Зонная структура энергетического спектра электронных состояний. Зонная структура энергетического спектра электронов

Глава 10. ПОНЯТИЕ О ЗОННОЙ ТЕОРИИ ТВЕРДЫХ ТЕЛ

Представление о валентности как способности атома образовывать химические связи с определенным количеством других атомов в применении к твердому телу теряет смысл, так как здесь реализуется возможность коллективного взаимодействия. Так в молекуле валентности атомов и равны единице, а в кристалле каждый атом окружен 6-ю атомами и наоборот.

Энергетический спектр изолированного атома определяется взаимодействием электронов с ядром и имеет дискретный характер. Энергетические состояния электронов в твердом теле определяются его взаимодействием как со своим ядром, так и с ядрами других атомов. В кристалле ядра атомов расположены периодически вдоль любого направления (рис. 56). Поэтому электрон движется в периодическом электрическом поле (вблизи ядер потенциальная энергия электрона меньше чем в промежутке между ядрами). Это приводит к тому, что вместо дискретного атомного энергетического уровня в твердом теле, содержащем N атомов, возникает N близко расположенных друг от друга энергетических уровней, которые образуют энергетическую зону. В этом смысле говорят о расщеплении энергетического уровня в энергетическую зону. Соседние энергетические уровни в зоне отстоят друг от друга на 10 -23 эВ. Для сравнения укажем, что средняя тепловая энергия электронов при температуре Т = 300 К составляет ~ 10 -2 эВ. Вследствие этого можно считать спектр электронов внутри зоны квазинепрерывным.

Число состояний в зоне равно произведению числа атомов в кристалле на кратность атомного энергетического уровня, из которого образовалась зона. Под кратностью энергетического уровня понимается число электронов, которые могут находиться на этом уровне с соблюдением принципа Паули.

Зоны разрешенных энергий разделены зонами запрещенных энергий. Их ширина сравнима с шириной зон разрешенных энергий. С увеличением энергии ширина разрешенных зон возрастает, а запрещенных - убывает (рис. 57).

§2. Металлы, полупроводники, диэлектрики

Различия в электрических свойствах твердых тел объясняются различным заполнением электронами разрешенных энергетических зон и шириной запрещенных зон. Для того чтобы тело могло проводить электрический ток необходимо наличие свободных энергетических уровней в разрешенных зонах, на которые могли бы перейти электроны под действием электрического поля.

Металлы

Рассмотрим кристалл натрия . Его электронная формула . Энергетическая диаграмма натрия изображена на рис. 58.

Изолированный атом имеет дискретный энергетический спектр. При сближении атомов, начиная с некоторого межатомного расстояния происходит расщепление уровней энергий в зоны. В первую очередь расщепляются внешние уровни: вакантный 3р , затем наполовину заполненный уровень 3s . При уменьшении расстояния r до r 1 происходит перекрытие 3р- и 3s -зон разрешенных энергий. На расстоянии r = r 0 (r 0 – равновесное межатомное расстояние в кристалле) сближение атомов прекращается. Валентные 3s электроны могут занимать любое состояние в пределах этой зоны. Уровни 1s и 2s могут расщепиться только при r < r 0 и в химической связи не участвуют. Связь осуществляется коллективом валентных электронов, энергетические состояния которых образуют общую зону, полученную в результате перекрывания.



В зоне разрешенных энергий , образованной валентными уровнями, будет 8N состояний (число s -состояний 2N ; число р -состояний 6N ). У атома один валентный электрон, поэтому в этой зоне будет находиться N электронов, занимающих состояния в соответствии с принципом Паули и принципом наименьшей энергии. Следовательно, часть состояний в зоне свободна.

Кристаллы, у которых зона, образованная уровнями валентных электронов, частично заполнена, относятся к металлам. Эта зона называется зоной проводимости.

Полупроводники и диэлектрики

Рассмотрим энергетическую структуру полупроводников и диэлектриков на при мере типичного полупроводника - кристаллического кремния (Z = 14), электронная формула которого . При образовании кристаллической решетки, начиная с некоторого межатомного расстояния r 1 > r 0 (r 0 – равновесное межатомное расстояние в кристалле) происходит sp 3 -гибридизация электронных состояний кремния, что приводит не просто к перекрыванию 3s и 3р зон, а к их слиянию и образованию единой 3sp 3 гибридной валентной зоны (рис. 59), в которой максимально возможное число электронов 8N . В кристаллическом кремнии каждый атом образует 4 тетраэдрические связи, достраивая свою валентную оболочку до восьми электронов. Вследствие этого в валентной зоне все 8N состояний заняты. Таким образом, у полупроводников и диэлектриков зона, образованная уровнями валентных электронов - валентная зона (ВЗ) - полностью заполнена. Следующая вакантная 4s -зона не перекрывается с валентной зоной при межатомном расстоянии r 0 , а отделена от нее зоной запрещенных энергий (ЗЗ). Электроны, находящиеся в валентной зоне участвовать в проводимости не могут, так как все состояния в зоне заняты. Для того, чтобы в кристалле появился ток, необходимо перевести электроны из валентной зоны в следующую свободную зону разрешенных энергий. Первая свободная разрешенная зона, расположенная выше валентной зоны, называется зоной проводимости (ЗП). Энергетический промежуток между дном зоны проводимости и потолком валентной зоны называется шириной запрещенной зоны W g .



В зависимости от ширины запрещенной зоны все кристаллические тела делятся на три класса:

1. металлы - ˆ0,1 эВ;

2. полупроводники - ;

3. диэлектрики - ‰4 эВ.

Соответственно тела имеют такие значения удельного сопротивления:

1. металлы - ρ = 10 -8 10 -6 Ом·м;

2. полупроводники - ρ = 10 -6 10 8 Ом·м;

3. диэлектрики - ρ >10 8 Ом·м.

При температуре Т = 0 полупроводники являются диэлектриками, но с ростом температуры их сопротивление резко уменьшается. У диэлектриков при нагревании раньше происходит плавление, чем возникает электронная проводимость.

Энергетический спектр электронов в твердом теле существенно отличается от энергетического спектра свободных электронов (являющегося непрерывным) или спектра электронов, принадлежащих отдельным изолированным атомам (дискретного с определенным набором доступных уровней) - он состоит из отдельных разрешенных энергетических зон, разделенных зонами запрещенных энергий.

Согласно квантово-механическим постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (электрон находится на одной из орбиталей). В случае же системы нескольких атомов, объединенных химической связью, электронные орбитали расщепляются в количестве, пропорциональном количеству атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического уровня, количество орбиталей становится очень велико, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой - энергетические уровни расщепляются до двух практически непрерывных дискретных наборов - энергетических зон.

Наивысшая из разрешенных энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной, следующая за ней - зоной проводимости. В проводниках зоной проводимости называется наивысшая разрешенная зона, в которой находятся электроны при температуре 0 К. Именно по принципу взаимного расположения этих зон все твердые вещества и делят на три большие группы (см. рис.):

  • проводники - материалы, у которых зона проводимости и валентная зона перекрываются (нет энергетического зазора), образуя одну зону, называемую зоной проводимости (таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию);
  • диэлектрики - материалы, у которых зоны не перекрываются и расстояние между ними составляет более 3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят);
  • полупроводники - материалы, у которых зоны не перекрываются и расстояние между ними (ширина запрещенной зоны) лежит в интервале 0,1–3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые полупроводники слабо пропускают ток).

Зонная теория является основой современной теории твердых тел. Она позволила понять природу и объяснить важнейшие свойства металлов, полупроводников и диэлектриков. Величина запрещенной зоны (энергетическая щель между зонами валентности и проводимости) является ключевой величиной в зонной теории и определяет оптические и электрические свойства материала. Например, в полупроводниках проводимость можно увеличить, создав разрешенный энергетический уровень в запрещенной зоне путем легирования - добавления в состав исходного основного материала примесей для изменения его физических и химических свойств. В этом случае говорят, что полупроводник примесный. Именно таким образом создаются все полупроводниковые приборы: солнечные элементы, диоды, твердотельные и др. Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного - электрона, и положительного - дырки), а обратный переход - процессом рекомбинации.

Зонная теория имеет границы применимости, которые исходят из трех основных предположений: а) потенциал кристаллической решетки строго периодичен; б) взаимодействие между свободными электронами может быть сведено к одноэлектронному самосогласованному потенциалу (а оставшаяся часть рассмотрена методом теории возмущений); в) взаимодействие с фононами слабое (и может быть рассмотрено по теории возмущений).

Иллюстрации


Автор

  • Разумовский Алексей Сергеевич

Изменения внесены

  • Наймушина Дарья Анатольевна

Источники

  1. Физический энциклопедический словарь. Т. 2. - М.: Большая Российская энциклопедия, 1995. - 89 с.
  2. Гуров В. А. Твердотельная электроника. - М.: Техносфера, 2008. - 19 с.

Первые шаги аттофизики

Магнитные структуры в кристаллических и аморфных веществах: Необходимые условия для возникновения упорядоченных магнитных структур в твердых телах

Автоэлектронная эмиссия

Новости физики в банке препринтов

Аморфные и стеклообразные полупроводники

Сканирующая туннельная микроскопия - новый метод изучения поверхности твердых тел: picture4

Наноэлектроника - основа информационных систем XXI века: Квантовое ограничение

Оже-эффект

Прецизионная Фотометрия: 2922

Роль вторичных частиц при прохождении ионизирующих излучений через биологические среды: Черняев А.П., Варзарь С.М., Тултаев А.В.

Сканирующая туннельная микроскопия - новый метод изучения поверхности твердых тел: Атомная реконструкция поверхностей; структура

Квантовые ямы, нити, точки. Что это такое?: picture1

Физика 2002: итоги года

Межатомное взаимодействие и электронная структура твердых тел: Зонная теория и переходы "металл-изолятор"

Антивещество

Квантовые ямы, нити, точки. Что это такое?: picture6

Акустический парамагнитный резонанс

Ядерный магнитный резонанс: Введение

Термояд: сквозь тернии к звездам. Часть 1: Машина, работающая в двух совершенно разных режимах

Зонная структура электронного энергетического спектра в твердых телах. Модели свободных и сильно связанных электронов

3.2. Зонная структура энергетического спектра в модели сильной связи

3.2.1. Формирование зонной структуры энергетического спектра.

Итак, при образовании связи между двумя атомами из двух атомных орбиталей образуются две молекулярных: связывающая и разрыхляющая с разными энергиями.

Посмотрим теперь, что происходит при образовании кристалла. Здесь возможны два различных варианта : когда при сближении атомов возникает металлическое состояние и когда возникает полупроводниковое или диэлектрическое состояние.

Металлическое состояние может возникнуть только в результате перекрытия атомных орбиталей и образования многоцентровых орбиталей, приводящих к полной или частичной коллективизации валентных электронов. Таким образом, металл, если исходить из концепции первоначально связанных атомных электронных орбиталей, можно представить как систему положительно заряженных ионов, объединенных в одну гигантскую молекулу с единой системой многоцентровых молекулярных орбиталей.

У переходных и редкоземельных металлов кроме возникающей при коллективизации электронов металлической связи, могут существовать так же и ковалентные направленные связи между соседними атомами с полностью заполненными связывающими орбиталями.

Коллективизация электронов, обеспечивающая связь всех атомов в решетке, приводит при сближении атомов к 2N- кратному (с учетом спина) расщеплению атомных энергетических уровней и образованию зонной структуры электронного энергетического спектра.

Качественная иллюстрация изменения дискретных уровней энергии изолированных атомов () при уменьшении межатомного расстояния представлена на рисунке 30а, где показано расщепление энергетических уровней с образованием узких энергетических зон , содержащих 2N (с учетом спина) различных энергетических состояний (рис.30а).

Рис. 30.

Ширина энергетических зон (), как будет показано ниже, зависит от степени перекрытия волновых функций электронов соседних атомов или, другими словами, от вероятности перехода электрона к соседнему атому. В общем случае энергетические зоны разделены запрещенными интервалами энергий , называемыми запрещенными зонами (рис.30а).

При перекрытии s- и p- состояний образуется несколько "связывающих" и "разрыхляющих" зон. Металлическое состояние с этой точки зрения возникает в том случае, если есть зоны не полностью заполненные электронами. Однако, в отличие от слабой связи (модели почти свободных электронов), в данном случае нельзя рассматривать электронные волновые функции как плоские волны, что сильно усложняет процедуру построения изоэнергетических поверхностей. Характер преобразования волновых функций локализованных электронов в волновые функции блоховского типа, описывающие коллективизированные электроны, иллюстрируется на рисунке 30б,в.

Здесь следует еще раз подчеркнуть, что именно коллективизация электронов, то есть их возможность перемещаться в кристаллической решетке, приводит к расщеплению энергетических уровнейсвязанных состояний и образованию энергетических зон (рис 30в).

Полупроводниковое (и диэлектрическое) состояние обеспечивается направленными ковалентными связями. Практически все атомарные полупроводники имеют решетку типа алмаза, в которой каждая пара атомов имеет ковалентную -связь, образованную в результате sp 3 -гибридизации [Н.Е.Кузьменко и др., 2000 ]. На каждой sp 3 -орбитали, связывающей соседние атомы, находится два электрона, так что все связывающие орбитали полностью заполнены.

Заметим, что в модели локализованных связей между парами соседних атомов образование кристаллической решетки не должно приводить к расщеплению энергетических уровней связывающих орбиталей. В действительности, в кристаллической решетке образуется единая система перекрывающихся sp 3 -орбиталей, так как электронная плотность пары электронов на -связях сосредоточена не только в области пространства между атомами, но отлична от нуля и вне этих областей. В результате перекрытия волновых функций энергетические уровни связывающих и разрыхляющих орбиталей в кристалле расщепляются на узкие не перекрывающиеся зоны: полностью заполненную связывающую зону и расположенную выше по энергии - свободную разрыхляющую. Эти зоны разделены энергетической щелью.

При отличных от нуля температурах под действием энергии теплового движения атомов ковалентные связи могут разрываться, и освободившиеся электроны перебрасываются в верхнюю зону на разрыхляющие орбитали, на которых электронные состояния не являются локализованными. Таким образом, происходит делокализация связанных электронов и образование определенного числа, в зависимости от температуры и ширины запрещенной зоны, коллективизированных электронов. Коллективизированные электроны могут перемещаться в кристаллической решетке, образуя зону проводимости с соответствующим законом дисперсии. Однако теперь, также как в случае переходных металлов, движение этих электронов в решетке описывается не плоскими бегущими волнами, а более сложными волновыми функциями, учитывающими волновые функции связанных электронных состояний.

При возбуждении электрона с одной из ковалентных связей образуется дырка - незаполненное электронное состояние, которому приписывается заряд +q . В результате перехода какого-либо электрона с соседних связей в это состояние дырка исчезает, но одновременно появляется незаполненное состояние на соседней связи. Так дырка может перемещаться по кристаллу. Так же как и электроны делокализованные дырки формируют свой зонный спектр с соответствующим законом дисперсии. Во внешнем электрическом поле переходы электронов на свободную связь превалируют в направлении против поля, так что дырки перемещаются вдоль поля, создавая электрический ток. Таким образом, при термическом возбуждении в полупроводниках возникает два типа носителей тока - электроны и дырки. Их концентрация зависит от температуры, что характерно для полупроводникового типа проводимости.

Литература : [У.Харрисон, 1972 , гл. II, 6,7; Д.Г.Кнорре и др., 1990 ; К.В.Шалимова, 1985 , 2.4; Дж.Займан и др., 1972 , гл.8, 1]

3.2.2. Волновая функция электрона в кристалле

В модели сильной связи волновую функцию электрона в кристалле можно представить как линейную комбинацию атомных функций :


где r - радиус-вектор электрона, r j - радиус-вектор j -ого атома решетки.

Поскольку волновая функция коллективизированных электронов в кристалле должна иметь блоховский вид (2.1), то коэффициент С _{ j} при атомной функции на j -ом узле кристаллической решетки должен иметь вид фазового множителя , то есть

пропорциональна Т : n ~T. Следовательно, коэффициент теплопроводности должен быть обратно пропорционален температуре, что качественно согласуется с опытом. При температурах ниже дебаевскойl практически не зависит отТ , и теплопроводность целиком определяется зависимостью отТ теплоемкости кристаллаС V ~ T 3 . Поэтому при низких температурахλ ~T 3 . Характерная зависимость теплопроводности от температуры представлена на рисунке 9.

В металлах помимо решеточной теплопроводности необходимо учитывать также и теплопроводность за счет переноса теплоты свободными электронами. Именно ею объясняется высокая теплопроводность металлов по сравнению неметаллами.

3. Электронная структура кристаллов.

3.1.Движение электронов в периодическом поле. Зонная структура энергетического спектра электронов в кристалле. Функции Блоха. Дисперсионные кривые. Эффективная масса.

В твердом теле расстояния между атомами сравнимы с их размерами. Поэтому электронные оболочки соседних атомов частично перекрываются между собой и по крайней мере валентные электроны каждого атома оказываются в достаточно сильном поле соседних атомов. Точное описание движения всех электронов с учетом кулоновского взаимодействия электронов друг с другом и с атомными ядрами представляет собой чрезвычайно сложную задачу даже для отдельного атома. Поэтому обычно используется метод самосогласованного поля, в котором задача сводится к описанию движения каждого отдельного электрона в поле эффективного потенциала, создаваемого атомными ядрами и усредненным полем остальных электронов.

Рассмотрим вначале структуру энергетических уровней кристалла, исходя из приближения сильной связи , в котором предполагается, что энергия связи электрона со своим атомом значительно превышает кинетическую энергию его перемещения от атома к атому. При больших расстояниях между атомами каждый из них обладает системой узких энергетических уровней, соответствующих связанным состояниям электрона с ионом. При сближении атомов ширина и высота потенциальных барьеров между ними уменьшается, и благодаря туннельному эффекту электроны получают возможность переходить от

одного атома к другому, что сопровождается расширением энергетических уровней и превращением их в энергетические зоны .(Рис. 10). В особенности это касается слабо связанных валентных электронов, которые получают возможность легко перемещаться по кристаллу от атома к атому, и в определенной степени становятся похожими на свободные электроны. Электроны более глубоких энергетических уровней значительно сильнее связаны каждый со своим атомом. Они образуют узкие энергетические зоны с широкими интервалами запрещенных энергий. На рис. 10 условно представлены потенциальные кривые и энергетические уровни для кристалла Na. Общий характер энергетического спектра электронов в зависимости от межъядерного расстояния, d, представлен на рисунке 11. В ряде случаев верхние уровни уширяются настолько сильно, что соседние энергетические зоны перекрываются между собой. На рис. 11 это имеет место при d = d1 .

Исходя из соотношения неопределенностей Гейзенберга – Бора, ширина энергетической зоны, ∆ε , связана с временемτ пребывания электрона в определенном узле решетки соотношением:∆ε τ > h. Вследствие туннельного эффекта электрон может просачиваться сквозь потенциальный барьер. Согласно оценке, при межатомном расстоянии d ~ 1Aτ ~ 10 -15 c, и следовательно∆ε ~ h/τ ~ 10 -19 Дж ~ 1 эВ, т.е. ширина запрещенной зоны составляет порядка одного или нескольких эВ. Если кристалл состоит из N атомов, то каждая энергетическая зона состоит из N подуровней. В кристалле размером 1 см3 содержится N~ 1022 атомов. Следовательно, при ширине зоны ~ 1 эВ расстояние между подуровнями составляет ~ 10 -22 эВ, что значительно меньше энергии теплового движения в нормальных условиях. Это расстояние столь ничтожно, что в большинстве случаев зоны можно считать практически непрерывными.

В идеальном кристалле ядра атомов расположены в узлах кристаллической решетки, образуя строго периодическую структуру. В соответствии с этим, потенциальная энергия электрона, V(r ) , также периодически зависит от пространственных координат, т.е. обладаеттрансляционной симметрией :

решетки, a i (i = 1,2,3,…) – векторы основных трансляций.

Волновые функции и уровни энергии в периодическом поле (1) определяются посредством решения уравнения Шредингера

представляющих собой произведение уравнения плоской бегущей волны, ei kr на периодический множитель,u k (r) = u k (r + a n ), с периодом решетки. Функции (3) называютсяфункциями Блоха .

При V(r ) = 0 уравнение (2) имеет решение в виде плоской волны:

где m – масса частицы. Зависимость энергии E от волнового числак изображаетсядисперсионной кривой . Согласно (5), в случае свободного электрона – это парабола. По аналогии со свободным движением, векторk в уравнении (3) называется волновым вектором, аp = h k – квазиимпульсом.

В приближении слабой связи рассматривается движение почти свободных электронов, на которые действует возмущающее поле периодического потенциала ионных остовов. В отличие от свободного движения, в периодическом поле V(r ) уравнение (2) имеет решенияне при всех значенияхЕ . Области разрешенных энергий чередуются с зонами запрещенных энергий. В модели слабой связи это объясняется брэгговским отражением электронных волн в кристалле.

Рассмотрим этот вопрос подробнее. Условие максимального отражения электронных волн в кристалле (условие Вульфа – Брэгга) определяется формулой (17) ч.I. Учитывая, что G = n g, отсюда получим:

Рассмотрим систему конечных интервалов, не содержащих значений k, удовлетворяющих соотношению (7):

{ - n g /2

Область изменения к в трехмерномk – пространстве, даваемая формулой

(8) для всех возможных направлений, определяет границы n – ой зоны Бриллюэна. В пределах каждой зоны Бриллюэна (n= 1,2,3,…) энергия электрона является непрерывной функциейk, а на границах зон она терпит разрыв. Действительно, при выполнении условия (7) амплитуды падающей,

ψ k (r ) = uk (r) ei kr

и отраженной,

ψ -k (r) = u - k (r) e -i kr

волн будут одинаковы, u k (r) = u -k (r). Эти волны дают два решения уравнения Шредингера:

Эта функция описывает скопление отрицательного заряда на положительных ионах, где потенциальная энергия – наименьшая. Аналогично, из формулы (9b) получаем:

ρ 2 (r) = |ψ 2 (r)|2 =4 u g/2 2 (r)sin 2 (gr/2)

Эта функция описывает такое распределение электронов, при котором они располагаются преимущественно в областях, соответствующих серединам расстояний между ионами. При этом потенциальная энергия будет больше. Функции ψ 2 будет соответствовать энергия Е2 > E1 .

запрещенных зон шириной Eg . Энергия Е`1 определяет верхнюю границу первой зоны, а энергия Е2 – нижнюю границу второй зоны. Это означает, что при распространении электронных волн в кристаллах возникают области значений энергии, для которых не существует решений уравнения Шредингера, имеющих волновой характер.

Поскольку характер зависимости энергии от волнового вектора существенным образом влияет на динамику электронов в кристалле, представляет интерес рассмотреть для примера простейший случай линейной цепочки атомов, расположенных на расстоянии а один от другого вдоль оси x. В этом случае g = 2π /a. На рисунке 12 представлены дисперсионные кривые для трех первых одномерных зон Бриллюена: (-

π/ a < k <π /a), (-2π /a < k < -π /a; π/ a < k < 2π /a), (-3π/ a < k < -2π /a; 2π /a < k < 3π /a). К запрещенным зонам относятся области энергии Е`1 < E < E2 , E`2 <

E < E3 и т.д.

На рис. 12 представлена расширенная зонная схема , в которой различные энергетические зоны размещены вк – пространстве в различных зонах Бриллюена. Однако, всегда возможно, а часто и удобно, выбрать волновой векторк так, чтобы конец его оказался лежащим внутри первой зоны Бриллюена. Запишем функцию Блоха в виде:

лежать в первой зоне Бриллюена. Подставляя к в формулу (11), получим:

имеет вид функции Блоха с блоховским множителем (13). Индекс n теперь указывает номер энергетической зоны, к которой принадлежит данная функция. Процедура приведения произвольного волнового вектора к первой зоне Бриллюена получила название схемы приведенных зон . В этой схеме векторк принимает значения -g/2 < k < g/2 , но одному и тому же значениюк будут отвечать различные значения энергии, каждое из которых будет соответствовать одной из зон. На рисунке 13 представлена схема приведенных зон для одномерной решетки, соответствующая расширенной зонной схеме на рисунке 12.

Таким образом, существование энергетических запрещенных зон обусловлено брэгговским отражением электронных волн де Бройля от кристаллических плоскостей. Точки разрыва определяются условиями максимального отражения волн.

Согласно законам квантовой механики, поступательное движение электрона рассматривается как движение волнового пакета с волновыми векторами, близкими к вектору к . Групповая скорость волнового пакета,v , определяется выражением.

Самое ценное утверждение в современной физике, достаточное для понимания всех свойств твёрдых тел – гипотеза об их атомном строении.

Рассмотрим на основе атомной гипотезы представления о движении электронов в твёрдых телах.Естественно попытаться связать свойства твёрдого тела со свойствами одиночного атома. Свойства атома хорошо изучены экспериментально и теоретически интерпретированы квантовой механикой. Их можно суммировать следующим образом.

1. Электрон, движущийся вокруг атомного ядра, может находиться не в любом состоянии, а только в одном из так называемых стационарных состояний.

2.Стационарное состояние характеризуется определенной энергией и распределением электронной плотности. Совокупность энергий стационарных состояний образует энергетический спектр электрона в атоме. Энергетический спектр абсолютно индивидуален для каждого атома, это – своего рода дактилоскопический отпечаток. Распределение электронной плотности показывает, в каких областях вокруг атома электрон пребывает преимущественно, то есть с вероятностью, близкой к 1. Энергетический спектр принято изображать в виде энергетической диаграммы (рис.1.1). Состояние с минимальной энергией называется основным. Пребывающий в нём электрон находится ближе всего к ядру.

Рис.1.1. Энергетический спектр атома водорода.

электронные свойства кристалла определяются, как и свойства атома, двумя факторами – энергетическим спектром электронов в кристалле и их статистикой, то есть законом распределения по состояниям .

Структуру энергетического спектра кристалла качественно можно выяснить, исходя из спектра отдельного атома.

Представим себе N одинаковых атомов, удалённых на столь большие расстояния, что они никак не влияют друг на друга. Энергетический спектр такого ансамбля независимых атомов будет состоять из N совпадающих атомных спектров. Каждое атомное состояние будет одновременно и состоянием ансамбля. Такие состояния, энергии которых совпадают, называются N – кратно вырожденными .

Начнём сближать атомы. При некотором межатомном расстоянии станут заметными электростатические силы электрон-ядерного притяжения и электрон-электронного отталкивания. Суммарно будет преобладать притяжение, но отталкивание приведет к тому, что ранее совпадавшие атомные уровни энергии расщепятся на N отдельных уровней (рис.1.4). При достижении межатомного расстояния образуется кристалл. Дальнейшему сближению препятствуют большие силы отталкивания.

Рис.1.4. Образование энергетического спектра кристалла

Каждый атомный уровень превращается, таким образом, в зону разрешённых энергий электрона в кристалле шириной . Если сумма полуширин соседних зон меньше расстояния между соответствующими атомными уровнями то разрешённые зоны разделены запрещённой зоной . Если же сумма полуширин превышает расстояние между уровнями, то соседние разрешённые зоны перекрываются, образуя одну, более широкую, разрешённую зону.

Описанная картина образования энергетического спектра применима к кристаллам металлов, полупроводников и диэлектриков. К какому типу будет принадлежать конкретный кристалл, определяется числом электронов Z в атоме.

Если Z – чётное число, то Z/2 нижайших разрешённых зон будут полностью заполнены, а остальные – пусты. Термин “заполненная зона” следует понимать в том смысле, что в кристалле имеется ровно N электронов, обладающих энергиями, принадлежащими данной разрешённой зоне. Самая верхняя из заполненных зон называется валентной зоной, а следующая за ней пустая – зоной проводимости. Кристаллы с таким заполнением зон называются диэлектриками.

Поделитесь с друзьями или сохраните для себя:

Загрузка...