Окисление изопропилбензола перманганатом калия в щелочной среде. Окислительно-восстановительные реакции с участием органических веществ

Санкт-Петербургский Государственный Технологический Институт

(Технический Университет)

Кафедра органической химии Факультет 4

Группа 476

Курсовая работа

Окисление алкенов

Студентка………………………………………Рытина А.И.

Преподаватель………………………………... Питерская Ю.Л.

Санкт-Петербург

Введение

1.Эпоксидирование (реакция Н.А. Прилежаева,1909 г.)

2.Гидроксилирование

2.1анти -Гидроксилирование

2.2син -Гидроксилирование

3.Окислительное расщепление алкенов

4.Озонолиз

5.Окисление алкенов в присутствии солей палладия

Заключение

Список использованных источников

Введение

Окисление - одно из наиболее важных и распространенных превращений органических соединений.

Под окислением в органической химии понимают процессы, приводящие к обеднению соединения водородом или обогащению его кислородом. При этом происходит отнятие от молекулы электронов. Соответственно, под восстановлением понимают отрыв от органической молекулы кислорода или присоединение к ней водорода.

В окислительно-восстановительных реакциях окислителями являются соединения, обладающие большим сродством к электрону (электрофилы), а восстановителями – соединения, имеющие склонность к отдаче электронов (нуклеофилы). Легкость окисления соединения возрастает вместе с ростом его нуклеофильности.

При окислении органических соединений, как правило, полной передачи электронов и соответственно изменения валентности атомов углерода не происходит. Поэтому понятие степени окисления – условного заряда атома в молекуле, вычисленного, исходя из предположения, что молекула состоит только из ионов – носит лишь условный, формальный характер.

При составлении уравнений окислительно-восстановительных реакций необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя метод электронно-ионного баланса (метод полуреакций).

В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. Для уравнивания числа атомов кислорода и водорода вводят или молекулы воды и протоны (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная).

Таким образом, при написании полуреакций восстановления и окисления нужно исходить из состава ионов, действительно имеющихся в растворе. Вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

В качестве примера рассмотрим процесс окисления этилена разбавленным водным раствором перманганата калия (реакция Вагнера). В ходе данной реакции этилен окисляется до этиленгликоля, а перманганат калия восстанавливается до диоксида марганца. По месту двойной связи присоединяются два гидроксила :

3С 2 H 4 + 2KMnO 4 +4H 2 O→ 3C 2 H 6 O 2 + 2MnO 2 +2KOH

Полуреакция восстановления: MnO 4 ¯ + 2H 2 O + 3 e → MnO 2 + 4OH ¯ 2

Полуреакция окисления: С 2 H 4 + 2OH − − 2 e C 2 H 6 O 2 3

Окончательно имеем в ионном виде:

2MnO 4 ¯ + 4H 2 O + 3C 2 H 4 + 6OH ¯ → 2MnO 2 + 8OH ¯ + 3C 2 H 6 O 2

После проведения необходимых сокращений подобных членов, записываем уравнение в молекулярном виде:

3C 2 H 4 + 2KMnO 4 + 4 H 2 O = 3C 2 H 6 O 2 + 2MnO 2 + 2KOH.

Характеристика некоторых окислителей

Кислород

Кислород воздуха находит широкое применение в технологических процессах, так как является наиболее дешевым окислителем. Но окисление кислородом воздуха сопряжено с трудностями, связанными с контролем процесса, который протекает в различных направлениях. Окисление обычно проводят при высокой температуре в присутствии катализаторов.

Озон

Озон O 3 применяют для получения альдегидов и кетонов, если их затруднительно получить другими способами. Чаще всего озон применяют для установления структуры ненасыщенных соединений. Получают озон при действии тихого электрического разряда на кислород. Одним из существенных достоинств озонирования, по сравнению с хлорированием, является отсутствие токсинов после обработки .

Перманганат калия

Перманганат калия – наиболее часто применяемый окислитель. Реактив растворим в воде (6.0% при 20ºС), а также в метаноле, ацетоне и уксусной кислоте. Для окисления применяют водные (иногда ацетоновые) растворы KMnO 4 в нейтральной, кислой или щелочной среде. При проведении процесса в нейтральной среде в реакционную массу добавляют соли магния, алюминия или пропускают углекислый газ для нейтрализации выделяющегося во время реакции гидроксида калия. Реакцию окисления KMnO 4 в кислой среде чаще всего ведут в присутствии серной кислоты. Щелочную среду при окислении создает образующийся во время реакции KOH, либо его изначально добавляют в реакционную массу. В слабощелочной и нейтральной средах KMnO 4 окисляет по уравнению:

KMnO 4 + 3 e + 2H 2 O = K + + MnO 2 + 4OH ¯

в кислой среде:

KMnO 4 + 5 e + 8H + = K + + Mn 2+ + 4H 2 O

Перманганат калия используется для получения 1,2-диолов из алкенов, при окислении первичных спиртов, альдегидов и алкиларенов до карбоновых кислот, а также для окислительного расщепления углеродного скелета по кратным связям.

На практике обычно используется довольно большой избыток (более чем 100%) KMnO 4 . Это объясняется тем, что в обычных условиях KMnO 4 частично разлагается на диоксид марганца с выделением O 2 . Разлагается концентрированной H 2 SO 4 при нагревании в присутствии восстановителей со взрывом; смеси калия перманганата с органическими веществами также взрывчаты .

Надкислоты

Перуксусную и пермуравьиную кислоты получают реакцией 25-90%-ного пероксида водорода с соответствующей карбоновой кислотой по следующей реакции:

RCOOH + H 2 O 2 = RCOOOH + H 2 O

В случае уксусной кислоты это равновесие устанавливается относительно медленно, и для ускорения образования перкислоты обычно в качестве катализатора добавляют серную кислоту. Муравьиная кислота достаточно сильна сама по себе для того, чтобы обеспечить быстрое установление равновесия.

Пертрифторуксусная кислота, получаемая в смеси с трифторуксусной кислотой реакцией трифторуксусного ангидрида с 90%-ным пероксидом водорода, еще более сильный окислитель. Аналогичным образом из уксусного ангидрида и пероксида водорода можно получить перуксусную кислоту.

Особой популярностью пользуется твердая м -хлорпербензойная кислота, поскольку она относительно безопасна в обращении, достаточно стабильна и может храниться длительное время.

Окисление происходит за счет выделяющегося атома кислорода:

RCOOOH = RCOOH + [O]

Надкислоты применяют для получения эпоксидов из алкенов, а также лактонов из алициклических кетонов.

Пероксид водорода

Пероксид водорода – бесцветная жидкость,cмешивается с водой, этанолом и диэтиловым эфиром. 30%-ный раствор H 2 O 2 называется пергидролем. Высококонцентрированный препарат может реагировать с органическими веществами со взрывом. При хранении разлагается на кислород и воду. Стойкость пероксида водорода возрастает с разбавлением. Для окисления применяют водные растворы различной концентрации (от 3 до 90%) в нейтральной, кислой или щелочной средах.

H 2 O 2 = H 2 O + [O]

Действием этого реагента на α,β-непредельные карбонильные соединения в щелочной среде получают соответствующие эпоксиальдегиды и кетоны, окислением карбоновых кислот в кислой среде синтезируют надкислоты. 30%-ный раствор H 2 O 2 в уксусной кислоте окисляет алкены в 1,2-диолы. Пероксид водорода применяют: для получения органических и неорганических пероксидов, пербората и перкарбоната Na; как окислитель в ракетных топливах; при получении эпоксидов, гидрохинона, пирокатехина, этиленгликоля, глицерина, ускорителей вулканизации группы тиурама и др.; для отбеливания масел, жиров, меха, кожи, текстильных материалов, бумаги; для очистки германиевых и кремниевых полупроводниковых материалов; как дезинфицирующее средство для обезвреживания бытовых и индустриальных сточных вод; в медицине; как источник О 2 в подводных лодках; Н 2 О 2 входит в состав реактива Фентона (Fe 2 + + Н 2 О 2), который используют как источник свободных радикалов ОН в органическом синтезе .

Тетраоксиды рутения и осмия

Тетраоксид осмия OsO 4 – порошок от белого до бледно-желтого цвета с т. пл. 40.6ºС; т. кип. 131.2ºС. Возгоняется уже при комнатной температуре, растворим в воде (7.47 г в 100 мл при 25ºС), ССl 4 (250 г в 100 г растворителя при 20ºС). В присутствии органических соединений чернеет вследствие восстановления до OsO 2 .

RuO 4 представляет собой золотисто-желтые призмы с т. пл. 25.4ºС, заметно возгоняется при комнатной температуре. Умеренно растворим в воде (2.03 г в 100 мл при 20ºС), очень хорошо растворим в CCl 4 . Более сильный окислитель, чем OsO 4 . Выше 100ºС взрывается. Как и тетраоксид осмия обладает большой токсичностью и высокой стоимостью.

Данные окислители применяются для окисления алкенов в α-гликоли в мягких условиях.

Как уже говорилось, окисление органического вещества - введение в его состав кислорода и (или) отщепление водорода. Восстановление - обратный процесс (введение водорода и отщепление кислорода). Учитывая состав алканов (СnH2n+2), можно сделать вывод об их неспособности вступать в реакции восстановления, но возможности участвовать в реакциях окисления.

Алканы - соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н2Cr2O7, KMnO4 и т.п.). При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО2, где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С-С и С-Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

Общепринято, что механизм окисления алканов включает радикальный цепной процесс, поскольку сам по себе кислород малореакционноспособен, чтобы оторвать атом водорода от алкана нужна частица, которая будет инициировать возникновение алкильного радикала, который будет реагировать с кислородом, давая пероксирадикал. Затем пероксирадикал может оторвать атом водорода от другой молекулы алкана с образованием алкилгидропероксида и радикала.

Возможно окисление алканов кислородом воздуха при 100-150оС в присутствии катализатора - ацетата марганца, данную реакцию применяют в промышленности. Окисление происходит при продувании тока воздуха через расплавленный парафин, содержащий соль марганца.

Т.к. в результате реакции образуется смесь кислот, то их отделяют от непрореагировавшего парафина растворением в водной щелочи, а затем нейтрализуют минеральной кислотой.

Непосредственно в промышленности этот метод применяется для получения уксусной кислоты из н-бутана:

Окисление алкенов

Реакции окисления алкенов подразделяют на две группы: 1) реакции, в которых сохраняется углеродный скелет, 2) реакции окислительной деструкции углеродного скелета молекулы по двойной связи.

Реакции окисления алкенов с сохранением углеродного скелета

1. Эпоксидирование (реакция Прилежаева)

Ациклические и циклические алкены при взаимодействии с перкислотами в неполярной среде образуют эпоксиды (оксираны).

Также оксираны можно получить окислением алкенов гидропероксидами в присутствии молибден-, вольфрам-, ванадийсодержащих катализаторов:

Простейший оксиран - окись этилена - получают в промышленности окислением этилена кислородом в присутствии серебра или оксида серебра как катализатора.

2. анти-Гидроксилирование (гидролиз эпоксидов)

Кислотный (или щелочной) гидролиз эпоксидов приводит к раскрытию оксидного цикла с образованием трансдиолов.


В первой стадии происходит протонирование атома кислорода эпоксида с образованием циклического оксониевого катиона, который раскрывается в результате нуклеофильной атаки молекулы воды.

Раскрытие эпоксидного кольца, катализируемого основанием, также приводит к образованию транс-гликолей.


3. син-Гидроксилирование

Одним из старейших методов окисления алкенов является реакция Вагнера (окисление перманганатом калия). Первоначально при окислении образуется циклический эфир марганцевой кислоты, который гидролизуется до вицинального диола:


Помимо реакции Вагнера существует другой метод син-гидроксилирования алкенов под действием оксида осмия (VIII), который был предложен Криге. При действии тетраоксида осмия на алкен в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты - осмат. Однако присоединение OsO4 к кратной связи заметно ускоряется в пиридине. Полученный черный осадок осмата легко разлагают действием водного раствора гидросульфита натрия:


Перманганат калия или оксид осмия (VIII) окисляют алкен до цис-1,2-диола.

Окислительное расщепление алкенов

К окислительному расщеплению алкенов относятся реакции взаимодействия их с перманганатом калия в щелочной или в серной кислоте, а также окисление раствором триоксида хрома в уксусной кислоте или дихроматом калия и серной кислотой. Конечным результатом таких превращений является расщепление углеродного скелета по месту двойной связи и образование карбоновых кислот или кетонов.

Однозамещенные алкены с концевой двойной связью расщепляются до карбоновой кислоты и углекислого газа:


Если оба атома углерода при двойной связи содержат только по одной алкильной группе, то образуется смесь карбоновых кислот:


А вот если тетразамещенный при двойной связи алкен - кетон:


Гораздо большее препаративное значение приорела реакция озонолиза алкенов. В течение многих десятилетий эта реакция служила основным методом определения строения исходного алкена. Данная реакция проводится пропусканием тока раствора озона в кислороде раствор алкена в хлористом метилене или этилацетате при -80 … -100оС. Механизм данной реакции установлен Криге:



Озониды - нестабильные соединения, разлагающиеся со взрывом. Существует два способа разложения озонидов - окислительное и восстановительное.

При гидролизе озониды расщепляются на карбонильные соединения и перекись водорода. Перекись водорода окисляет альдегиды до карбоновых кислот - это есть окислительное разложение:


Гораздо более важное значение имеет восстановительное расщепление озонидов. В качестве продуктов озонолиза оказываются альдегиды или кетоны в зависимости от строения исходного алкена:

Помимо приведенных выше методов существует еще один метод, предложенный в 1955 г. Лемье:

В методе Лемье не возникает трудоемких процедур по отделению диоксида марганца, т.к. диоксид и манганат вновь окисляются перйодатом до перманганат-иона. Это позволяет использовать только каталитические количесвта перманганата калия.

18. Окислительно-восстановительные реакции (продолжение 2)


18.9. ОВР с участием органических веществ

В ОВР органических веществ с неорганическими органические вещества чаще всего являются восстановителями. Так, при сгорании органического вещества в избытке кислорода всегда образуется углекислый газ и вода. Сложнее протекают реакции при использовании менее активных окислителей. В этом параграфе рассмотрены только реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Алкены. При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

C 2 H 4 + 2KMnO 4 + 2H 2 O CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH (охлаждение)

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O (нагревание)

2) 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O (нагревание)

3) CH 3 CH=CHCH 2 CH 3 + 6KMnO 4 + 10KOH CH 3 COOK + C 2 H 5 COOK + 6H 2 O + 6K 2 MnO 4 (нагревание)

4) CH 3 CH=CH 2 + 10KMnO 4 + 13KOH CH 3 COOK + K 2 CO 3 + 8H 2 O + 10K 2 MnO 4 (нагревание)

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

Алкины. Алкины начинают окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алканов, атомы-восстановители здесь – атомы углерода, связанные в данном случае тройной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH 3 C CH + 8KMnO 4 + 12H 2 SO 4 5CH 3 COOH + 5CO 2 + 8MnSO 4 + 4K 2 SO 4 + 12H 2 O (нагревание)

Иногда удается выделить промежуточные продукты окисления. В зависимости от положения тройной связи в молекуле это или дикетоны (R 1 –CO–CO–R 2), или альдокетоны (R–CO–CHO).

Ацетилен может быть окислен перманганатом калия в слабощелочной среде до оксалата калия:

3C 2 H 2 + 8KMnO 4 = 3K 2 C 2 O 4 +2H 2 O + 8MnO 2 + 2KOH

В кислотной среде окисление идет до углекислого газа:

C 2 H 2 + 2KMnO 4 +3H 2 SO 4 =2CO 2 + 2MnSO 4 + 4H 2 O + K 2 SO 4

Гомологи бензола. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C 6 H 5 CH 3 +2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O (при кипячении)

C 6 H 5 CH 2 CH 3 + 4KMnO 4 = C 6 H 5 COOK + K 2 CO 3 + 2H 2 O + 4MnO 2 + KOH (при нагревании)

Окисление этих веществ дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

Спирты. Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C 2 H 5 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O (нагревание)

С избытком окислителя (KMnO 4 , K 2 Cr 2 O 7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов. Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа. Все реакции идут при нагревании.

Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислотной среде с раствором KMnO 4 или K 2 Cr 2 O 7 легко окисляется до углекислого газа и воды, но иногда удается выделить и промежуточные продукты (HOCH 2 –COOH, HOOC–COOH и др.).

Альдегиды. Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO 4 , K 2 Cr 2 O 7 , OH. Все реакции идут при нагревании:

3CH 3 CHO + 2KMnO 4 = CH 3 COOH + 2CH 3 COOK + 2MnO 2 + H 2 O
3CH 3 CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 COOH + Cr 2 (SO 4) 3 + 7H 2 O
CH 3 CHO + 2OH = CH 3 COONH 4 + 2Ag + H 2 O + 3NH 3

Формальдегид с избытком окислителя окисляется до углекислого газа.

18.10. Сравнение окислительно-восстановительной активности различных веществ

Из определений понятий " атом-окислитель" и " атом-восстановитель" следует, что только окислительными свойствами обладают атомы в высшей степени окисления. Наоборот, только восстановительными свойствами обладают атомы в низшей степени окисления. Атомы, находящиеся в промежуточных степенях окисления, могут быть как окислителями, так и восстановителями.

Вместе с тем, основываясь только на степени окисления, невозможно однозначно оценить окислительно-восстановительные свойства веществ. В качестве примера рассмотрим соединения элементов VA группы. Соединения азота(V) и сурьмы(V) являются более или менее сильными окислителями, соединения висмута(V) – очень сильные окислители, а соединения фосфора(V) окислительными свойствами практически не обладают. В этом и других подобных случаях имеет значение, насколько данная степень окисления характерна для данного элемента, то есть, насколько устойчивы соединения, содержащие атомы данного элемента в этой степени окисления.

Любая ОВР протекает в направлении образования более слабого окислителя и более слабого восстановителя. В общем случае возможность протекания какой-либо ОВР, как и любой другой реакции, может быть определена по знаку изменения энергии Гиббса. Кроме того, для количественной оценки окислительно-восстановительной активности веществ используют электрохимические характеристики окислителей и восстановителей (стандартные потенциалы окислительно-восстановительных пар). Основываясь на этих количественных характеристиках, можно построить ряды окислительно-восстановительной активности различных веществ. Известный вам ряд напряжений металлов построен именно таким образом. Этот ряд дает возможность сравнивать восстановительные свойства металлов в водных растворах, находящихся в стандартных условиях (с = 1 моль/л, Т = 298,15 К), а также окислительные свойства простых аквакатионов. Если в верхней строке этого ряда поместить ионы (окислители), а в нижней – атомы металлов (восстановители), то левая часть этого ряда (до водорода) будет выглядеть так:

В этом ряду окислительные свойства ионов (верхняя строка) усиливаются слева направо, а восстановительные свойства металлов (нижняя строка), наоборот, справа налево.

Учитывая различия в окислительно-восстановительной активности в разных средах, можно построить аналогичные ряды и для окислителей. Так, для реакций в кислотной среде (pH = 0) получается " продолжение" ряда активности металлов в направлении усиления окислительных свойств

Как и в ряду активности металлов, в этом ряду окислительные свойства окислителей (верхняя строка) усиливаются слева направо. Но, используя этот ряд, сравнивать восстановительную активность восстановителей (нижняя строка) можно только в том случае, когда их окисленная форма совпадает с приведенной в верхней строке; в этом случае она усиливается справа налево.

Рассмотрим несколько примеров. Чтобы узнать, возможна ли данная ОВР будем использовать общее правило, определяющее направление протекания окислительно-восстановительных реакций (реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя).

1. Можно ли магнием восстановить кобальт из раствора CoSO 4 ?
Магний более сильный восстановитель, чем кобальт, и ионы Co 2 более сильные окислители, чем ионы Mg 2 , следовательно, можно.
2. Можно ли раствором FeCl 3 окислить медь до CuCl 2 в кислотной среде?
Так как ионы Fe 3B более сильные окислители, чем ионы Cu 2 , а медь более сильный восстановитель, чем ионы Fe 2 , то можно.
3. Можно ли, продувая кислород через подкисленный соляной кислотой раствор FeCl 2 , получить раствор FeCl 3 ?
Казалось бы нет, так как в нашем ряду кислород стоит левее ионов Fe 3 и является более слабым окислителем, чем эти ионы. Но в водном растворе кислород практически никогда не восстанавливается до H 2 O 2 , в этом случае он восстанавливается до H 2 O и занимает место между Br 2 и MnO 2 . Следовательно такая реакция возможна, правда, протекает она довольно медленно (почему?).
4. Можно ли в кислотной среде перманганатом калия окислить H 2 O 2 ?
В этом случае H 2 O 2 восстановитель и восстановитель более сильный, чем ионы Mn 2B , а ионы MnO 4 окислители более сильные, чем образующийся из пероксида кислород. Следовательно, можно.

Аналогичный ряд, построенный для ОВР в щелочной среде, выглядит следующим образом:

В отличие от " кислотного" ряда, этот ряд нельзя использовать совместно с рядом активности металлов.

Метод электронно-ионного баланса (метод полуреакций), межмолекулярные ОВР, внутримолекулярные ОВР, ОВР дисмутации (диспропорционирования, самоокисления-самовосстановления), ОВР конмутации, пассивация.

  1. Используя метод электронно-ионого баланса, составьте уравнения реакций, протекающих при добавлении к подкисленному серной кислотой раствору перманганата калия раствора а) H 2 S {S, точнее, S 8 }; б) KHS; в) K 2 S; г) H 2 SO 3 ; д) KHSO 3 ; е) K 2 SO 3 ; ё) HNO 2 ; ж) KNO 2 ; и) KI {I 2 }; к) FeSO 4 ; л) C 2 H 5 OH {CH 3 COOH}; м) CH 3 CHO; н) (COOH) 2 {CO 2 }; п) K 2 C 2 O 4 . Здесь и далее в необходимых случаях в фигурных скобках указаны продукты окисления.
  2. Составьте уравнения реакций, протекающих при пропускании следующих газов через подкисленный серной кислотой раствор перманганата калия: а) C 2 H 2 {CO 2 }; б) C 2 H 4 {CO 2 }; в) C 3 H 4 (пропин) {CO 2 и CH 3 COOH}; г) C 3 H 6 ; д) CH 4 ; е) HCHO.
  3. То же, но раствор восстановителя добавлен к нейтральному раствору перманганата калия: а) KHS; б) K 2 S; в) KHSO 3 ; г) K 2 SO 3 ; д) KNO 2 ; е) KI.
  4. То же, но в раствор перманганата калия предварительно добавлен раствор гидроксида калия: а) K 2 S {K 2 SO 4 }; б) K 2 SO 3 ; в) KNO 2 ; г) KI {KIO 3 }.
  5. Составьте уравнения следующих реакций, протекающих в растворе: а) KMnO 4 + H 2 S ...;
    б) KMnO 4 + HCl ...;
    в) KMnO 4 + HBr ...;
    г) KMnO 4 + HI ...
  6. Составьте следующие уравнения ОВР диоксида марганца:
  7. К подкисленному серной кислотой раствору дихромата калия добавлены растворы следующих веществ: а) KHS; б) K 2 S; в) HNO 2 ; г) KNO 2 ; д) KI; е) FeSO 4 ; ж) CH 3 CH 2 CHO; и) H 2 SO 3 ; к) KHSO 3 ; л) K 2 SO 3 . Составьте уравнения протекающих реакций.
  8. То же, но через раствор пропущены следующие газы: а) H 2 S; б) SO 2 .
  9. К раствору хромата калия, содержащему гидроксид калия, добавлены растворы а) K 2 S {K 2 SO 4 }; б) K 2 SO 3 ; в) KNO 2 ; г) KI {KIO 3 }. Составьте уравнения протекающих реакций.
  10. К раствору хлорида хрома(III) прибавили раствор гидроксида калия до растворения первоначально образовавшегося осадка, а затем – бромную воду. Составьте уравнения протекающих реакций.
  11. То же, но на последнем этапе был добавлен раствор пероксодисульфата калия K 2 S 2 O 8 , восстановивегося в процессе реакции до сульфата.
  12. Составьте уравнения реакций, протекающих в растворе:
  13. а) CrCl 2 + FeCl 3 ; б) CrSO 4 + FeCl 3 ; в) CrSO 4 + H 2 SO 4 + O 2 ;

    г) CrSO 4 + H 2 SO 4 + MnO 2 ; д) CrSO 4 + H 2 SO 4 + KMnO 4 .

  14. Составьте уравнения реакций, протекающих между твердым триоксидом хрома и следующими веществами: а) C; б) CO; в) S {SO 2 }; г) H 2 S; д) NH 3 ; е) C 2 H 5 OH {CO 2 и H 2 O}; ж) CH 3 COCH 3 .
  15. Составьте уравнения реакций, протекающих при добавлении в концентрированную азотную кислоту следующих веществ: а) S {H 2 SO 4 }; б) P 4 {(HPO 3) 4 }; в) графит; г) Se; д) I 2 {HIO 3 }; е) Ag; ж) Cu; и) Pb; к) KF; л) FeO; м) FeS; н) MgO; п) MgS; р) Fe(OH) 2 ; с) P 2 O 3 ; т) As 2 O 3 {H 3 AsO 4 }; у) As 2 S 3 ; ф) Fe(NO 3) 2 ; х) P 4 O 10 ; ц) Cu 2 S.
  16. То же, но при пропускании следующих газов: а) CO; б) H 2 S; в) N 2 O; г) NH 3 ; д) NO; е) H 2 Se; ж) HI.
  17. Одинаково, или по-разному будут протекать реакции в следующих случаях: а) в высокую пробирку на две трети заполненную концентрированной азотной кислотой, поместили кусочек магния; б) на поверхность магниевой пластины поместили каплю концентрированной азотной кислоты? Составьте уравнения реакций.
  18. В чем отличие реакции концентрированной азотной кислоты с сероводородной кислотой и с газообразным сероводородом? Составьте уравнения реакций.
  19. Одинаково ли будут протекать ОВР при добавлении к концентрированному раствору азотной кислоты безводного кристаллического сульфида натрия и его 0,1 M раствора?
  20. Концентрированной азотной кислотой обработали смесь следующих веществ: Cu, Fe, Zn, Si и Cr. Составьте уравнения протекающих реакций.
  21. Составьте уравнения реакций, протекающих при добавлении в разбавленную азотную кислоту следующих веществ: а) I 2 ; б) Mg; в) Al; г) Fe; д) FeO; е) FeS; ж) Fe(OH) 2 ; и) Fe(OH) 3 ; к) MnS; л) Cu 2 S; м) CuS; н) CuO; п) Na 2 S кр; р) Na 2 S р; с) P 4 O 10 .
  22. Какие процессы будут протекать при пропускании через разбавленный раствор азотной кислоты а) аммиака, б) сероводорода, в) диоксида углерода?
  23. Составьте уравнения реакций, протекающих при добавлении в концентрированную серную кислоту следующих веществ: а) Ag; б) Cu; в) графит; г) HCOOH; д) С 6 H 12 O 6 ; е) NaCl кр; ж) C 2 H 5 OH.
  24. При пропускании через холодную концентрированную серную кислоту сероводорода образуется S и SO 2 , горячая концентрированная H 2 SO 4 окисляет серу до SO 2 . Составьте уравнения реакций. Как будет протекать реакция между горячей концентрированной H 2 SO 4 и сероводородом?
  25. Почему хлороводород получают, обрабатывая кристаллический хлорид натрия концентрированной серной кислотой, а бромоводород и йодоводород этим способом не получают?
  26. Составьте уравнения реакций, протекающих при взаимодействии разбавленной серной кислоты с а) Zn, б) Al, в) Fe, г) хромом в отсутствии кислорода, д) хромом на воздухе.
  27. Составьте уравнения реакций, характеризующих окислительно-восстановительные свойства пероксида водорода:
  28. В каких из этих реакций пероксид водорода является окислителем, а в каких – восстановителем?

  29. Какие реакции протекают при нагревании следующих веществ: а) (NH 4) 2 CrO 4 ; б) NaNO 3 ; в) CaCO 3 ; г) Al(NO 3) 3 ; д) Pb(NO 3) 3 ; е) AgNO 3 ; ж) Hg(NO 3) 2 ; и) Cu(NO 3) 2 ; к) CuO; л) NaClO 4 ; м) Ca(ClO 4) 2 ; н) Fe(NO 3) 2 ; п) PCl 5 ; р) MnCl 4 ; с) H 2 C 2 O 4 ; т) LiNO 3 ; у) HgO; ф) Ca(NO 3) 2 ; х) Fe(OH) 3 ; ц) CuCl 2 ; ч) KClO 3 ; ш) KClO 2 ; щ) CrO 3 ?
  30. При сливании горячих растворов хлорида аммония и нитрата калия протекает реакция, сопровождающаяся выделением газа. Составьте уравнение этой реакции.
  31. Составьте уравнения реакций, протекающих при пропускании через холодный раствор гидроксида натрия а) хлора, б) паров брома. То же, но через горячий раствор.
  32. При взаимодействии с горячим концентрированным раствором гидроксида калия селен подвергается дисмутации до ближайших устойчивых степеней окисления (–II и +IV). Составьте уравнение этой ОВР.
  33. При тех же условиях сера подвергается аналогичной дисмутации, но при этом избыток серы реагирует с сульфит-ионами с образованием тиосульфат ионов S 2 O 3 2 . Составьте уравнения протекающих реакций. ;
  34. Составьте уравнения реакций электролиза а) раствора нитрата меди с серебряным анодом, б) раствора нитрата свинца с медным анодом.
Опыт 1. Окислительные свойства перманганата калия в кислотной среде. K 3-4 каплям раствора перманганата калия прилить равный объем разбавленного раствора серной кислоты, а затем раствор сульфита натрия до обесцвечивания. Составить уравнение реакции.

Опыт 2. Окислительные свойства перманганата калия в нейтральной среде. К 3-4 каплям раствора перманганата калия прилить 5-6 капель раствора сульфита натрия. Какое вещество выделилось в виде осадка?

Опыт 3 . Окислительные свойства перманганата калия в щелочной среде. К 3-4 каплям раствора перманганата калия прилить 10 капель концентрированного раствора гидроксида натрия и 2 капли раствора сульфита натрия. Раствор должен приобрести зеленую окраску.

Опыт 4 . Окислительные свойства дихромата калия в кислотной среде. 6 капель раствора дихромата калия подкислить четырьмя каплями разбавленного раствора серной кислоты и добавить раствор сульфита натрия до изменения окраски смеси.

Опыт 5. Окислительные свойства разбавленной серной кислоты. В одну пробирку поместить гранулу цинка, а в другую – кусочек медной ленты. В обе пробирки добавить 8-10 капель разбавленного раствора серной кислоты. Сравнить происходящие явления. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 6. Окислительные свойства концентрированной серной кислоты. Аналогично опыту 5, но добавить концентрированный раствор серной кислоты. Через минуту после начала выделения газообразных продуктов реакции ввести в пробирки полоски фильтровальной бумаги, смоченные растворами перманганата калия и сульфата меди. Объяснить происходящие явления. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 7. Окислительные свойства разбавленной азотной кислоты. Аналогично опыту 5, но добавить разбавленный раствор азотной кислоты. Наблюдать изменение цвета газообразных продуктов реакции. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 8 . Окислительные свойства концентрированной азотной кислоты. В пробирку поместить кусочек медной ленты и прилить 10 капель концентрированного раствора азотной кислоты. Осторожно нагреть до полного растворения металла. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 9 . Окислительные свойства нитрита калия. К 5-6 каплям раствора нитрита калия прилить равный объем разбавленного раствора серной кислоты и 5 капель раствора иодида калия. Образование каких веществ наблюдается?

Опыт 10 . Восстановительные свойства нитрита калия. К 5-6 каплям раствора перманганата калия добавить равный объем разбавленного раствора серной кислоты и раствор нитрита калия до полного обесцвечивания смеси.

Опыт 11. Термическое разложение нитрата меди. Один микрошпатель тригидрата нитрата меди поместить в пробирку, закрепить ее в штативе и осторожно нагреть открытым пламенем. Наблюдать обезвоживание и последующее разложение соли. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 12 . Термическое разложение нитрата свинца. Провести аналогично опыту 11, поместив в пробирку нитрат свинца. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ! В чем отличие процессов, протекающих при разложении этих солей?

Склонность органических соединений к окислению связывают с наличием кратных связей, функциональных групп, атомов водорода при атоме углерода, содержащем функциональную группу. Последовательное окисление органических веществ можно представить в виде следующей цепочки превращений:

Насыщенный углеводород→ Ненасыщенный углеводород → Спирт→ Альдегид (кетон) → Карбоновая кислота →CO2 + H2O

Генетическая связь между классами органических соединений представляется здесь как ряд окислительно – восстановительных реакций, обеспечивающих переход от одного класса органических соединений к другому. Завершают его продукты полного окисления (горения) любого из представителей классов органических соединений. Зависимость окислительно-восстановительной способности органического вещества от его строения: Повышенная склонность органических соединений к окислению обусловлена наличием в молекуле веществ: кратных связей (именно поэтому так легко окисляются алкены, алкины, алкадиены); определенных функциональных групп, способных легко окисляться (–-SH, –OH (фенольной и спиртовой), – NH2 ; активированных алкильных групп, расположенных по соседству с кратными связями.

Например, пропен может быть окислен до непредельного альдегида акролеина кислородом воздуха в присутствии водяных паров на висмут- молибденовых катализаторах.

H2C═CH−CH3 → H2C═CH−COH

А также окисление толуола до бензойной кислоты перманганатом калия в кислой среде. 5C6H5CH3 +6KMnO4 + 9H2SO4 → 5C6H5COOH + 3K2SO4 + 6MnSO4 +14H2O

наличие атомов водорода при атоме углерода, содержащем функциональную группу. Примером является реакционная способность в реакциях окисления первичных, вторичных и третичных спиртов по реакционной способности к окислению.

Несмотря на то, что в ходе любых окислительно-восстановительных реакций происходит как окисление, так и восстановление, реакции классифицируют в зависимости от того, что происходит непосредственно с органическим соединением (если оно окисляется, говорят о процессе окисления, если восстанавливается – о процессе восстановления).

Так, в реакции этилена с перманганатом калия этилен будет окисляться, а перманганат калия – восстанавливается. Реакцию называют окислением этилена.

При изучении сравнительной характеристики неорганических и органических соединений мы знакомились с использованием степени окисления (с.о.) (в органической химии, прежде всего углерода) и способами ее определения:

1) вычисление средней с.о. углерода в молекуле органического вещества: -8/3 +1 С3 H8 Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).



2) определение с.о. каждого атома углерода:

В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+» у атома углерода, и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-» у атома углерода. При этом связи с соседними атомами углерода не учитывают. В качестве простейшего примера определим степень окисления углерода в молекуле метанола. Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « – »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем: -3 + 1 = -2.Таким образом, степень окисления углерода в метаноле равна -2. Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе. Уточняем, в каких случаях лучше использовать тот или иной способ.

Процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам. При переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется. Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы. Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы. Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя, подобно тому, как это присуще неорганическим веществам.

Алканы

Алкены

Процессы окисления зависят от строения алкена и среды протекания реакции.

1.При окислении алкенов концентрированным раствором перманганата калия KMnO4 в кислой среде (жесткое окисление) происходит разрыв σ- и π-связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

а) Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

б) Если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона, т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

в) Если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

2.В нейтральной или слабощелочной средах окисление сопровождается образованием диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены (реакция Вагнера).

3. Окисление алкенов в присутствии солей палладия (Вакер-процесс) приводит к образованию альдегидов и кетонов:

2CH2=CH2 + O2 PdCl2/H2O → 2 CH3-CO-H

Гомологи окисляются по менее гидрированному атому углерода: СH3-CH2-CH=CH2 + 1/2O2 PdCl2/H2O → CH3- CH2-CO-CH3 Алкины

Окисление ацетилена и его гомологов протекает в зависимости от того, в какой среде протекает процесс.

а) В кислой среде процесс окисления сопровождается образованием карбоновых кислот:

1 Реакция используется для определения строения алкинов по продуктам окисления:

2 В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

3 Для ацетилена:

1) В кислой среде: H-C≡C-H KMnO4, H2SO4→ HOOC-COOH (щавелевая кислота)

2) В нейтральной или щелочной среде: 3CH≡CH +8KMnO4 H2O→ 3KOOC-COOK оксалат калия +8MnO2↓+ 2KOH+ 2H2O

Арены (бензол и его гомологи)

При окисления аренов в кислой среде следует ожидать образования кислот, а в щелочной – солей. Гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по α -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

5C6H5–CH3 + 6KMnO4 + 9H2SO4 = 5C6H5COOH + 6MnSO4 + 3K2SO4 + 14H2O,

5C6H5–C2H5 + 12KMnO4 + 18H2SO4 = 5C6H5COOH + 5CO2 + 12MnSO4 + 6K2SO4 + 28H2O,

C6H5–CH3 + 2KMnO4 = C6H5COOK + 2MnO2 + KOH + H2O.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

1) В кислой среде: С6H5-CH2-R KMnO4, H2SO4→ С6H5-COOH бензойная кислота+ CO2

2) В нейтральной или щелочной среде: С6H5-CH2-R KMnO4, H2O/(OH)→ С6H5-COOK + CO2

3) Окисление гомологов бензола перманганатом калия или бихроматом калия при нагревании: С6H5-CH2-R KMnO4, H2SO4, t˚C→ С6H5-COOHбензойная кислота+ R-COOH

4) Окисление кумола кислородом в присутствии катализатора (кумольный способ получения фенола): C6H5CH(CH3)2 O2, H2SO4→ C6H5-OH фенол + CH3-CO-CH3 ацетон

5C6H5CH(CH3)2 + 18KMnO4 + 27H2SO4 → 5C6H5COOH + 42H2O + 18MnSO4 + 10CO2 + K2SO4

Следует обратить внимание на то, что при мягком окислении стирола перманганатом калия КMnO4 в нейтральной или слабощелочной среде происходит разрыв π -связи,образуется гликоль (двухатомный спирт). В результате реакции окрашенный раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV). Окисление же сильным окислителем – перманганатом калия в кислой среде – приводит к полному разрыву двойной связи и образованию углекислого газа и бензойной кислоты, раствор при этом обесцвечивается.

C6H5−CH═CH2 + 2 KMnO4 + 3 H2SO4 → C6H5−COOH + CO2 + K2SO4 + 2 MnSO4 +4 H2O

Спирты

Следует помнить, что:

1) первичные спирты окисляются до альдегидов: 3CH3–CH2OH + K2Cr2O7 + 4H2SO4 = 3CH3–CHO + K2SO4 + Cr2(SO4)3 + 7H2O;

2) вторичные спирты окисляются до кетонов:

3) для третичных спиртов реакция окисления не характерна. Третичные спирты, в молекулах которых нет атома водорода при атоме углерода, содержащем группу ОН, в обычных условиях не окисляются. В жестких условиях (при действии сильных окислителей и при высоких температурах) они могут быть окислены до смеси низкомолекулярных карбоновых кислот, т.е. происходит деструкция углеродного скелета. При окислении метанола подкисленным раствором перманганата калия или дихромата калия образуется CO2. Первичные спирты при окислении в зависимости от условий протекания реакции могут образовать не только альдегиды, но и кислоты. Например, окисление этанола дихроматом калия на холоду заканчивается oбразованием уксусной кислоты, а при нагревании – ацетальдегида:

3CH3–CH2OH + 2K2Cr2O7 + 8H2SO4 = 3CH3–COOH + 2K2SO4 + 2Cr2(SO4)3 + 11H2O,

3CH3–CH2OH + K2Cr2O7 + 4H2SO4

3CH3–CHO + K2SO4 + Cr2(SO4)3 + 7H2O

Помним о влиянии среды на продукты реакций окисления спиртов, а именно: горячий нейтральный раствор KMnO4 окисляет метанол до карбоната калия, а остальные спирты – до солей соответствующих карбоновых кислот:

Окисление гликолей

1,2-Гликоли легко расщепляются в мягких условиях при действии иодной кислоты. В зависимости от строения исходного гликоля продуктами окисления могут быть альдегиды или кетоны:

Если три или более ОН-групп связаны с соседними атомами углерода, то при окислении иодной кислотой средний или средние атомы превращаются в муравьиную кислоту

Окисление гликолей перманганатом калия в кислой среде проходит аналогично окислительному расщеплению алкенов и также приводит к образованию кислот или кетонов в зависимости от строения исходного гликоля.

Альдегиды и кетоны

Альдегиды легче, чем спирты, окисляются в соответствующие карбоновые кислоты не только под действием сильных окислителей (кислород воздуха, подкисленные растворы KMnO4 и K2Cr2O7), но и под действием слабых (аммиачный раствор оксида серебра или гидроксида меди(II)):

5CH3–CHO + 2KMnO4 + 3H2SO4 = 5CH3–COOH + 2MnSO4 + K2SO4 + 3H2O,

3CH3–CHO + K2Cr2O7 + 4H2SO4 = 3CH3–COOH + Cr2(SO4)3 + K2SO4 + 4H2O,

CH3–CHO + 2OH CH3–COONH4 + 2Ag + 3NH3 + H2O

Особое внимание!!! Окисление метаналя аммиачным раствором оксида серебра приводит к образованию карбоната аммония, а не муравьиной кислоты: HCHО + 4OH = (NH4)2CO3 + 4Ag + 6NH3 + 2H2O.

4.5.б. Окислительное расщепление алкенов

При окислении алкенов щелочным водным раствором перманганата калия при нагревании или раствором KMnO 4 в водной серной кислоте, а также при окислении алкенов раствором оксида хрома (VI) CrO 3 в уксусной кислоте или дихроматом калия и серной кислотой первоначально образующийся гликоль подвергается окислительной деструкции. Конечным результатом является расщепление углеродного скелета по месту двойной связи и образование в качестве конечных продуктов кетонов и (или) карбоновых кислот в зависимости от заместителей при двойной связи. Если оба атома углерода при двойной связи содержат только по одной алкильной группе, конечным продуктом исчерпывающего окисления будет смесь карбоновых кислот, тетразамещенный при двойной связи алкен окисляется до двух кетонов. Однозамещанные алкены с концевой двойной связью расщепляются до карбоновой кислоты и углекислого газа.

Из-за невысоких выходов карбоновых кислот и кетонов, реакции исчерпывающего окисления алкенов в классическом варианте не нашли широкого применения и ранее использовались, в основном, для установления строения исходного алкена по продуктам деструктивного окисления. В настоящее время окисление алкенов (R-CH=CH-R и R-CH=CH 2) до карбоновых кислот (RCOOH) с помощью перманганата или дихромата калия проводят в условиях межфазного катализа. Выходы карбоновых кислот при этом превышают 90%.

4.5.в. Озонолиз алкенов

Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи. В течение многих десятилетий эта реакция служила основным методом определения строения исходного углеводорода, а также находила применение в синтезе разнообразных карбонильных соединений. Реакция алкена с озоном проводится пропусканием тока ~5%-ной смеси озона и кислорода в раствор алкена в хлористом метилене или этилацетате при -80 0 -100 0 С. Окончание реакции контролируется пробой на свободный озон с иодидом калия. Механизм этой своеобразной и сложной реакции установлен главным образом благодаря работам Р Криге. Первым продуктом 1,3-диполярного циклоприсоединения к двойной связи является так называемый мольозонид (1,2,3-триоксолан). Этот аддукт нестабилен и далее самопроизвольно разлагается с раскрытием цикла и образованием в качестве конечного продукта нормального озонида (1,2,4-триоксолана).

В настоящее время общепризнано, что превращение мольозонида в обычный озонид происходит по механизму расщепления - рекомбинации. Мольозонид претерпевает самопроизвольное раскрытие нестабильного 1,2,3-триоксоланового цикла с образованием карбонильного соединения и биполярного иона, которые далее реагируют между собой также по схеме 1,3-диполярного циклоприсоединения.

Приведенная схема перегруппировки мольозонида в нормальный озонид подтверждается тем, что если до полного образования озонида в реакционной смеси присутствует в качестве "перехватчика" биполярного иона другое карбонильное соединение, то образуется так называемый "смешанный озонид". Так, например, при озонилизе цис -стильбена в присутствии бензальдегида, меченного изотопом 18 О, метка входит в состав эфирного, а не перекисного мостика озонида:

Этот результат хорошо согласуется с образованием смешанного озонида при рекомбинации биполярного иона с меченным бензальдегидом:

Озониды представляют собой очень нестабильные соединения, разлагающиеся со взрывом. Их не выделяют в индивидуальном виде, а расщепляют при действии самых разнообразных регентов. Следует различать восстановительное и окислительное расщепление. При гидролизе озониды медленно расщепляются на карбонильные соединения и перекись водорода. Перекись водорода окисляет альдегиды до карбоновых кислот. Это так называемое окислительное разложение озонидов:

Таким образом, при окислительном разложении озонидов образуются карбоновые кислоты и (или) кетоны в зависимости от строения исходного алкена. В качестве окислителей можно использовать кислород воздуха, перекись водорода, перкислоты или гидроокись серебра. Наиболее часто в синтетической практике для этой цели используют перекись водорода в уксусной или муравьиной кислоте, а также перекись водорода в щелочной среде.

На практике метод окислительного разложения озонидов используется, в основном, для получения карбоновых кислот.

Более важное значение имеет восстановительное расщепление озонидов. В качестве восстановителей наиболее часто используются цинк и уксусная кислота, трифенилфосфин или диметилсульфид. В этом случае конечными продуктами озонолиза оказываются альдегиды или кетоны в зависимости от строения исходного алкена.

Из приведенных выше примеров видно, что тетразамещенный при двойной связи алкен при озонолизе и последующем восстановительном разложении озонида образует два кетона, тогда как тризамещенный алкен дает кетон и альдегид. Дизамещенный симметричный алкен при озонолизе образует два альдегида, а алкены с концевой связью - альдегид и формальдегид.

Интересной модификацией озонолиза является метод, где в качестве восстановителя озонида используется боргидрид натрия, В этом случае конечными продуктами реакции оказываются первичные или вторичные спирты, образующиеся при восстановлении соответственно альдегидов и кстонов.

Озонолиз алкенов - это сложный, трудоемкий и взрывоопасный процесс, требующий применения специальной аппаратуры. По этой причине были разработаны другие методы окислительного расщепления алкенов до карбонильных соединений и карбоновых кислот, которые с успехом заменяют реакцию озонолиза в синтетической практике.

Один из современных препаративных методов окислительной деструкции алкенов был предложен в 1955 г Р. Лемье. В основе этого метода лежит гидроксилирование алкенов с помощью перманганата калия с последующим расщеплением вицинального гликоля периодатом натрия NaIO 4 при рН ~ 7 8. Периодат сам по себе не взаимодействует с алкеном. Продуктами этого двухстадийного окислительного расщепления являются кетоны или карбоновые кислоты, поскольку альдегиды в этих условиях также окисляются до карбоновых кислот. В методе Лемье не возникает трудоемкой проблемы отделения одного из продуктов реакции, - двуокиси марганца, так как и двуокись, и манганат вновь окисляются периодатом до перманганат-иона. Это позволяет использовать только каталитические количества перманганата калия. Ниже приведены некоторые типичные примеры окислительного расщепления алкенов по методу Лемье.

Цитронеллол - спирт, входящий в состав розового масла, масла герани и лимона, - окисляется смесью перманганата калия и периодата натрия в водном ацетоне при 5 10 0 С до 6-гидрокси-4-метилгексанкарбоновой кислоты с количественным выходом.

В другой разновидности этого метода вместо перманганата калия используют каталитические количества тетраоксида осмия (Лемье, Джонсон 1956 г). Особое достоинство комбинации OsO 4 и NaIO 4 заключается в том, что она позволяет остановить окисление на стадии альдегида. Тетраоксид осмия присоединяется к двойной связи алкена с образованием осмата, который окисляется периодатом натрия до карбонильных соединений с регенерацией четырехокиси осмия.

Вместо тетраоксида осмия можно использовать и тетраоксид рутения RuO 4 . Окислительная деструкция алкенов по Лемье-Джонсону приводит к тем же продуктам, что и озонолиз с восстановительным расщеплением озонидов.

В терминах, характерных для современной органической химии, это означает, что комбинация OsO 4 -NaIO 4 представляет собой синтетический эквивалент реакции озонолиза алкенов с последующим восстановительным расщеплением. Аналогично, окисление алкенов смесью перманганата и периодата - это синтетический эквивалент озонолиза с окислительным разложением озонидов.

Таким образом, окисление алкенов - это не только совокупность препаративных методов получения спиртов, эпоксидов, диолов, альдегидов, кетонов и карбоновых кислот, это также один из возможных путей установления структуры исходного алкена. Так, по результату, окислительной деструкции алкена можно определить положение двойной связи в молекуле, тогда как стереохимический результат син- или анти- гидроксилирования алкена позволяет сделать вывод о его геометрии.

Поделитесь с друзьями или сохраните для себя:

Загрузка...