Вероятностно статистические методы. Статистические методы

Особенный интерес представляет количественная оценка предпринимательского риска при помощи методов математической статистики. Основными инструментами этого метода оценки являются:

§ вероятность появления случайной величины ,

§ математическое ожидание или среднее значение исследуемой случайной величины,

§ дисперсия ,

§ стандартное (среднеквадратическое) отклонение ,

§ коэффициент вариации ,

§ распределение вероятностей исследуемой случайной величины.

Для принятия решения нужно знать величину (степень) риска, которая измеряется двумя критериями:

1) среднее ожидаемое значение (математическое ожидание),

2) колебания (изменчивость) возможного результата.

Среднее ожидаемое значение это средневзвешенное значение случайной величины, которое связано с неопределенностью ситуации:

,

где значение случайной величины.

Среднее ожидаемое значение измеряет результат, который мы ожидаем в среднем.

Среднее значение является обобщенной качественной характеристикой и не позволяет принятия решения в пользу какого-нибудь отдельного значения случайной величины.

Для принятия решения необходимо измерить колебания показателей, то есть определить меру изменчивости возможного результата.

Колебание возможного результата представляет собой степень отклонения ожидаемого значения от средней величины.

Для этого на практике обычно используют два тесно связанных критерия: «дисперсия» и «среднеквадратическое отклонение».

Дисперсия – средневзвешенное из квадратов действительных результатов от среднего ожидаемого:

Среднеквадратическое отклонение – это квадратный кореньиз дисперсии. Оно является размерной величиной и измеряется в тех же единицах, в которых измеряется исследуемая случайная величина:

.

Дисперсия и среднеквадратическое отклонение служат мерой абсолютного колебания. Для анализа обычно используется коэффициент вариации.

Коэффициент вариации представляет собой отношение среднеквадратического отклонения к среднему ожидаемому значению , умноженное на 100%

или .

На коэффициент вариации не влияют абсолютные значения исследуемого показателя.

С помощью коэффициента вариации можно сравнивать даже колебания признаков, выраженных в разных единицах измерения. Коэффициент вариации может изменяться от 0 до 100%. Чем больше коэффициент, тем больше колебания.


В экономической статистике установлена такая оценка разных значений коэффициента вариации:

до 10% - слабое колебание, 10 – 25% - умеренное, свыше 25% - высокое.

Соответственно, чем выше колебания, тем больше риск.

Пример. Владелец небольшого магазина вначале каждого дня закупает для реализации некоторый скоропортящийся продукт. Единица этого продукта стоит 200 грн. Цена реализации – 300 грн. за единицу. Из наблюдений известно, что спрос на этот продукт на протяжении дня может быть 4, 5, 6 или 7 единиц с соответствующими вероятностями 0,1; 0,3; 0,5; 0,1. Если продукт на протяжении дня не будет реализован, то в конце дня его всегда купят по цене 150 грн. за единицу. Сколько единиц этого продукта должен закупить владелец магазина вначале дня?

Решение. Построим матрицу прибыли владельца магазина. Вычислим прибыль, которую получит владелец, если, например, он закупит 7 единиц продукта, а реализует на протяжении дня 6 и в конце дня одну единицу. Каждая единица продукта, реализованная на протяжении дня, дает прибыль в 100 грн., а в конце дня – потери 200 – 150 = 50 грн. Таким образом, прибыль в этом случае будет составлять:

Аналогично проводятся расчеты при других сочетаниях предложения и спроса.

Ожидаемая прибыль вычисляется как математическое ожидание возможных значений прибыли каждой строки построенной матрицы с учетом соответствующих вероятностей. Как видим, среди ожидаемых прибылей наибольшая равна 525 грн. Она соответствует закупке рассматриваемого продукта в количестве 6 единиц.

Для обоснования окончательной рекомендации о закупке необходимого количества единиц продукта вычислим дисперсию, среднеквадратическое отклонение и коэффициент вариации для каждого возможного сочетания предложения и спроса продукта (каждой строки матрицы прибыли):

400 0,1 40 16000
400 0,3 120 48000
400 0,5 200 80000
400 0,1 40 16000
1,0 400 160000
350 0,1 35 12250
500 0,3 150 75000
500 0,5 250 125000
500 0,1 50 25000
1,0 485 2372500
300 0,1 30 9000
450 0,3 135 60750
600 0,5 300 180000
600 0,1 60 36000
1,0 525 285750

Что касается закупки владельцем магазина 6 единиц продукта в сравнении с 5 и 4 единицами, то это неочевидно, поскольку риск при закупке 6 единиц продукта (19,2%) больше, чем при закупке 5 единиц (9,3%) и тем более, чем при закупке 4 единиц (0%).

Таким образом, имеем всю информацию об ожидаемых прибылях и рисках. И решать, сколько единиц продукта нужно закупить каждое утро владельцу магазина с учетом своего опыта, склонности к риску.

На наш взгляд, владельцу магазина следует рекомендовать каждое утро закупать 5 единиц продукта и его средняя ожидаемая прибыль будет равна 485 грн. и если сравнить это с закупкой 6 единиц продукта, при которой средняя ожидаемая прибыль составляет 525 грн., что на 40 грн. больше, но риск в этом случае будет большим в 2,06 раза.

Как используются теория вероятностей и математическая статистика ? Эти дисциплины - основа вероятностно-статистических методов принятия решений . Чтобы воспользоваться их математическим аппаратом, необходимо задачи принятия решений выразить в терминах вероятностно-статистических моделей. Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

  • переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений , в частности по результатам статистического контроля, и т.п.;
  • проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;
  • интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

Математическая статистика использует понятия, методы и результаты теории вероятностей. Рассмотрим основные вопросы построения вероятностных моделей принятия решений в экономических, управленческих, технологических и иных ситуациях. Для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам принятия решений нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какую исходную информацию необходимо иметь для его выбора и применения, какие решения должны быть приняты по результатам обработки данных и т.д.

Примеры применения теории вероятностей и математической статистики . Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим инструментом для решения управленческих, производственных, экономических, народнохозяйственных задач. Так, например, в романе А.Н. Толстого "Хождение по мукам" (т.1) говорится: "мастерская дает двадцать три процента брака, этой цифры вы и держитесь, - сказал Струков Ивану Ильичу".

Встает вопрос, как понимать эти слова в разговоре заводских менеджеров, поскольку одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Наверное, Струков имел в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит "примерно"? Пусть из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000-300, или из 100000-30000 и т.д., надо ли обвинять Струкова во лжи?

Или другой пример. Монетка, которую используют как жребий, должна быть "симметричной", т.е. при ее бросании в среднем в половине случаев должен выпадать герб, а в половине случаев - решетка (решка, цифра). Но что означает "в среднем"? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает гербом. Для симметричной монеты это будет происходить в 20,5% серий. А если на 100000 бросаний окажется 40000 гербов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики.

Рассматриваемый пример может показаться недостаточно серьезным. Однако это не так. Жеребьевка широко используется при организации промышленных технико-экономических экспериментов, например, при обработке результатов измерения показателя качества (момента трения) подшипников в зависимости от различных технологических факторов (влияния консервационной среды, методов подготовки подшипников перед измерением, влияния нагрузки подшипников в процессе измерения и т.п.). Допустим, необходимо сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах, т.е. в маслах состава и . При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло состава , а какие - в масло состава , но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения.

Ответ на этот вопрос может быть получен с помощью жребия. Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, делается выборка . По результатам контроля выборки делается заключение обо всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е. необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

Аналогичные проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства , оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т.п. Всюду нужна жеребьевка или подобные ей процедуры. Поясним на примере выявления наиболее сильной и второй по силе команд при организации турнира по олимпийской системе (проигравший выбывает). Пусть всегда более сильная команда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал тогда и только тогда, когда до финала у нее не будет игр с будущим чемпионом. Если такая игра будет запланирована, то вторая по силе команда в финал не попадет. Тот, кто планирует турнир, может либо досрочно "выбить" вторую по силе команду из турнира, сведя ее в первой же встрече с лидером, либо обеспечить ей второе место , обеспечив встречи с более слабыми командами вплоть до финала. Чтобы избежать субъективизма, проводят жеребьевку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4/7. Соответственно с вероятностью 3/7 вторая по силе команда покинет турнир досрочно.

При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т.п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической присутствует и случайная погрешность .

Поэтому встает вопрос, как по результатам измерений узнать, есть ли систематическая погрешность . Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к предыдущей. Действительно, сопоставим измерение с бросанием монеты, положительную погрешность - с выпадением герба, отрицательную - решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается). Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты.

Целью этих рассуждений является сведение задачи проверки отсутствия систематической погрешности к задаче проверки симметричности монеты. Проведенные рассуждения приводят к так называемому "критерию знаков" в математической статистике.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов, принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений , на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу , например, (вспомните слова Струкова из романа А.Н. Толстого).

Задачи оценивания . В ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа - задачи оценки характеристик и параметров распределений вероятностей.

Рассмотрим пример. Пусть на контроль поступила партия из N электроламп. Из этой партии случайным образом отобрана выборка объемом n электроламп. Возникает ряд естественных вопросов. Как по результатам испытаний элементов выборки определить средний срок службы электроламп и с какой точностью можно оценить эту характеристику? Как изменится точность , если взять выборку большего объема? При каком числе часов можно гарантировать, что не менее 90% электроламп прослужат и более часов?

Предположим, что при испытании выборки объемом электроламп дефектными оказались электроламп. Тогда возникают следующие вопросы. Какие границы можно указать для числа дефектных электроламп в партии, для уровня дефектности и т.п.?

Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества , как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса - дисперсию, среднее квадратическое отклонение или коэффициент вариации . Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров можно привести очень много. Здесь важно было показать, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

Что такое "математическая статистика" ? Под математической статистикой понимают "раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала" [ [ 2.2 ] , с. 326]. При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

  • одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;
  • многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);
  • статистика случайных процессов и временных рядов, где результат наблюдения - функция;
  • статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первыми появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика . Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность , обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно- статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В. Гнеденко (1912-1995) и другие отечественные ученые.

Коротко об истории математической статистики . Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов , созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера). Его именем часто называют одно из наиболее популярных распределений вероятностей - нормальное, а в теории случайных процессов основной объект изучения - гауссовские процессы.

В конце XIX в. - начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К. Пирсон (1857-1936) и Р.А. Фишер (1890-1962). В частности, Пирсон разработал критерий "хи-квадрат" проверки статистических гипотез, а Фишер - дисперсионный анализ , теорию планирования эксперимента, метод максимального правдоподобия оценки параметров.

В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э. Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В. Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.

Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований [ [ 2.16 ] ]:

  • разработка и внедрение математических методов планирования экспериментов;
  • развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;
  • развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;
  • широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.

Вероятностно-статистические методы и оптимизация . Идея оптимизации пронизывает современную прикладную математическую статистику и иные статистические методы . А именно - методы планирования экспериментов, статистического приемочного контроля, статистического регулирования технологических процессов и др. С другой стороны, оптимизационные постановки в теории принятия решений , например, прикладная теория оптимизации качества продукции и требований стандартов, предусматривают широкое использование вероятностно-статистических методов, прежде всего прикладной математической статистики.

В производственном менеджменте, в частности, при оптимизации качества продукции и требований стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее. Статистические методы должны применяться на всех этапах решения задачи оптимизации - при шкалировании переменных, разработке математических моделей функционирования изделий и систем, проведении технических и экономических экспериментов и т.д.

В задачах оптимизации, в том числе оптимизации качества продукции и требований стандартов, используют все области статистики. А именно - статистику случайных величин, многомерный статистический анализ , статистику случайных процессов и временных рядов, статистику объектов нечисловой природы. Выбор статистического метода для анализа конкретных данных целесообразно проводить согласно рекомендациям [

Часть 1. Фундамент прикладной статистики

1.2.3. Суть вероятностно-статистических методов принятия решений

Как подходы, идеи и результаты теории вероятностей и математической статистики используются при принятии решений?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя. Например, по вероятности выпадения герба можно рассчитать вероятность того, что при 10 бросаниях монет выпадет не менее 3 гербов. Подобный расчет опирается на вероятностную модель, согласно которой бросания монет описываются схемой независимых испытаний, кроме того, выпадения герба и решетки равновозможны, а потому вероятность каждого из этих событий равна ½. Более сложной является модель, в которой вместо бросания монеты рассматривается проверка качества единицы продукции. Соответствующая вероятностная модель опирается на предположение о том, что контроль качества различных единиц продукции описывается схемой независимых испытаний. В отличие от модели с бросанием монет необходимо ввести новый параметр – вероятность р того, что единица продукции является дефектной. Модель будет полностью описана, если принять, что все единицы продукции имеют одинаковую вероятность оказаться дефектными. Если последнее предположение неверно, то число параметров модели возрастает. Например, можно принять, что каждая единица продукции имеет свою вероятность оказаться дефектной.

Обсудим модель контроля качества с общей для всех единиц продукции вероятностью дефектности р . Чтобы при анализе модели «дойти до числа», необходимо заменить р на некоторое конкретное значение. Для этого необходимо выйти из рамок вероятностной модели и обратиться к данным, полученным при контроле качества. Математическая статистика решает обратную задачу по отношению к теории вероятностей. Ее цель – на основе результатов наблюдений (измерений, анализов, испытаний, опытов) получить выводы о вероятностях, лежащих в основе вероятностной модели. Например, на основе частоты появления дефектных изделий при контроле можно сделать выводы о вероятности дефектности (см. теорему Бернулли выше). На основе неравенства Чебышева делались выводы о соответствии частоты появления дефектных изделий гипотезе о том, что вероятность дефектности принимает определенное значение.

Таким образом, применение математической статистики опирается на вероятностную модель явления или процесса. Используются два параллельных ряда понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, «находятся в головах исследователей», относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин «генеральная совокупность» используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют «анализ данных». По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий, один из которых соответствует вероятностным моделям, а второй – выборочным данным. К сожалению, в ряде литературных источников, обычно устаревших либо написанных в рецептурном духе, не делается различия между выборочными и теоретическими характеристиками, что приводит читателей к недоумениям и ошибкам при практическом использовании статистических методов.

Предыдущая

Явления жизни, как и вообще все явления материального мира, имеют две неразрывно связанные стороны: качественную, воспринимаемую непосредственно органами чувств, и количественную, выражаемую числами при помощи счета и меры.

При исследовании различных явлений природы применяют одновременно и качественные и количественные показатели. Несомненно, что только в единстве качественной и количественной сторон наиболее полно раскрывается сущность изучаемых явлений. Однако в действительности приходится пользоваться либо теми, либо другими показателями.

Несомненно, что количественные методы как более объективные и точные имеют преимущество перед качественной характеристикой предметов.

Сами по себе результаты измерений, хотя и имеют известное значение, еще недостаточны для того, чтобы сделать из них необходимые выводы. Цифровые данные, собранные в процессе массовых испытаний – это всего лишь сырой фактический материал, который нуждается в соответствующей математической обработке. Без обработки – упорядочения и систематизации цифровых данных не удается извлечь заключенную в них информацию, оценить надежность отдельных суммарных показателей, убедиться в достоверности наблюдаемых между ними различий. Эта работа требует от специалистов определенных знаний, умения правильно обобщать и анализировать собранные в опыте данные. Система этих знаний и составляет содержание статистики – науки, занимающейся главным образом вопросами анализа результатов исследований в теоретической и прикладной областях науки.

Следует иметь ввиду, что математическая статистика и теория вероятностей являются науками сугубо теоретическими, абстрактными; они изучают статистические совокупности безотносительно к специфике входящих в их состав элементов. Методы математической статистики и лежащей в ее основе теории вероятностей приложимы к самым различным областям знания, включая и гуманитарные науки.

Изучение явлений проводятся не по отдельным наблюдениям, которые могут оказаться случайными, нетипичными, неполно выражающими сущность данного явления, а на множестве однородных наблюдений, что дает более полную информацию об изучаемом объекте. Некоторое множество относительно однородных предметов, объединяемых по тому или иному признаку для совместного изучения, называют статистической

совокупностью. Совокупность объединяет какое-то число однородных наблюдений или регистраций.

Элементы, входящие в состав совокупности, называются ее членами, или вариантами. Варианты – это отдельные наблюдения или числовые значения признака. Так, если обозначить признак через Х (большое), то его значения или варианты будут обозначаться через х (малое), т.е. х 1 , х 2 , и т.д.

Общее число вариантов, входящих в состав данной совокупности называется ее объемом и обозначается буквой n (малое).

Когда обследованию подвергается вся совокупность однородных объектов в целом, ее называют общей, генеральной, совокупностью Примером такого рода сплошного описания совокупности могут служить общегосударственные переписи населения, поголовный статистический учет животных в стране. Разумеется, полное обследование генеральной совокупности дает наиболее полноценную информацию о ее состоянии и свойствах. Поэтому естественно стремление исследователей к тому, чтобы в в совокупность объединялось как можно большее число наблюдений.

Однако в действительности редко приходится прибегать к обследованию всех членов генеральной совокупности. Во-первых, потому, что эта работа требует большой затраты времени и труда, а во-вторых, она не всегда осуществима по целому ряду причин и различных обстоятельств. Так что вместо сплошного обследования генеральной совокупности изучению подвергается обычно какая-то ее часть, получившая название выборочной совокупности, или выборки. Она представляет собой тот образец, по которому судят о всей генеральной совокупности в целом. Например, чтобы узнать средний рост призывного населения некоторой области или района, вовсе не обязательно измерять всех призывников, проживающих в данной местности, а достаточно измерить какую-то часть их.

1. Выборка должна быть вполне представительной, или типичной, т.е. чтобы в ее состав входили преимущественно те варианты, которые наиболее полно отражают генеральную совокупность. Поэтому, чтобы приступить к обработке выборочных данных, их внимательно просматривают и удаляют явно нетипичные варианты. Например, при анализе стоимости продукции, выпускаемой предприятием, должна быть исключена стоимость в те периоды, когда предприятие не было в полной мере обеспечено комплектующими или сырьем.

2. Выборка должна быть объективной. При образовании выборки нельзя поступать по произволу, включать в ее состав только те варианты, которые кажутся типичными, а все остальные браковать. Доброкачественная выборка производится без предвзятых мнений, по методу жеребьевки или лотерии, когда ни один из вариантов генеральной совокупности не имеет никаких преимуществ перед остальными – попасть или не попасть в состав выборочной совокупности. Иными словами, выборка должна производиться по принципу случайного отбора, без влияний на ее состав.

3. Выборка должна быть качественно однородной. Нельзя включать в состав одной и той же выборки данные, полученные в разных условиях, например, стоимость изделий, полученных при разной численности работников.

6.2. Группировка результатов наблюдений

Обычно результаты опытов и наблюдений заносятся в виде цифр в учетные карточки или журнал, а иногда просто на листы бумаги – получается ведомость или реестр. Такие первоначальные документы, как правило содержат сведения не об одном, а о нескольких признаках, по которым проводились наблюдения. Эти документы служат основным источником образования выборочной совокупности. Делается это обычно так: на отдельный лист бумаги из первичного документа, т.е. картотеки, журнала или ведомости, выписываются числовые значения того признака, по которому образуется совокупность. Варианты в такой совокупности представлены обычно в виде беспорядочной массы цифр. Поэтому первым шагом на пути обработки такого материала является упорядочение, систематизация его – группировка вариант в статистические таблицы или ряды.

Одной из наиболее распространенных форм группировок выборочных данных служат статистические таблицы. Они имеют иллюстративное значение, показывая какие-то общие итоги, положение отдельных элементов в общей серии наблюдений.

К другой форме первичной группировки выборочных данных относится способ ранжирования, т.е. расположение вариант в определенном порядке – по возрастающими или убывающим значениям признака. В результате получается так называемый ранжированный ряд, который показывает в каких пределах и каким образом варьирует данный признак. Например, имеется выборка следующего состава:

5,2,1,5,7,9,3,5,4,10,4,5,7,3,5, 9,4,12,7,7

Видно, что признак изменяется от 1 до 12 каких-то единиц. Располагаем варианты в возрастающем порядке:

1,2,3,3,4,4,4,5,5,5,5,7,7,7,7,9,9,10,12.,

В результате получился ранжированный ряд значений варьирующего признака.

Совершенно очевидно, что способ ранжирования в том виде, как он здесь показан, применим лишь к выборкам малого объема. При большом числе наблюдений ранжирование затрудняется, т.к. ряд получается настолько длинным, что теряет свое значение.

При большом числе наблюдений ранжировать выборочную совокупность принято в виде двойного ряда, т.е. с указанием частоты или повторяемости отдельных вариант ранжированного ряда. Такой двойной ряд ранжированных значений признака называется вариационным рядом или рядом распределения. Простейшим примером вариационного ряда могут служить ранжированные выше данные, если их расположить следующим образом:

Значения признака

(варианты) 1 2 3 4 5 7 9 10 12

повторяемость

(вариант) частоты 1 1 2 3 5 4 2 1 1

Вариационный ряд показывает, с какой частотой отдельные варианты встречаются в данной совокупности, как они распределяются, что имеет большое значение, позволяя судить о закономерности варьирования и диапазоне вариации количественных признаков. Построение вариационных рядов облегчает вычисление суммарных показателей – средней арифметической и дисперсии или рассеивания вариант около их среднего значения – показателей, которыми характеризуется любая статистическая совокупность.

Вариационные ряды бывают двух видов: прерывистые и непрерывные. Прерывистый вариационный ряд получается при распределении дискретных величин, к которым относятся счетные признаки. Если же признак варьирует непрерывно, т.е. может принимать любые значения в пределах от минимальной до максимальной вариант совокупности, то последняя распределяется в непрерывный вариационный ряд.

Для построения вариационного ряда дискретно варьирующего признака достаточно всю совокупность наблюдений расположить в виде ранжированного ряда, указав частоты отдельных вариантов. В качестве примера приводим данные, показывающие распределение по размеру 267 деталей (табл.5.4)

Таблица 6.1. Распределение деталей по размеру.

Чтобы построить вариационный ряд непрерывно варьирующих признаков, нужно всю вариацию от минимального до максимального варианта разбить на отдельные группы или промежутки (от-до), называемые классами, а затем распределить все варианты совокупности по этим классам. В результате получится двойной вариационный ряд, в котором частоты относятся уже не к отдельным конкретным вариантам, а ко всему интервалу, т.е. оказываются частотами не вариант, а классов.

Разбивка общей вариации на классы производится в масштабе классового интервала, который должен быть одинаковым для всех классов вариационного ряда. Величина классового интервала обозначается через i (от слова intervalum – промежуток, расстояние); она определяется по следующей формуле

, (6.1)

где: i – классовый интервал, который берется целым числом;

- максимальная и минимальная варианты выборки;

lg.n – логарифм числа классов, на которые разбивается выборочная совокупность.

Число классов устанавливается произвольно, но с учетом того обстоятельства, что число классов находится в некоторой зависимости от объема выборки: чем больший объем имеет выборочная совокупность, тем больше должно быть классов, и наоборот – при меньших объемах выборки следует брать и меньшее число классов. Опыт показал, что и на малых выборках, когда приходится группировать варианты в виде вариационного ряда, не следует устанавливать меньше 5-6 классов. При наличии же 100-150 вариант число классов можно довести до 12-15. Если же совокупность состоит из 200-300 вариант, то ее разбивают на 15-18 классов и т.д. Разумеется, эти рекомендации весьма условны и их нельзя принимать как установленное правило.

При разбивке на классы в каждом конкретном случаев приходится считаться с целым рядом различных обстоятельств, добиваясь того, чтобы обработка статистического материала давала наиболее точные результаты.

После того, как установлен классовый интервал и выборочная совокупность разбита на классы, производится разноска вариант по классам и определяются число вариаций (частоты) каждого класса. В результате получается вариационный ряд, в котором частоты относятся не к отдельным вариантам, а к определенным классам. Сумма всех частот вариационного ряда должна равняться объему выборки, то есть

(6.2)

где:
-знак суммирования;

р – частота.

n – объем выборки.

Если такого равенства не оказалось, значит при разноске вариант по классам допущена ошибка, которую необходимо устранить.

Обычно для разноски вариант по классам составляется вспомогательная таблица, в которой имеются четыре графы: 1) классы по данному признаку (от – до); 2) – среднее значение классов, 3) разноски вариант по классам, 4) частоты классов (см. табл. 6.2.)

Разноска вариант по классам требует большого внимания. Нельзя допускать, чтобы одна и та же варианта была отмечена дважды или одинаковые варианты попадали в разные классы. Чтобы избежать ошибок при распределении вариант по классам, рекомендуется не искать одинаковые варианты и в совокупности, а разносить их по классам, что не одно и то же. Игнорирование этого правила, что бывает в работе неопытных исследователей, отнимает много времени при разноске вариант, а главное, приводит к ошибкам.

Таблица 6.2. Разноска вариант по классам

Границы классов

Средние значения классов (х)

Частоты классов (р), %

абсолютные

относительные

Закончив разноску вариант и подсчитав их число для каждого класса, получаем непрерывный вариационный ряд. Его надо превратить в прерывистый вариационный ряд. Для этого, как уже отмечалось, берем полусуммы крайних значений классов. Так, например, срединное значение первого класса, равное 8,8 получено следующим образом:

(8,6+9,0):2=8,8.

Второе значение (9,3) этой графы вычислено аналогичным способом:

(9,01+9,59):2=9,3 и т.д.

В результате получается прерывистый вариационный ряд, показывающий распределение по изучаемому признаку (табл.6.3.)

Таблица 6.3. Вариационный ряд

Группировка выборочных данных в виде вариационного ряда имеет двоякое назначение: во-первых, как вспомогательная операция она необходима при вычислении суммарных показателей, а во-вторых, ряды распределения показывают закономерность варьирования признаков, что очень важно. Чтобы выразить эту закономерность более наглядно, принято изображать вариационные ряды графически в виде гистрограммы (рис.6.1.)


Рис.6.1.Распределение предприятий по числу работников

Гистограмма изображает распределение вариант при непрерывном варьировании признака. Прямоугольники соответствуют классам, а их высота – количеству вариант, заключенных в каждом классе. Если из срединных точек вершин прямоугольников гистограммы опустить перпендикуляры на ось абцисс, а затем эти точки соединить между собой, получится график непрерывного варьирования, называемый полигоном или плотностью распределения.

При проведении психолого-педагогических исследований важная роль отводится математическим методам моделирования процессов и обработки экспериментальных данных. К таким методам следует отнести, прежде всего, так называемые, вероятностно-статистические методы исследования. Это связано с тем, что на поведение как отдельного человека в процессе его деятельности, так и человека в коллективе существенное влияние оказывает множество случайных факторов. Случайность не позволяет описывать явления в рамках детерминированных моделей, т. к. проявляется, как недостаточная регулярность в массовых явлениях и, следовательно, не дает возможность с достоверностью предсказывать наступление определенных событий. Однако при изучении таких явлений обнаруживаются определенные закономерности. Нерегулярность, свойственная случайным событиям, при большом количестве испытаний, как правило, компенсируется появлением статистической закономерности, стабилизацией частот наступлений случайных событий. Следовательно, данные случайные события имеют определенную вероятность. Существуют два принципиально различающихся вероятностно-статистических метода психолого-педагогических исследований: классический и неклассический. Проведем сравнительный анализ этих методов.

Классический вероятностно-статистический метод. В основе классического вероятностно-статистического метода исследования лежат теория вероятностей и математическая статистика. Данный метод применяется при изучении массовых явлений случайного характера, он включает несколько этапов, основные из которых следующие.

1. Построение вероятностной модели реальности, исходя из анализа статистических данных (определение закона распределения случайной величины). Естественно, что закономерности массовых случайных явлений выражаются тем более отчетливо, чем больше объем статистического материала. Выборочные данные, полученные при проведении эксперимента, всегда ограничены и носят, строго говоря, случайный характер. В связи с этим важная роль отводится обобщению закономерностей, полученных на выборке, и распространению их на всю генеральную совокупность объектов. С целью решения этой задачи принимается определенная гипотеза о характере статистической закономерности, которая проявляется в исследуемом явлении, например, гипотеза о том, что исследуемое явление подчиняется закону нормального распределения. Такая гипотеза носит название нулевой гипотезы, которая может оказаться ошибочной, поэтому наряду с нулевой гипотезой еще выдвигается и альтернативная или конкурирующая гипотеза. Проверка того насколько полученные экспериментальные данные соответствуют той или иной статистической гипотезе осуществляется с помощью так называемых непараметрических статистических критериев или критериев согласия. В настоящее время широко используются критерии согласия Колмогорова, Смирнова, омега-квадрат и др. . Основная идея этих критериев состоит в измерении расстояния между функцией эмпирического распределения и функцией полностью известного теоретического распределения. Методология проверки статистической гипотезы строго разработана и изложена в большом количестве работ по математической статистике.

2. Проведение необходимых расчетов математическими средствами в рамках вероятностной модели. В соответствии с установленной вероятностной моделью явления проводятся вычисления характеристических параметров, например, таких как математическое ожидание или среднее значение, дисперсия, стандартное отклонение, мода, медиана, показатель асимметрии и др.

3. Интерпретация вероятностно-статистических выводов применительно к реальной ситуации.

В настоящее время классический вероятностно-статистический метод хорошо разработан и широко используется при проведении исследований в различных областях естественных, технических и общественных наук. Подробное описание сути данного метода и его применения к решению конкретных задач можно найти в большом количестве литературных источников, например в .

Неклассический вероятностно-статистический метод. Неклассический вероятно-статистический метод исследований отличается от классического тем, что он применяется не только к массовым, но и к отдельным событиям, имеющим принципиально случайный характер. Данный метод может быть эффективно использован при анализе поведения индивида в процессе выполнения той или иной деятельности, например, в процессе усвоения знаний учащимся . Особенности неклассического вероятностно-статистического метода психолого-педагогических исследований рассмотрим на примере поведения учащихся в процессе усвоения знаний.

Впервые вероятностно-статистическая модель поведения учащихся в процессе усвоения знаний была предложена в работе . Дальнейшее развитие этой модели было сделано в работе . Учение как вид деятельности, цель которого приобретение человеком знаний, умений и навыков, зависит от уровня развития сознания учащегося. В структуру сознания входят такие познавательные процессы, как ощущение, восприятие, память, мышление, воображение. Анализ этих процессов показывает, что им присущи элементы случайности, обусловленные случайным характером психического и соматического состояний индивида, а также физиологическим, психологическим и информационным шумами при работе головного мозга. Последнее привело при описании процессов мышления к отказу от использования модели детерминистской динамической системы в пользу модели случайной динамической системы . Это означает, что детерминизм сознания реализуется через случайность. Отсюда можно заключить, что знания человека, являющиеся фактически продуктом сознания, также имеют случайный характер, и, следовательно, для описания поведения каждого отдельного учащегося в процессе усвоения знаний может быть использован вероятностно-статистический метод.

В соответствии с этим методом учащийся идентифицируется функцией распределения (плотностью вероятности), определяющей вероятность нахождения его в единичной области информационного пространства. В процессе обучения функция распределения, с которой идентифицируется учащийся, эволюционируя, движется в информационном пространстве. Каждый учащийся обладает индивидуальными свойствами и допускается независимая локализация (пространственная и кинематическая) индивидов друг относительно друга.

На основе закона сохранения вероятности записывается система дифференциальных уравнений, представляющих собой уравнения непрерывности, которые связывают изменение плотности вероятности за единицу времени в фазовом пространстве (пространстве координат, скоростей и ускорений различных порядков) с дивергенцией потока плотности вероятности в рассматриваемом фазовом пространстве. В проведен анализ аналитических решений ряда уравнений непрерывности (функций распределения), характеризующих поведение отдельных учащихся в процессе обучения.

При проведении экспериментальных исследований поведения учащихся в процессе усвоения знаний используется вероятностно-статистическое шкалирование , в соответствии с которым шкала измерений представляет собой упорядоченную систему , где A - некоторое вполне упорядоченное множество объектов (индивидов), обладающих интересующими нас признаками (эмпирическая система с отношениями); Ly - функциональное пространство (пространство функций распределения) с отношениями; F - операция гомоморфного отображения A в подсистему Ly; G - группа допустимых преобразований; f - операция отображения функций распределения из подсистемы Ly на числовые системы с отношениями n-мерного пространства M. Вероятностно-статистическое шкалирование применяется для нахождения и обработки экспериментальных функций распределения и включает три этапа.

1. Нахождение экспериментальных функций распределения по результатам контрольного мероприятия, например, экзамена. Типичный вид индивидуальных функций распределения, найденных при использовании двадцатибалльной шкалы, представлен на рис. 1. Методика нахождения таких функций описана в .

2. Отображение функций распределения на числовое пространство. С этой целью проводится расчет моментов индивидуальных функций распределения. На практике, как правило, достаточно ограничиться определением моментов первого порядка (математического ожидания), второго порядка (дисперсии) и третьего порядка, характеризующего асимметрию функции распределения.

3. Ранжирование учащихся по уровню знаний на основе сравнения моментов различных порядков их индивидуальных функций распределения.

Рис. 1. Типичный вид индивидуальных функций распределения студентов, получивших на экзамене по общей физике различные оценки : 1 - традиционная оценка «2»; 2 - традиционная оценка «3»; 3 - традиционная оценка «4»; 4 - традиционная оценка «5»

На основе аддитивности индивидуальных функций распределения в найдены экспериментальные функции распределения для потока студентов (рис. 2).


Рис. 2. Эволюция полной функции распределения потока студентов, аппроксимированной гладкими линиями : 1 - после первого курса; 2 - после второго курса; 3 - после третьего курса; 4 - после четвертого курса; 5 - после пятого курса

Анализ данных, представленных на рис. 2, показывает, что по мере продвижения в информационном пространстве функции распределения расплываются. Это происходит вследствие того, что математические ожидания функций распределения индивидов движутся с разными скоростями, а сами функции расплываются из-за дисперсии. Дальнейший анализ данных функций распределения может быть проведен в рамках классического вероятностно-статистического метода.

Обсуждение результатов. Анализ классического и неклассического вероятностно-статистических методов психолого-педагогических исследований показал, что между ними имеется существенное отличие. Оно, как это можно понять из сказанного выше, заключается в том, что классический метод применим лишь к анализу массовых событий, а неклассический метод применим как к анализу массовых, так и одиночных событий. В связи с этим классический метод может быть условно назван массовым вероятностно-статистическим методом (МВСМ), а неклассический метод - индивидуальным вероятностно-статистическим методом (ИВСМ). В 4] показано, что ни один из классических методов оценки знаний учащихся в рамках вероятностно-статистической модели индивида не может быть применен для этих целей.

Отличительные особенности методов МВСМ и ИВСМ рассмотрим на примере измерения полноты знаний учащихся. С этой целью проведем мысленный эксперимент. Предположим, что имеется большое количество абсолютно одинаковых по психическим и физическим характеристикам учащихся, имеющих одинаковую предысторию, и пусть они, не взаимодействуя друг с другом, одновременно участвуют в одном и том же познавательном процессе, испытывая абсолютно одинаковое строго детерминированное воздействие. Тогда в соответствии с классическими представлениями об объектах измерения все учащиеся должны были бы получить одинаковые оценки полноты знаний с любой заданной точностью измерений. Однако в реальности при достаточно большой точности измерений оценки полноты знаний учащихся будут различаться . Объяснить такой результат измерений в рамках МВСМ не представляется возможным, т. к. исходно предполагается, что воздействие на абсолютно одинаковых невзаимодействующих между собой учащихся имеет строго детерминированный характер. Классический вероятностно-статистический метод не учитывает того, что детерминизм процесса познания реализуется через случайность, внутренне присущую каждому познающему окружающий мир индивиду.

Случайный характер поведения учащегося в процессе усвоения знаний учитывает ИВСМ. Применение индивидуального вероятностно-статистического метода для анализа поведения рассматриваемого идеализированного коллектива учащихся показало бы, что указать точно положение каждого учащегося в информационном пространстве нельзя, можно лишь говорить вероятности нахождения его в той или иной области информационного пространства. Фактически каждый учащийся идентифицируется индивидуальной функцией распределения, причем ее параметры, такие как математическое ожидание, дисперсия и др., индивидуальны для каждого учащегося. Это означает, что индивидуальные функции распределения будут находиться в разных областях информационного пространства. Причина такого поведения учащихся заключается в случайном характере процесса познания.

Однако в ряде случаев результаты исследований, добытые в рамках МВСМ, могут быть интерпретированы и в рамках ИВСМ. Предположим, что преподаватель при оценке знаний учащегося использует пятибалльную шкалу измерений. В этом случае погрешность в оценке знаний составляет ±0,5 балла. Следовательно, когда учащемуся выставляется оценка, например, 4 балла, это означает, что его знания находятся в промежутке от 3,5 баллов до 4,5 баллов. Фактически положение индивида в информационном пространстве в данном случае определяется прямоугольной функцией распределения, ширина которой равна погрешности измерения ±0,5 балла, а оценка является математическим ожиданием. Эта погрешность настолько большая, что не позволяет наблюдать истинный вид функции распределения. Однако, несмотря на столь грубую аппроксимацию функции распределения, изучение ее эволюции позволяет получить важную информацию, как о поведении отдельного индивида, так и коллектива учащихся в целом .

На результат измерения полноты знаний учащегося непосредственно или опосредовано влияет сознание преподавателя (измерителя), которому также свойственна случайность. В процессе педагогических измерений фактически имеет место взаимодействие двух случайных динамических систем, идентифицирующих поведение учащегося и преподавателя в данном процессе. В рассмотрено взаимодействие студенческой подсистемы с профессорско-преподавательской подсистемой и показано, что скорость движения математического ожидания индивидуальных функций распределения студентов в информационном пространстве пропорциональна функции воздействия профессорско-преподавательского коллектива и обратно пропорциональна функции инертности, характеризующей неподатливость изменению положения математического ожидания в пространстве (аналог закона Аристотеля в механике).

В настоящее время, несмотря на значительные достижения в разработке теоретических и практических основ измерений при проведении психолого-педагогических исследований, проблема измерений в целом еще далека от решения. Это связано, прежде всего, с тем, что до сих пор не имеется достаточной информации о влиянии сознания на процесс измерения. Аналогичная ситуация сложилась и при решении проблемы измерений в квантовой механике. Так, в работе при рассмотрении концептуальных проблем квантовой теории измерений говорится о том, что разрешить некоторые парадоксы измерений в квантовой механике «… вряд ли возможно без непосредственного включения сознания наблюдателя в теоретическое описание квантового измерения». Далее говорится, что «… непротиворечивым является предположение о том, что сознание может сделать вероятным некоторое событие, даже если по законам физики (квантовой механики) вероятность этого события мала. Сделаем важное уточнение формулировки: сознание данного наблюдателя может сделать вероятным, что он увидит это событие».

Поделитесь с друзьями или сохраните для себя:

Загрузка...