парами азотной кислоты. Реакциясопровождается крекингом углеводородов, в результате получаются всевозможные нитропроизводные, и окислением, в результате которого образуются спирты, альдегиды, кетоны, кислоты. Также образуются и непредельные углеводороды. Азотная кислота может быть заменена оксидами азота. Нитрование протекает по механизму S R .

Взаимодействием галогенпроизводных предельных углеводородов с нитритом серебра при нагревании. Атакующей частицей является ион NO 2 - , проявляющий двойственную реакционную способность (амбиденность), т.е. присоединять радикал по азоту (S N 2) с образованием нитросоединения R-NO 2 или кислороду с образованием эфира азотистой кислоты R-O-N=O.(S N 1). Механизм реакции и ее направление сильно зависят от природы растворителя. Сольватирующие растворители (вода, спирты) благоприятствуют образованию эфира.

Химические свойства

При восстановлении нитросоединений образуются первичные амины:

Первичные и вторичные нитросоединения растворимы в щелочах с образованием солей. Водородные атомы при углероде, связанном с нитрогруппой активируются, в результате в щелочной среде ниросоединения перегруппировываются в аци-нитро-форму:


При обработке минеральной кислотой щелочного раствора нитросоединения образуется сильно кислая аци-форма, которая быстро изомеризуется в обычную нейтральную форму:

Нитросоединения относят к псевдокислотам. Псевдокислоты нейтральны и не электропроводны, но тем не менее образуют нейтральные соли щелочных металлов. Нейтрализации нитросоединений щелочами происходит медленно, а истинных кислот - мгновенно.

Первичные и вторичние нитросоединения реагируют с азотистой кислотой, третичные не реагируют:


Щелочные соли нитроловых кислот в растворе имеют красный цвет, псевдонитролы – синий или зеленовато-синий.

Первичные и вторичные ниросоединения конденсируются в присутствии щелочей с альдегидами, образуя нитроспирты (нуклеофильное присоединение):


Аци-формы первичных и вторичных нитросоединений в водных растворах при действии минеральных кислот образуют альдегиды или кетоны:


Первичные нитросоединения при нагревании с 85%-ной серной кислотой переходят в карбоновые кислоты с отщеплением гидроксиламина. Это происходит в результате гидролиза образующейся аци-формы.

Нитросоединения.
Нитросоединения – это вещества, в которых алкильный или ароматический радикал связан с нитрогруппой - NO 2 .

Азот в нитрогруппе связан с двумя атомами кислорода, причём одна из связей образована по донорно-акцепторному механизму. Нитрогруппа обладает сильным электроноакцепторным эффектом – оттягивает на себя электронную плотность от соседних атомов: СН 3 δ+ -CH 2 -NO 2 δ-

Нитросоединения подразделяются на алифатические (жирные) и ароматические. Простейший представитель алифатических нитросоединений – нитрометан CH 3 -NO 2:

Простейшее ароматическое нитросоединение – нитробензол С 6 Н 5 -NO 2:

Получение нитросоединений:


  1. Нитрование алканов и ароматических углеводородов:
NO 2

a) CH 3 – CH 2 – CH – CH 3 + HNO 3 (p-p) -(t,p) H 2 O + CH 3 – CH 2 – C – CH 3

(реакция Коновалова- протекает избирательно:

третичный атом С > вторичный >первичный


б)

При нитровании толуола может получиться трёхзамещённая молекула:



2. Замещение галогена на нитрогруппу: взаимодействие AgNO 2 с алкилгалогенидами. R-Br + AgNO 2  AgBr + R - NO 2

Свойства нитросоединений.

В реакциях восстановления нитросоединения превращаются в амины.

1. Гидрирование водородом: R – NO 2 + H 2 -t R- NH 2 + H 2 O

2. Восстановление в растворе:

а) в щелочной и нейтральной среде получаются амины:

R-NO 2 + 3(NH 4) 2 S  RNH 2 + 3S + 6NH 3 +2H 2 O (реакция Зинина )

R-NO 2 + 2Al + 2KOH + 4H 2 O  RNH 2 + 2K

б) в кислой среде (железо, олово или цинк в соляной кислоте) получаются соли аминов: R-NO 2 + 3Fe + 7HCl  Cl - + 2H 2 O + 3FeCl 2


АМИНЫ
Амины – органические производные аммиака NH 3 , в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы:

R-NH 2 , R 2 NH, R 3 N

Простейший представитель


Строение

Атом азота находится в состоянии sp 3 -гибридизации, поэтому молекула имеет форму тетраэдра.

Также атом азота имеет два неспаренных электрона, что обуславливает свойства аминов как органических оснований.
КЛАССИФИКАЦИЯ АМИНОВ.

По количеству и типу радикалов, связанных с атомом азота:


АМИНЫ

Первичные амины

Вторичные

Третичные амины

Алифатические

CH 3 - NH 2
Метиламин

(CH 3 ) 2 NH

(CH 3 ) 3 N
Триметиламин

Ароматические



(C 6 H 5 ) 2 NH
Дифениламин


НОМЕНКЛАТУРА АМИНОВ.

1. В большинстве случаев названия аминов образуют из названий углеводородных радикалов и суффикса амин . Различные радикалы перечисляются в алфавитном порядке. При наличии одинаковых радикалов используют приставки ди и три .

CH 3 -NH 2 Метиламин СH 3 CH 2 -NH 2 Этиламин

CH 3 -CH 2 -NH-CH 3 Метилэтиламин (CH 3 ) 2 NH

2. Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH 2 .

В этом случае аминогруппа указывается в названии приставкой амино- :

CH 3 -CH 2 -CH 2 -NH 2 1-аминопропан H 2 N-CH 2 -CH 2 -CH(NH 2 )-CH 3 1,3-диаминобутан
Для смешанных аминов, содержащих алкильные и ароматические радикалы, за основу названия обычно берется название первого представителя ароматических аминов .

Символ N- ставится перед названием алкильного радикала, чтобы показать, что этот радикал связан с атомом азота, а не является заместителем в бензольном кольце.
ИЗОМЕРИЯ АМИНОВ

1) углеродного скелета, начиная с С 4 H 9 NH 2:

СН 3 -СН 2 - СН 2 -СН 2 –NH 2 н-бутиламин (1-аминобутан)


CH 3 -CH- СН 2 -NH 2 изо-бутиламин (1-амин-2-метилпропан)

2) положения аминогруппы , начиная с С 3 H 7 NH 2:

СН 3 -СН 2 - СН 2 -СН 2 –NH 2 1-аминобутан (н-бутиламин)


CH 3 -CH- СН 2 -СH 3 2-аминобутан (втор-бутиламин)

3) изомерия между типами аминов первичный, вторичный, третичный:


ФИЗИЧЕСКИЕ СВОЙСТВА АМИНОВ.

Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:

Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой. Например:



Третичные амины не образуют ассоциирующих водородных связей (отсутствует группа N–H). Поэтому их температуры кипения ниже, чем у изомерных первичных и вторичных аминов:

По сравнению со спиртами алифатические амины имеют более низкие температуры кипения, т.к. в спиртах водородная связь более прочная :

При обычной температуре только низшие алифатические амины CH 3 NH 2 , (CH 3 ) 2 NH и (CH 3 ) 3 N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.

Ароматические амины – бесцветные высококипящие жидкости или твердые вещества.

Амины способны к образованию водородных связей с водой :

Поэтому низшие амины хорошо растворимы в воде.

С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия образованию водородных связей. Ароматические амины в воде практически не растворяются.
Анилин : С 6 H 5 -NH 2 – важнейший из ароматических аминов:

Он находит широкое применение в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты).

Анилин - бесцветная маслянистая жидкость с характерным запахом. На воздухе окисляется и приобретает красно-бурую окраску. Ядовит.
ПОЛУЧЕНИЕ АМИНОВ.


1. Первичные амины можно получить восстановлением нитросоединений.

а) Гидрирование водородом: R-NO 2 + H 2 -t R - NH 2 + H 2 O

б) Восстановление: в щелочной и нейтральной среде получаются амины:

R-NO 2 + 3(NH 4) 2 S  R- NH 2 + 3S + 6NH 3 +2H 2 O (реакция Зинина )

R-NO 2 + 2Al + 2KOH + 4H 2 O  R- NH 2 + 2K

Восстановлением нитробензола получают анилин.

в) в кислой среде (железо, олово или цинк в соляной кислоте) получаются соли аминов: R-NO 2 + 3Fe + 7HCl  Cl - + 2H 2 O + 3FeCl 2

Амины из раствора выделяют с помощью щелочи:

Cl - +КОН = H 2 O + КCl + R - NH 2



2. Алкилирование аммиака и аминов. При взаимодействии аммиака с алкилгалогенидами происходит образование соли первичного амина, из которой действием щелочи можно выделить сам первичный амин. Этот амин способен взаимодействовать с новой порцией галогеналкана с образованием вторичного амина:

СH 3 Br + NH 3  Br -(+KOH) CH 3 - NH 2 + KBr + H 2 O первичный амин

CH 3 -NH 2 + C 2 H 5 Br  Br - - (+KOH) CH 3 - NH + KBr + H 2 O вторичный амин


C 2 H 5 C 2 H 5

Возможно дальнейшее алкилирование до третичного амина.


3.Восстановление нитрилов с образованием первичных аминов:

R–CN + 4[H] R–CH 2 NH 2

Этим способом в промышленности получают , который используется в производстве полиамидного волокна найлон .


4. Взаимодействие аммиака со спиртами: R-OH + NH 3 -(t,p) R –NH 2 + H 2 O

Химические свойства аминов.

Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства.

Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:

Поэтому амины и аммиак обладают свойствами оснований .


1. Основные свойства. Будучи производными аммиака, все амины обладают основными свойствами.

Алифатические амины являются более сильными основаниями, чем аммиак, а ароматические - более слабыми.

Это объясняется тем, что радикалы СН 3 -, С 2 Н 5 - и др. проявляют положительный индуктивный (+I) эффект и увеличивают электронную плотность на атоме азота:

СН 3 NH 2

Это приводит к усилению основных свойств.

Фенильный радикал C 6 H 5 - проявляет отрицательный мезомерный (-М) эффект и уменьшает электронную плотность на атоме азота:

В водном растворе амины обратимо реагируют с водой, при этом среда становится слабощелочная: R-NH 2 +H 2 O ⇄ + + OH -


2. Амины реагируют с кислотами, образуя соли: CH 3 -NH 2 + H 2 SO 4  HSO 4

C 6 H 5 NH 2 + HCl  Cl

C оли аминов - твердые вещества без запаха, хорошо растворимые в воде, но не растворимые в органических растворителях (в отличие от аминов).
При действии щелочей на соли аминов выделяются свободные амины:

Cl + NaOH -t CH 3 NH 2 + NaCl + H 2 O

Соли аминов вступают в обменные реакции в растворе:

Cl + AgNO 3 -t NO 3 + AgCl ↓


3. Амины способны осаждать гидроксиды тяжелых металлов из водных растворов: 2R-NH 2 + FeCl 2 + 2H 2 O  Fe(OH) 2 ↓+ 2Cl

4. Горение. Амины сгорают в кислороде, образуя азот, углекислый газ и воду:

4 С 2 Н 5 NH 2 + 15O 2  8CO 2 + 2N 2 + 14 H 2 O


5. Реакции с азотистой кислотой.

а) Первичные алифатические амины при действии азотистой кислоты превращаются в спирты: R-NH 2 + NaNO 2 + HCl  R-OH +N 2 + NaCl + H 2 O качественная реакция, сопровождается выделением газа-азота!


б) Вторичные амины (алифатические и ароматические) дают нитрозосоединения - вещества с характерным запахом: R 2 NH + NaNO 2 + HCl  R 2 N-N=O + NaCl + H 2 O

Особенности свойств анилина.


Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу.
Особенности этих реакций обусловлены взаимным влиянием атомов.
- бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком.
- бензольное кольцо становится более активным в реакциях замещения, чем бензол.

Аминогруппа - заместитель 1-го рода (активирующий орто-пара -ориентант в реакциях электрофильного замещения в ароматическом ядре).


Качественная реакция на анилин: реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок ).


АМИНОКИСЛОТЫ

Аминокислоты - органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH 2 .
Простейший представитель - аминоуксусная кислота H 2 N-CH 2 -COOH (глицин )


Все природные аминокислоты можно разделить на следующие основные группы:


1) алифатические предельные аминокислоты (глицин, аланин)

NH 2 -CH(CH 3)-COOH

аланин


2) серосодержащие аминокислоты (цистеин)

NH 2 -CH(CH 2 SH)-COOH

цистеин


3) аминокислоты с алифатической гидроксильной группой (серин)

NH 2 -CH(CH 2 ОH)-COOH

4) ароматические аминокислоты (фенилаланин, тирозин)

NH 2 -CH(CH 2 С 6 Н 5)-COOH

фенилаланин



5) аминокислоты с двумя карбоксильными группами (глутаминовая кислота, аспарагиновая кислота)

NH 2 -CH(CH 2 СН 2 COOH)-COOH

глутаминовая кислота



6) аминокислоты с двумя аминогруппами (лизин)

NH 2 (CH 2) 4 -CH(NH 2)-COOH

Некоторые важнейшие α-аминокислоты



Название

-R

Глицин



Аланин

-СН 3

Цистеин

-CH 2 -SH

Серин

-CH 2 -ОН

Фенилаланин

-CH 2 -C 6 H 5

Тирозин



Глутаминовая кислота

-CH 2 -CH 2 -СООН

Лизин

-(CH 2) 4 -NH 2

Номенклатура аминокислот

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе:

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита. Пример:

Для α-аминокислот R-CH(NH 2)COOH, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино- , три группы NH 2 – триамино- и т.д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом -диовая или -триовая кислота :


ПОЛУЧЕНИЕ АМИНОКИСЛОТ.

1. Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

2. Присоединение аммиака к α,β-непредельным кислотам с образованием β-аминокислот (против правила Марковникова ):

CH 2 =CH–COOH + NH 3  H 2 N–CH 2 –CH 2 –COOH


3. Восстановление нитрозамещенных карбоновых кислот (применяется обычно для получения ароматических аминокислот): O 2 N–C 6 H 4 –COOH + 3H 2  H 2 N–C 6 H 4 –COOH + 2H 2 O
СВОЙСТВА АМИНОКИСЛОТ .

Физические свойства

Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы электропроводны. При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион :

H 2 N-CH 2 -COOH + H 3 N-CH 2 -COO -
ХИМИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ .


1. Кислотно-основные свойства:

Аминокислоты - это амфотерные соединения . Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами.

Аминокислоты реагируют как с кислотами, так и с основаниями:

H 2 N-CH 2 -COOH + HCl  Cl

H 2 N-CH 2 -COOH + NaOH  H 2 N-CH 2 -COONa + H 2 O

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей схемой:

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп.

Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH 2), лизин - щелочной (одна группа -СООН, две -NH 2).


2. Как кислоты, аминокислоты могут реагировать с металлами, оксидами металлов, солями летучих кислот:

2H 2 N-CH 2 -COOH +2 Na  2H 2 N-CH 2 -COONa + H 2

2H 2 N-CH 2 -COOH + Na 2 O  2H 2 N-CH 2 -COONa + H 2 O

H 2 N-CH 2 -COOH + NaHCO 3  H 2 N-CH 2 -COONa + CO 2 + H 2 O


3. Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

H 2 N-CH 2 -COOH + C 2 H 5 OH –(HCl) H 2 N-CH 2 -COOC 2 H 5 + H 2 O


4. Межмолекулярное взаимодействие α-аминокислот приводит к образованию пептидов .

При взаимодействии двух α-аминокислот образуется .

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH - пептидной связью .

Из трех молекул α-аминокислот (глицин+аланин+глицин) можно получить трипептид:

H 2 N-CH 2 CO-NH-CH(CH 3)-CO-NH-CH 2 COOH


глицилаланилглицин

6. При нагревании разлагаются (декарбоксилирование):

NH 2 -CH 2 -COO H –(t) NH 2 -CH 3 + CO 2


7. Декарбоксилирование с помощью щелочи:

NH 2 -CH 2 -COOH +Ва(ОН) 2 –(t) NH 2 -CH 3 + ВаCO 3 + Н 2 О


8. С азотистой кислотой :

NH 2 -CH 2 -COOH + HNО 2  HO-CH 2 -COOH + N 2 + Н 2 О

БЕЛКИ

Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями. Формально образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот:

Молекулярные массы различных белков (полипептидов) составляют от 10 000 до нескольких миллионов. Макромолекулы белков имеют стереорегулярное строение, исключительно важное для проявления ими определенных биологических свойств.


Несмотря на многочисленность белков, в их состав входят остатки не более 22 α-аминокислот.

СТРУКТУРА БЕЛКА.


Первичная структура - определенная последовательность α-аминокислотных остатков в полипептидной цепи.





Вторичная структура - конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О.

Одна из моделей вторичной структуры - α-спираль.



Третичная структура - форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.





Четвертичная структура - агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей

Физические свойства белков весьма разнообразны и определяются их строением. По физическим свойствам белки делят на два класса:

- глобулярные белки растворяются в воде или образуют коллоидные растворы,

- фибриллярные белки в воде нерастворимы.
Химические свойства.

1 . Денатурация белка. Это разрушение его вторичной и третичной структуры белка с сохранением первичной структуры. Она происходит при нагревании, изменении кислотности среды, действии излучения. Пример денатурации - свертывание яичных белков при варке яиц.

Денатурация бывает обратимой и необратимой. Необратимая денатурация может быть вызвана образованием нерастворимых веществ при действии на белки солей тяжелых металлов - свинца или ртути.

2. Гидролиз белков - это необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот . Анализируя продукты гидролиза, можно установить количественный состав белков.

3. Качественные реакции на белки:

1)Биуретовая реакция – фиолетовое окрашивание при действии на белки свежеосажденного гидроксида меди ( II ) .

2) Ксантопротеиновая реакция - желтое окрашивание при действии на белки концентрированной азотной кислоты .
Биологическое значение белков:

1. Белки - это очень мощные и селективные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой единственный фермент.

2. Белки выполняют транспортные функции и переносят молекулы или ионы в места синтеза или накопления. Например, содержащийся в крови белок гемоглобин переносит кислород к тканям, а белок миоглобин запасает кислород в мышцах.

3. Белки - это строительный материал клеток . Из них построены опорные, мышечные, покровные ткани.

4. Белки играют важную роль в иммунной системе организма. Существуют специфические белки (антитела), которые способны распознавать и связывать чужеродные объекты - вирусы, бактерии, чужие клетки.

5. Белки-рецепторы воспринимают и передают сигналы, поступающие от соседних клеток или из окружающей среды. Например, рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

6. Белки жизненно необходимы любому организму и являются важнейшей составной частью продуктов питания . В процессе пищеварения белки гидролизуются до аминокислот, которые служат исходным сырьем для синтеза белков, необходимых данному организму. Есть аминокислоты, которые организм не в состоянии синтезировать сам и приобретает их только с пищей. Эти аминокислоты называют незаменимыми.

НИТРОСОЕДИНEНИЯ , содержат в молекуле одну или неск. нитрогрупп, непосредственно связанных с атомом углерода. Известны также N- и О-нитро-соединения. Нитрогруппа имеет строение, промежуточное между двумя предельными резонансными структурами:

Группа планарна; атомы N и О имеют, sр 2 -гибридизацию, связи N-О равноценные и практически полуторные; длины связей, напр. для CH 3 NO 2 , 0,122 нм (N-О), 0,147 нм (С-N), угол ONO 127°. Система С-NO 2 плоская с низким барьером вращения вокруг связи С-N.

Нитросоединения, имеющие хотя бы один а-Н-атом, могут существовать в двух таутомерных формах с общим мезомерным анионом. О-форма наз. аци-нитросоединением или нитроновой к-той:

Эфиры нитроновых к-т существуют в виде цис- и транс-изомеров. Существуют циклич. эфиры, напр. N-оксиды изоксазолинов.

Назв. нитросоединений производят прибавлением префикса "нитро" к назв. соединения-основы, по необходимости добавляя цифровой указатель, напр. 2-нитропропан. Назв. солей нитросоединений производят из назв. либо С-формы, либо аци-формы, или нитроновой к-ты.

НИТРОСОЕДИНЕНИЯ АЛИФАТИЧЕСКОГО РЯДА

Нитроалканы имеют общую формулу C n H 2n+1 NO 2 или R-NO 2 . Им изомерны алкилнитриты (эфиры азотной кислоты) с общей формулой R-ONO. Изомерия нитроалканов связана с изомерией углеродного скелета. Различают первичные RCH 2 NO 2 , вторичные R 2 CHNO 2 и третичные R 3 CNO 2 нитроалканы, например:

Номенклатура

Заоснову названия нитроалканов берут название углеводорода с приставкой нитро- (нитрометан, нитроэтан и т.д.). По систематической номенклатуре положение нитрогруппы обозначается цифрой:

^ Способы получения нитроалканов

1. Нитрование алканов азотной кислотой (Коновалов, Хэсс)

Концентрированная азотная кислота или смесь азотной и серной кислот окисляют алканы. Нитрование протекает только под действием разбавленной азотной кислоты (уд.вес 1,036) в жидкой фазе при температуре 120-130°С в запаянных трубках (М.И. Коновалов, 1893г.):

^ R-H + HO-NO 2 → R-NO 2 + H 2 O

Для нитрования Коновалов М.И. впервые использовал нонафтен

Было установлено, что легкость замещения водородного атома нитрогруппой растет в ряду:

Основными факторами, влияющими на скорость реакции нитрования и выход нитросоединений, являются концентрация кислоты, температура и продолжительность процесса. Так, например, нитрование гексана проводят азотной кислотой (d 1,075) при температуре 140°С:



Реакция сопровождается образованием полинитросоединений и продуктов окисления.

Практическое значение получил метод парофазного нитрования алканов (Хэсс, 1936 г.). Нитрование проводят при температуре 420°С и непродолжительном пребывании углеводорода в реакционной зоне (0,22-2,9 сек). Нитрование алканов по Хэссу приводит к образованию смеси нитропарафинов:

Образование нитрометана и этана происходит в результате крекинга углеводородной цепи.

Реакция нитрования алканов протекает по свободнорадикальному механизму, причем азотная кислота не является нитрующим агентом, а служит источником окислов азота NO 2:

2. Реакция Мейера (1872)

Взаимодействие галоидных алкилов с нитритом серебра приводит к получению нитроалканов:

Способ получения нитроалканов из галоидных алкилов и нитрита натрия в среде ДМФА (диметилформамида) предложен Корнблюмом. Реакция протекает по механизму S N 2.

Наряду с нитросоединениями в реакции образуются нитриты, это связано с амбидентностью нитрит-аниона:

^ Строение нитроалканов

Нитроалканы могут быть изображены октетной формулой Льюиса или резонансными структурами:

Одна из связей атома азота с кислородом называется донорно-акцепторной или семиполярной.
^

Химические свойства



Химическиепревращения нитроалканов связаны с реакциями по a-водородному атому углерода и нитрогруппе.

К реакциям по a-водородному атому следует отнести реакции со щелочами, с азотистой кислотой, альдегидами и кетонами.

1. Образование солей

Нитросоединения относятся к псевдокислотам – они нейтральны и не проводят электрический ток, однако взаимодействуют с водными растворами щелочей с образованием солей, при подкислении которых образуется аци-форма нитросоединения, самопроизвольно изомеризующаяся затем в истинно нитросоединение:

Способность соединения существовать в двух формах называется таутомерией. Анионы нитроалканов – амбидентные анионы, обладающие двойственной реакционной способностью. Строение их может быть представлено следующими формами:

2. Реакции с азотистой кислотой

Первичные нитросоединения взаимодействуют с азотистой кислотой (HONO) с образованием нитроловых кислот:

Нитроловые кислоты при обработке щелочами образуют соль кроваво-красного цвета:

Вторичные нитроалканы образуют псевдонитролы (гем-нитронитрозо-алканы) синего или зеленоватого цвета:

Третичные нитросоединения с азотистой кислотой не реагируют. Эти реакции используют для качественного определения первичных, вторичных и третичных нитросоединений.

3. Синтез нитроспиртов

Первичные и вторичные нитросоединения взаимодействуют с альдегидами и кетонами в присутствии щелочей с образованием нитроспиртов:

Нитрометан с формальдегидом дает триоксиметилнитрометан NO 2 С(СН 2 ОН) 3 . При восстановлении последнего образуется аминоспирт NH 2 С(СН 2 ОН) 3 – исходное вещество для получения моющих средств и эмульгаторов. Тринитрат три(оксиметил)нитрометана, NО 2 С(СН 2 ОNО 2) 3 , является ценным взрывчатым веществом.

Нитроформ (тринитрометан) при взаимодействии с формальдегидом образует тринитроэтиловый спирт:

4. Восстановление нитросоединений

Полное восстановление нитросоединений в соответствующие амины можно осуществить многими методами, например действием сероводорода, железа в соляной кислоте, цинком и щелочью, литийалюмогидридом:

Известны также методы неполного восстановления, в результате которого образуются оксимы соответствующих альдегидов или кетонов:

5. Взаимодействие нитросоединений с кислотами

Практическую ценность представляют реакции нитросоединений с кислотами. Первичные нитросоединения при нагревании с 85%-ной серной кислотой превращаются в карбоновые кислоты. Предполагается, что 1 стадией процесса является взаимодействие нитросоединений с минеральными кислотами с образованием аци-формы:

Соли аци-формы первичных и вторичных нитросоединений на холоду в водных растворах минеральных кислот образуют альдегиды или кетоны (реакция Нефа):

. Ароматические нитросоединения. Химические свойства

Химические свойства. Восстановление нитросоединений в кислой, нейтральной и щелочной средах. Практическое значение этих реакций. Активирующее влияние нитрогруппы на реакции нуклеофильного замещения. Полинитросоединения ароматического ряда.

Поделитесь с друзьями или сохраните для себя:

Загрузка...