Системный подход в общественных науках. Что такое "системный подход"? Основные допущения системного подхода

Теория систем была впервые применена в точных науках и в технике. Применение теории систем в управлении в конце 50-х гг. XX в. явилось важнейшим вкладом школы науки управления. В развитии обеспечения качества на протяжении XX в. важнейшей базовой основой являлся системный подход. В последней версии стандартов ИСО серии 9000 один из принципов - системный подход к управлению деятельностью предприятия (организации).

Рассмотрим термины и определения понятия «система». В словаре русского языка дается такое толкование термина.

Система - множество элементов, находящихся в отношениях и связях друг с другом и образующих определенную целостность, единство .

Современный толковый словарь русского языка дает перевод с греческого и несколько различных толкований данного определения.

Система (от греч. systerna) - целое, составленное из частей соединение.

Также словари дают еще несколько вариантов этого определения:

  • определенный порядок, основанный на планомерном расположении и взаимной связи частей чего-либо;
  • устройство, структура, представляющие собой единство закономерно расположенных, взаимно связанных частей;
  • техническое устройство, представляющее совокупность взаимно связанных сооружений, машин, механизмов, служащих одной цели;
  • совокупность каких-либо элементов, единиц, частей, объединенных по общему признаку или назначению;
  • совокупность принципов, лежащих в основании какого-либо учения, мировоззрения и т.п.;
  • совокупность методов, приемов, правил осуществления чего- либо;
  • классификация, группировка;
  • форма, способ, принцип устройства, организации производства чего-либо.

Специалисты общего менеджмента дают следующее определение системы .

Система - некоторая целостность, состоящая из взаимозависимых частей, каждая из которых вносит свой вклад в характеристики целого.

Как следует из приведенных определений, понятие «система» достаточно многогранно. Применительно к управлению деятельностью организацией наиболее предпочтительным является понимание системы как взаимодействующих, взаимосвязанных частей (принципов, правил, методов и т.п.), составляющих (создающих) единую целостность.

Системы делят на два основных вида: закрытые и открытые . Закрытая система имеет жесткие фиксированные границы. Ее действия относительно независимы от среды, окружающей систему. Открытая система характеризуется взаимодействием с внешней средой. Энергия, информация, материалы - это объекты обмена с внешней средой через проницаемые границы системы. Такая система не являются самообеспечивающейся. Она зависит от объектов, поступающих извне. Кроме того, открытая система имеет способность приспосабливаться к изменениям во внешней среде и должна сделать это для того, чтобы продолжить свое функционирование. Пример организации как открытой системы показан на рис. 2.1 .

Рис. 2.1

Организация получает от окружающей среды информацию, материалы, финансы, человеческие ресурсы. Эти компоненты представляют собой входы в процесс преобразования. В процессе преобразования организация обрабатывает эти входы, преобразуя их в продукцию и (или) услуги. Продукция и (или) услуги являются выходами процесса организации, которые она передает в окружающую среду. Как реализуется процесс управления в такой системе, показано на рис. 2.2 .


Рис. 2.2.

Системный подход - направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, т.е. рассмотрение объекта как системы.

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи в целях их более эффективного использования.

Основные принципы системного подхода:

  • целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней;
  • иерархичность строения , т.е. наличие множества (по крайней мере двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой;
  • структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами ее отдельных элементов, сколько свойствами самой структуры;
  • множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.

Аспекты системного подхода

Системный подход - это подход, при котором любая система (объект) рассматривается как совокупность взаимосвязанных элементов (компонентов), имеющая выход (цель), вход (ресурсы), связь с внешней средой, обратную связь. Это наиболее сложный подход. Системный подход представляет собой форму приложения теории познания и диалектики к исследованию процессов, происходящих в природе, обществе, мышлении. Его сущность состоит в реализации требований общей теории систем, согласно которой каждый объект в процессе его исследования должен рассматриваться как большая и сложная система и одновременно как элемент более общей системы.

Развернутое определение системного подхода включает также обязательность изучения и практического использования следующих восьми его аспектов:

  • 1) системно-элементного или системно-комплексного, состоящего в выявлении элементов, составляющих данную систему. Во всех социальных системах можно обнаружить вещные компоненты (средства производства и предметы потребления), процессы (экономические, социальные, политические, духовные и т.д.) и идеи, научно осознанные интересы людей и их общностей;
  • 2) системно-структурного, заключающегося в выяснении внутренних связей и зависимостей между элементами данной системы и позволяющего получить представление о внутренней организации (строении) исследуемого объекта;
  • 3) системно-функционального, предполагающего выявление функций, для выполнения которых созданы и существуют соответствующие объекты;
  • 4) системно-целевого, означающего необходимость научного определения целей исследования, их взаимной увязки между собой;
  • 5) системно-ресурсного, заключающегося в тщательном выявлении ресурсов, требующихся для решения той или иной проблемы;
  • 6) системно-интеграционного, состоящего в определении совокупности качественных свойств системы, обеспечивающих ее целостность и особенность;
  • 7) системно-коммуникационного, означающего необходимость выявления внешних связей данного объекта с другими, т.е. его связей с окружающей средой;
  • 8) системно-исторического, позволяющего выяснить условия во времени возникновения исследуемого объекта, пройденные им этапы, современное состояние, а также возможные перспективы развития.

Практически все современные науки построены по системному принципу.

РОЛЬ СИСТЕМНОГО МЫШЛЕНИЯ В СИСТЕМНОЙ ИНЖЕНЕРИИ

Щукова Кристина Борисовна
Национальный исследовательский Томский политехнический университет


Аннотация
Системная инженерия - новая наука, которая зародилась в военной области при создании сложных систем. Постепенно методы системной инженерии стали применять в других областях для успешного создания систем на основе методов системной инженерии. В статье рассмотрены подходы к определению "системное мышление", роль системного мышления в системной инженерии. Изложены принципы и инструменты системного мышления. Описаны методологии мягких и жёстких систем.

THE ROLE OF SYSTEMS THINKING IN SYSTEMS ENGINEERING

Shchukova Kristina Borisovna
National Research Tomsk Polytechnic University


Abstract
The system engineering is the new branch of science that has been appeared in the military field while developing complicated systems. The methods of the system engineering had gradually become in other fields in order to develop successful systems. The paper considers the term "system thinking" and its role in system engineering. The basic principles and tools of system thinking are described. Besides, the metodologies of soft and hard systems are considered.

Термин «системный подход» и «системное мышление» получил широкое распространение в современной технической и научной литературе . Данная статья посвящена рассмотрению сущности, основных концепций, принципов и свойств системного подхода и мышления, а также примеров его использования в современном мире.

Взгляды на системный подход

Системный подход – это способ рассмотрения сложных проблем. Американский учёный в области теории систем Рассел Аккоф считал, что существует три способа рассмотрения проблем:

1. Проблемы могут быть решены частично. Для решения проблемы достаточно найти удовлетворительный ответ.

2. Проблемы могут быть устранены. Для устранения проблемы и достижения поставленных целей необходимо изменить ситуацию таким образом, чтобы проблема исчезла.

3. Проблемы могут быть решены полностью. Для решения проблемы необходимо найти точный ответ, так же как при решении уравнения.

В основном большая часть людей решает проблемы частично, зачастую имея дело с признаками проблемы, а не с ее корнями. Иногда они вынуждены принимать решения в отсутствии полных знаний о проблеме. Удовлетворительный ответ не рассматривается как плохой, более прагматичный. Иногда нахождение удовлетворительного решения проблемы приводит к увеличению знаний о реальной проблеме, что позволяет в дальнейшем найти более удовлетворительный ответ и еще больше расширить знания о проблеме, таким образом, достигая полного решения проблемы.

Некоторые системные инженеры выбирают третий способ рассмотрения проблемы. Они ищут наилучшее, или оптимальное решение сложной проблемы посредством достижения такого баланса между взаимодействующими компонентами и взаимосвязанными процессами системы решения сложных проблем, который позволяет получать наилучшие результаты.

Системный подход вошел почти в каждую сферу деятельности, включая социальные науки, науки о жизни, а также в биологию, где не существует альтернатив такому подходу. В частности, теория управления и организаций заимствовала системный подход .

Австрийский учёный Людвиг фон Берталанфи во введении к книге «Общая теория систем», написанной в 1968 году, охарактеризовал системный подход следующим образом: «Дана конкретная цель. Для нахождения способов и средств ее осуществления необходим системный специалист или группа специалистов, которые рассмотрят альтернативные решения и выберут оптимальное решение с минимальной стоимостью и максимальной эффективностью в огромных сложных системах взаимодействий». Он отнёс к системному подходу следующие элементы: теория классических систем (дифференциальные уравнения), компьютеризация и моделирование, теория классификаций, теория множеств, теория графов, теория сетей, кибернетика, теория информации, теория автоматов, теория игр, теория принятия решений, теория систем массового обслуживания и модели на естественном языке .

Роль системного подхода в современной науке

Современные исследования показывают, что системный подход играет важную роль в правильной постановке научных проблем. Однако, применение системного подхода в решении уже поставленных задач менее эффективно по сравнению с непосредственной постановкой задач. Это связано с отсутствием в системном подходе универсальных и эффективных методов решения проблем. Поэтому если рассматривать любое системное исследование, то системная постановка проблем в дальнейшем основывается на несистемных средствах исследования. Кроме того, системный подход играет незначительную роль в организации процесса исследования. Однако, значительный вклад системный подход вносит в решение задач, которые связаны с методологическим самосознанием науки и использованием методологических средств. Большая часть методологической литературы по системному подходу посвящена данной проблеме .

Системный подход в системной инженерии

Согласно сущность системного подхода заключается в определении и понимании сложных проблем и возможностей, синтезе возможных альтернатив; анализе и выборе наилучших альтернатив; реализации и утверждении решения, а также создании, использовании и поддержке инженерных системных решений. Активное участие заинтересованных лиц во всех видах деятельности системного подхода является ключом к успешности системного подхода. В контексте инженерных систем системный подход – это целостный подход, охватывающий весь жизненный цикл системы. Однако, он обычно применяется на стадиях разработки, функционирования и сопровождения жизненного цикла .

На рисунке 1 представлена высокоуровневая структура видов деятельности и принципов, объединенных на основе составляющих системного подхода. Успешные системные практики предполагают применение системного мышления не только для создаваемой системы, но также и для рассмотрения способа планирования и осуществления работ .

Рисунок 1. Системная инженерия и системное мышление

Системный подход тесно связан с системным мышлением и с тем, каким образом системное мышление помогает в руководстве системной деятельностью. В системном подходе система может рассматриваться в виде «холона» – такая сущность, которая сама по себе является целой системой, взаимодействующая с другими холонами во внешней среде.

Таким образом, системный подход может быть охарактеризован путем того, как рассматриваются проблемы, решения и непосредственный процесс разрешения проблем:

Он включает в себя следующее:

  • целостное рассмотрение проблем, установление границ проблемы путем понимания естественных взаимосвязей системы и попытки предотвращения нежелательных последствий;
  • создание решений, основанных на фундаментальных системных принципах, в частности создание структур системы, которые уменьшат сложность организации и число нежелательных возникающих свойств системы;
  • понимание, оценка и применение моделей как при рассмотрении проблемы, так и при создании ее решения, учитывая ограничения таких моделей и представлений .

Согласно выделяют следующие основные группы методологий:

  • методологии жёстких систем направлены на выбор эффективных средств для достижения заранее определенных и согласованных целей;
  • методологии мягких систем являются интерактивными и коллективными подходами, оказывающими помощь группам отдельных участников для облегчения интересующей сложной проблемной ситуации;
  • методологии критического системного мышления направлены на создание среды, в которой соответствующие мягкие и жёсткие методы могут применяться в зависимости от исследуемой ситуации .

Британский учёный Питер Чекленд предложил следующую классификацию методологии жёстких систем:

  • Системный анализ – это систематическая оценка затрат и других последствий выполнения определённого требования различными способами.
  • Системная инженерия – это совокупность видов деятельности, направленных на создание сложного техногенного объекта и (или) процедур, а также информационных потоков, связанных с его работой .

Изначально системная инженерия была направлена на создание, модификацию и поддержку жёстких систем. Впоследствии системная инженерия включила проблемно-ориентированное мышление и гибкие подходы к решению задач.

Во всех вышеуказанных жёстких методах может применяться системное мышление для обеспечения законченных и жизнеспособных решений, созданных как часть процесса оптимизации решения.

Мягкие системы и проблемно-ориентированные методы

Проблемно-ориентированные методы являются интерактивными подходами, оказывающими помощь группам из различных участников для того, чтобы облегчить интересующую сложную проблемную ситуацию .

Создание ряда жёстких и мягких методов обычно приводит к возникновению вопроса о том, какой метод применять в конкретных обстоятельствах. Критическое системное мышление направлено на решение данного вопроса .

Принципы системного мышления

Основные принципы системного мышления представлены в таблице 1.

Таблица 1. Основные принципы системного мышления

Название базового термина

Абстрактность Ориентация на основные характеристики играет важную роль в решении проблем, поскольку она позволяет игнорировать несущественные проблемы, таким образом, их упрощая.
Ограниченность Граница или оболочка позволяет изолировать систему от внешнего мира. Она служит для взаимодействия внутри системы, обеспечивая обмен с другими системами.
Изменяемость Изменения необходимы для роста и адаптации. Их следует принимать и планировать как часть естественного порядка вещей, а не избегать, игнорировать или запрещать.
Дуализм Необходимо понимать двойственности и рассмотреть, каким образом они должны или могут быть гармонизированы в контексте надсистемы.
Инкапсуляция Сокрытие внутренних частей системы и ее взаимодействий от внешней среды.
Эквифинальность В открытых системах одно и то же конечное состояние может быть достигнуто из различных начальных условий и различными способами. Такой принцип может использоваться, в том числе и для систем целевого назначения.
Целостность Система должна рассматриваться в качестве единого целого, а не только как набор отдельных частей.
Взаимодействие Свойства, возможности и поведение системы возникают из ее частей, взаимодействий между этими частями и с другими системами.
Уровневая иерархия Иерархичная структура сложных систем (в том числе и устойчивых промежуточных форм) способствует их эволюции, а их иерархическое описание помогает понять такие системы.
Эффект рычага Необходимо достичь максимального эффекта рычага. Благодаря достижению общего компромисса эффект рычага может быть достигнут посредством полного решения (эффективность) узкого класса проблем или при помощи частичного решения широкого класса проблем (универсальность).
Модульность Несвязанные части системы должны быть отделены, а связанные части системы должны быть сгруппированы вместе.
Сетевая структура Сетевая структура является одной из основных топологий систем, являющейся основой для объединения, связи, динамического взаимодействия частей, которые определяют поведение сложных систем.
Экономичность мышления Необходимо выбирать простейшее объяснение явления, для которого требуется наименьшее количество предположений. Это относится не только к выбору проектирования, но и операциям, а также требованиям.
Закономерность Системная наука должна уметь находить и устанавливать закономерности в системах, так как они способствуют пониманию систем и системной деятельности.
Связи Система характеризуется ее связями – взаимосвязями между элементами. Обратная связь является одной из таких типов связей. Совокупность связей определяет сетевую структуру системы.

Разделение проблем

Более крупную проблему можно решить эффективнее благодаря ее декомпозиции на ряд небольших проблем.

Сходства и различия

Как сходство, так и различия в системах должны признаваться и приниматься в их исходном виде. Необходимо избегать применения одного и того же подхода ко всем видам систем и рассмотрения любых объектов системы в качестве совершенно уникальных.

Стабильность и изменчивость

Системы меняются с разной скоростью, и сущности или концепции в устойчивом диапазоне могут или должны использоваться для обеспечения руководства быстро изменяющимися сущностями в неустойчивом диапазоне. Изучение сложных адаптивных систем может помочь в руководстве поведением системы и ее разработке в изменяющихся средах.
Синтез Системы могут быть созданы посредством правильного выбора (замысел, разработка, выбор) правильных частей, а также объединения их вместе для правильного взаимодействия и управления этими взаимодействиями, чтобы создать необходимые свойства целого с целью обеспечения их функционирования с оптимальной эффективностью в рабочей среде, таким образом, решая определенную проблему.
Представление Множество различных представлений, основанных на различных системных аспектах, играют важную роль в понимании сложной системы или проблемной ситуации. Важнейшим представлением является связь проблемы со свойствами целого.

Существуют инструменты системного мышления:

1. Нотация диаграмм причинности.

2. Диаграмма потоков и накопителей .

Диаграмма цикличной причинности является важным инструментом для представления структуры обратной связи систем. Данная диаграмма подходит для:

  • быстрого фиксирования гипотез о причинах динамики;
  • выявления и формирования ментальных моделей отдельных лиц или групп;
  • обсуждение важных обратных связей.

Причинно-следственная диаграмма состоит из переменных, связанных стрелками между собой, указывающими на причинно-следственную связь между ними. В диаграмме также присутствуют важные циклы обратной связи.

Каждой причинно-следственной связи соответствует полярность – положительная или отрицательная для указания того, каким образом меняется зависимая переменная при изменении независимых переменных.

Диаграммы цикличной причинности подходят для представления взаимозависимостей и процессов обратной связи.

Их эффективно использовать на начальном этапе проекта моделирования для получения ментальной модели. Однако, такие диаграммы имеют ряд ограничений. Главным ограничением таких диаграмм является отсутствие возможности получения структуры потоков и накопителей системы. Потоки и накопители, в том числе и обратная связь, являются центральными понятиями в динамической теории систем .

Структура накопителей и потоков состоит из следующих элементов:

  • Накопители представлены в виде прямоугольников.
  • Входящие потоки представлены в виде стрелки, направленной к накопителю.
  • Исходящие потоки изображаются в виде стрелок, направленных от накопителя.
  • Регуляторы контролирует потоки.
  • Облака представляют собой источники потоков .

Диаграммы влияния, а также цикличной причинности помогают в изучении сложности систем. Зачастую диаграмма влияния является эффективным средством для определения соответствующей системы для исследуемой проблемы.

Однако, в некоторых случаях диаграмма влияния не является подходящим инструментом для однозначного и точного определения структуры задачи принятия решения. В этом случае можно использовать другие виды диаграмм для более подробного рассмотрения проблемы и ее структуры .

Блок-схемы представляют еще один вид диаграмм, позволяющий представлять конкретные аспекты системы, в частности, логическую и временную последовательность некоторого процесса, операции или вида деятельности. Процесс может являться временным потоком материала, проходящим через систему. Он может отражать способ обработки и использования информации, временную последовательность, в которой должны выполняться задачи для завершения проекта, или логическую последовательность, а также проверки в процессе принятия сложных решений .


Библиографический список
  1. И. В. Блауберг, Э.Г. Юдин. Становление и сущность системного подхода. – М.: Наука, 1973. – 271 с
  2. Guide to the Systems Engineering Body of Knowledge. Systems Thinking [Электронный ресурс]. URL: http://sebokwiki.org/wiki/Systems_Thinking (дата обращения: 21.12.2015).
  3. Leveson. Engineering To A Safer World. Systems Thinking Applied to Safety. – The MIT Press Cambridge, 2011. – 555 p.
  4. Alexander Kossiakoff, William N. Sweet, Samuel J. Seymour, Steven M. Biemer. Systems Engineering: Principles and Practices. – John Willey & Sons, 2011. – 559 p.
  5. Derek K. Hitchins. Systems Engineering. A 21 st Century Systems Methodology. – John Willey & Sons, 2007. – 532 p.
  6. John Boardman, Brian Sauser. Systems Thinking: Coping With 21st Century Problems. – CRC Press Taylor & Francis Group, 2004 – 242 p.
  7. Lars Skyttner. General Systems Theory. – World Scientific Publishing, 2005. – 535 p.
  8. John D. Sterman. Business Dynamics Systems Thinking and Modeling for a Complex World. – The MIT Press, McGraw-Hill Companies, 2000. – 1008 p.
  9. Hans G. Daellenbach, Donald C. McNickl. Management Science. Decision Making Through System Thinking. – PALGRAVE MACMILLAN. – 2005, 615 p.

Системный подход

Системный подход - направление методологии научного познания, в основе которого лежит рассмотрение объекта как системы: целостного комплекса взаимосвязанных элементов (И. В. Блауберг, В. Н. Садовский, Э. Г. Юдин); совокупности взаимодействующих объектов (Л. фон Берталанфи); совокупности сущностей и отношений (Холл А. Д., Фейджин Р. И., поздний Берталанфи).

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, «Правильно заданный вопрос - половина ответа». Это качественно более высокий, нежели просто предметный, способ познания.

Основные принципы системного подхода

  • Целостность , позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.
  • Иерархичность строения , то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.
  • Структуризация , позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.
  • Множественность , позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.
  • Системность , свойство объекта обладать всеми признаками системы.

Основные определения системного подхода

Основоположниками системного подхода являются: Л. фон Берталанфи , А. А. Богданов , Г.Саймон , П.Друкер , А.Чандлер.

  • Система - совокупность взаимосвязанных элементов, образующих целостность или единство.
  • Структура - способ взаимодействия элементов системы посредством определенных связей (картина связей и их стабильностей).
  • Процесс - динамическое изменение системы во времени.
  • Функция - работа элемента в системе.
  • Состояние - положение системы относительно других её положений.
  • Системный эффект - такой результат специальной переорганизации элементов системы, когда целое становится больше простой суммы частей.
  • Структурная оптимизация - целенаправленный итерационный процесс получения серии системных эффектов с целью оптимизации прикладной цели в рамках заданных ограничений. Структурная оптимизация практически достигается с помощью специального алгоритма структурной переорганизации элементов системы. Разработана серия имитационных моделей для демонстрации феномена структурной оптимизации и для обучения.

Основные допущения системного подхода

  1. В мире существуют системы
  2. Системное описание истинно
  3. Системы взаимодействуют друг с другом, а, следовательно, всё в этом мире взаимосвязано
  4. Следовательно мир - это тоже система

Аспекты системного подхода

Системный подход - это подход, при котором любая система (объект) рассматривается как совокупность взаимосвязанных элементов (компонентов), имеющая выход (цель), вход (ресурсы), связь с внешней средой, обратную связь. Это наиболее сложный подход. Системный подход представляет собой форму приложения теории познания и диалектики к исследованию процессов, происходящих в природе, обществе, мышлении. Его сущность состоит в реализации требований общей теории систем, согласно которой каждый объект в процессе его исследования должен рассматриваться как большая и сложная система и, одновременно, как элемент более общей системы.

Развернутое определение системного подхода включает также обязательность изучения и практического использования следующих восьми его аспектов:

  1. системно-элементного или системно-комплексного, состоящего в выявлении элементов, составляющих данную систему. Во всех социальных системах можно обнаружить вещные компоненты (средства производства и предметы потребления), процессы (экономические, социальные, политические, духовные и т. д.) и идеи, научно-осознанные интересы людей и их общностей;
  2. системно-структурного, заключающегося в выяснении внутренних связей и зависимостей между элементами данной системы и позволяющего получить представление о внутренней организации (строении) исследуемой системы;
  3. системно-функционального, предполагающего выявление функций, для выполнения которых созданы и существуют соответствующие системы;
  4. системно-целевого, означающего необходимость научного определения целей и подцелей системы, их взаимной увязки между собой;
  5. системно-ресурсного, заключающегося в тщательном выявлении ресурсов, требующихся для функционирования системы, для решения системой той или иной проблемы;
  6. системно-интеграционного, состоящего в определении совокупности качественных свойств системы, обеспечивающих её целостность и особенность;
  7. системно-коммуникационного, означающего необходимость выявления внешних связей данной системы с другими, то есть, её связей с окружающей средой;
  8. системно-исторического, позволяющего выяснить условия во времени возникновения исследуемой системы, пройденные ею этапы, современное состояние, а также возможные перспективы развития.

Практически все современные науки построены по системному принципу. Важным аспектом системного подхода является выработка нового принципа его использования - создание нового, единого и более оптимального подхода (общей методологии) к познанию, для применения его к любому познаваемому материалу, с гарантированной целью получить наиполное и целостное представление об этом материале.

См. также

Литература

  • А. И. Ракитов «Философские проблемы науки: Системный подход» Москва: Мысль, 1977 г. 270с.
  • В. Н. Садовский «Системный подход и общая теория систем: статус, основные проблемы и перспективы развития» Москва: Наука, 1980 г.
  • Системные исследования. Ежегодник. Москва: Наука, 1969-1983.
  • Философско-методологические исследования технических наук.- Вопросы философии, 1981, № 10, с. 172-180.
  • И. В. Блауберг , В. Н. Садовский, Э. Г. Юдин «Системный подход в современной науке»- В кн.: Проблемы методологии системных исследований. М.: Мысль, 1970, с. 7-48.
  • И. В. Блауберг , В. Н. Садовский, Э. Г. Юдин «Философский принцип системности и системный подход» -Вопр. философии, 1978, № 8, с. 39-52.
  • Г. П. Щедровицкий «Принципы и общая схема методологической организации системно-структурных исследований и разработок» - М.: Наука, 1981, с. 193-227.
  • В. А. Лекторский, В. Н. Садовский «О принципах исследования систем

(в связи с „общей теорией систем“ Л. Берталанфи)» - Вопр. философии, 1960, № 8, с. 67-79.

  • Савельев А. В. Онтологическое расширение теории функциональных систем // Журнал проблем эволюции открытых систем, Казахстан, Алматы, 2005, № 1(7), c. 86-94.
  • Савельева Т. С., Савельев А. В. Трудности и ограничения системного подхода в науке о мозге // в сб. материалов XI Междунар. конференции по нейрокибернетике «Проблемы нейрокибернетики». Ростов-на-Дону, 1995, с. 208-209.

Ссылки

  • Агошкова Е.Б., Ахлибининский Б.В. Эволюция понятия системы // Вопросы философии . - 1998. - № 7. - С. 170-179.
  • Сидоров С. В. Правила реализации системного подхода в управлении развивающейся школой // Электронный журнал «Знание. Понимание. Умение » . - 2010. - № 2 - Педагогика . Психология .
  • Системный подход // Большая Советская Энкциклопедия .
  • Джозеф О"Коннор Искусство системного мышления . - 2008.
  • Джозеф О`Коннор, Иан Макдермотт Искусство системного мышления: Необходимые знания о системах и творческом подходе к решению проблем = The Art of Systems Thinking: Essential Skills for Creativity and Problem Solving // «Альпина Паблишер» . - М ., 2011. - № 978-5-9614-1589-6.

Wikimedia Foundation . 2010 .

Смотреть что такое "Системный подход" в других словарях:

    Направление методологии специально науч. познания и социальной практики, в основе которого лежит исследование объектов как систем. С. п. способствует адекватной постановке проблем в конкретных науках и выработке эффективной стратегии их… … Философская энциклопедия

    системный подход - СИСТЕМНЫЙ ПОДХОД направление философии и методологии науки, специально научного познания и социальной практики, в основе которого лежит исследование объектов как систем. С. п. ориентирует исследование на раскрытие целостности объекта и… … Энциклопедия эпистемологии и философии науки

    СИСТЕМНЫЙ ПОДХОД - направление методологии научного познания и социальной практики, в основе которого лежит исследование объекта как системы. Системный подход способствует адекватной постановке проблем в конкретных науках и выработке эффективной стратегии их… … Экологический словарь

    В культурологии методол. основа культурологии как науки. Направлен на интеграцию исследоват. материала, накопленного разл. областями гуманитарного знания, занимающимися изучением культуры (философия культуры, теория культуры,… … Энциклопедия культурологии

    СИСТЕМНЫЙ ПОДХОД - совокупность способов рассмотрения связей и целостности сложных систем. С. п. является предметом специальной научной дисциплины общей теории систем. Управление может быть определено как упорядочение системы. С. п. (или системный анализ) появился… … Российская энциклопедия по охране труда

    системный подход - Исследование функциональных и структурных взаимосвязей природных явлений, рассматриваемых в качестве системы, в которой определяются границы, возможности использования, а также положение и роль в следующей по рангу природной системе. Syn.:… … Словарь по географии

    Направление методологии научного познания и социальной практики, в основе которого лежит рассмотрение объектов как систем; ориентирует исследование на раскрытие целостности объекта, на выявление многообразных типов связей в нем и сведение их в… … Большой Энциклопедический словарь

    Англ. Systemanalyse; нем. Systemmethode. Направление методологии научного исследования, в основе к рого лежит рассмотрение сложного объекта как целостного множества элементов в совокупности отношений и связей между ними. Antinazi. Энциклопедия… … Энциклопедия социологии

    СИСТЕМНЫЙ ПОДХОД - СИСТЕМНЫЙ ПОДХОД. Метод научного познания, в основе которого лежит рассмотрение объектов как систем; предполагает анализ явлений как сложного единства, не сводимого к простой сумме элементов. С. п. пришел на смену широко распространенной в… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    Направление методологии научного исследования, в основе которого лежит рассмотрение сложного объекта как целостного множества элементов в совокупности отношений и связей между ними Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

Учреждение Образования «Белорусский Государственный Университет Информатики и Радиоэлектроники»

Кафедра философии

Системный Подход в Современной Науке и Технике

(реферат)

Иванов И.И.

аспирант кафедры ХХХ

Введение............................................................................................ 3

1 Понятие «система» и «системный подход»................................. 5

2 Онтологический смысл понятия «система»................................. 8

3 Гносеологический смысл понятия «система»............................. 10

4 Разработка сущности системы в естественных науках................ 12

5 «Система» и «системный подход» в наше время........................ 14

Заключение........................................................................................ 26

Литература........................................................................................ 29

Введение

Прошло более полувека системного движения, инициированного Л. фон Берталанфи. За это время идеи системности, понятие системы и системный подход получили всеобщее признание и широкое распространение. Созданы многочисленные системные концепции.

Пристальный анализ показывает, что множество рассматриваемых в системном дви­жении вопросов принадлежит не только науке, типа общей теории систем, но охватывают обширную область научного познания как такового. Системное движение затронуло все аспекты научной деятельности, а в его защиту выдвигается все большее число аргументов.

В основе системного подхода, как методологии научного познания, лежит исследование объектов как систем. Системный подход способствует адекватному и эффективному раскрытию сущности проблем и успешному их решению в различных областях науки и техники.

Системный подход направлен на выявление многообразных типов связи сложного объекта и сведения их в единую теоретическую картину.

В различных областях науки центральное место начинают занимать проблемы организации и функционирования сложных объектов, изучение которых без учета всех аспектов их функционирования и взаимодействия с остальными объектами и системами просто немыслимо. Более того, многие из таких объектов представляют сложное объединение различных подсистем, каждая из которых в свою очередь тоже является сложным объектом.

Системный подход не существует в виде строгих методологических концепций. Он выполняет свои эвристические функции, оставаясь совокупностью познавательных принципов, основной смысл которых состоит в соответственном ориентировании конкретных исследований.

Преимуществами системного подхода прежде всего является то, что он расширяет область познания по сравнению с той, что существовала раньше. Системный подход, основываясь на поиске механизмов целостности объекта и выявления технологии его связей, позволяет по-новому объяснить сущность многих вещей. Широта принципов и основных понятий системного подхода ставит их в тесную связь с другими методологическими направлениями современной науки.

1 Понятие «система» и «системный подход»

Как указано выше, - в настоящее время системный подход используется практически во всех областях науки и техники: кибернетике, для анализа различных биологических систем и систем воздействия человека на природу, для построения систем управления транспортом, космическими полетами, различных систем организации и управления производством, теории построения информационных систем, во множестве других, и даже в психологии.

Биология явилась одной из первых наук, в которой объекты исследования начали рассматриваться как системы. Системный подход в биологии предполагает иерархическое построение, где элементы - система (подсистема), которая взаимодействует с другими системами в составе большой системы (надсистемы). При этом последовательность изменений большой системы основывается на закономерностях в иерархически соподчи­ненной структуре, где «причинно-следственные связи прокатываются сверху вниз, задавая существенные свойства нижестоящим». Иными словами, исследуется все многообразие связей в живой природе, при этом на каждом уровне биологической организации выделяются свои особые ведущие связи. Представление о биологических объектах как о системах позволяет по-новому подойти к некоторым проблемам, таким как развитие некоторых аспектов проблемы взаимоотношения особи с окружающей средой, а также дает толчок неодарвиновской концепции, обозначаемой иногда как макроэволюция.

Если обратиться к социальной философии, то и здесь анализ основных проблем данной области приводит к вопросам об обществе как целостности, а точнее, - об его системности, о критериях членения исторической действительности, об элементах общества как системы.

Популярности системного подхода способствует стремительное увеличение числа разработок во всех областях науки и техники, когда исследователь, используя стандартные методы исследования и анализа физически не способен справиться с таким объемом информации. Отсюда следует вывод, что только используя системный принцип можно разобраться в логических связях между отдельными фактами, и только этот принцип позволит более успешно и качественно проектировать новые исследования.

При этом важность понятия «система» очень велика в современной философии, науке и технике. Наряду с этим в последнее время все больше возрастает потребность в выработке единого подхода к разнообразным системным исследованиям в современном научном познании. Большинство исследователей наверняка осознает, что все же существует некоторая реальная общность в этом многообразии направлений, которая должна вытекать из единого по­нимания системы. Однако реальность как раз состоит в том, что единого понимания системы до сих пор не выработано.

Если рассмотреть историю разработки определений понятия «система», можно увидеть, что каждое из них вскрывает все новую сторону из его богатого содержания. При этом выделяются две основные группы определений. Одна тяготеет к философскому осмы­слению понятия система, другая группа определений осно­вывается на практическом использовании системной методологии и тяготеет к выработке общенаучного понятия системы.

Работы в области теоретических основ системных исследований охватывают такие проблемы как:

· онтологические основания системных исследований объектов мира, системность как сущность мира;

· гносеологические основания системных исследований, системные принципы и уста­новки теории познания;

· методологические установления системного познания.

Смешение этих трех аспектов подчас создает ощущение противоречивости работ разных авторов. Этим же определяется противоречивость и множественность определений самого понятия «система». Одни авторы разрабатывают его в онтологическом смысле, другие - в гносеологическом, причем в разных аспектах гносеологии, третьи - в методологическом.

Вторая характерная черта системной проблематики состоит в том, что на всем протя­жении развития философии и науки в разработке и применении понятия «система» явно выделяются три направления: одно связано с использованием термина «система» и нестро­гим его толкованием: другое - с разработкой сущности системной концепции, однако, как правило, без использования этого термина: третье - с попыткой синтеза концепции системности с понятием «система» в его строгом определении.

При этом исторически всегда возникала двойственность толкования в зависимости от того с онтологических или гносеологических позиций ведется рассмотрение. Поэтому исходным основанием для выработки единой системной концепции, в том числе и понятия «система», является прежде всего разделение всех вопросов в историческом рассмотрении по принципу их принадлежности к онтологическим, гносеологическим и методологическим основаниям.

2 Онтологический смысл понятия «система»

При описании реальности в Древней Греции и фактически до XIX в. в науке не было четкого разделения между самой реальностью и ее идеальным, мысленным, рациональным представлением. Онтологический аспект реальности и гносеологический аспект знания об этой реальности отождествлялись в смысле абсолютного соответствия. Поэтому весьма длительное применение термина «система» имело ярко выраженный онтологический смысл.

В Древней Греции значение этого слова было связано, прежде всего, с социально-бытовой деятельностью и применялось в значении устройство, организация, союз, строй и т.п.. Далее этот же термин переносится на естественные объекты. Вселенную, филологические и музыкальные сочетания и т.д.

Важно то, что формирование понятия «система» из термина «система» идет через осознание целостности и расчлененности как естественных, так и искусственных объектов. Это и получило выражение в толковании системы как «целого, составленного из частей».

Фактически не прерываясь, эта линия осознания систем как целостных и одновременно расчлененных фрагментов реального мира идет через Новое время, философию Р. Декарта и Б. Спинозы, французских материалистов, естест­вознание XIX в., являясь следствием пространственно-механического видения мира, когда все другие формы реальности (свет, электромагнитные поля) рассматривались лишь как внешнее проявление пространственно-механических свойств этой реальности.

Фактически данный подход предусматривает некую первичную расчлененность целого, составленного в свою очередь из целостностей, разделенных (пространственно) уже самой природой и находящихся во взаимодействии. В этом же смысле широко используется термин «система» и в наши дни. Именно за этим пониманием системы закрепился термин материальная система как целостная совокупность мате­риальных объектов.

Другое направление онтологической линии предусматривает использование термина «система» для обозначения целостности, определяемой некоторой организующей общностью этого целого.

В онтологическом подходе можно выделить два направления: система как совокупность объектов и система как совокупность свойств.

В целом использование термина «система» в онтологическом аспекте малопродуктивно для дальнейшего изучения объекта. Онтологическая линия связала понимание системы с понятием «вещь», будь то «вещь органичная», либо «вещь, составленная из вещей». Главным недостатком в онтологической линии понимания системы является отождествление понятия «система» с объектом или просто с фрагментом действительности. На самом деле использование термина «система» применительно к материальному объекту некорректно, так как всякий фрагмент действительности имеет бесконечное число проявлений и его познание распадается на множество сторон. Поэтому даже для природно расчлененного объекта мы можем дать только общее указание на факт наличия взаимодействий, без их конкретизации, так как не выделено, какие свойства объекта участвуют во взаимодей­ствиях.

Онтологическое понимание системы как объекта не позволяет перейти к процессу познания, так как не дает методологии исследования. В связи с этим, понимание си­стемы исключительно в представленном аспекте ошибочно.

3 Гносеологический смысл понятия «система»

У истоков гносеологической линии находится древнегреческая философия и наука. Данное направление дало две ветви в разработке понимания системы. Одна из них связана с трактовкой системности самого знания, сначала философского, затем научного. Другая ветвь была связана с разработкой понятий «закон» и «закономерность» как ядра научного знания.

Принципы системности знания разрабатывались еще в древнегреческой философии и науке. По сути, уже Евклид строил свою геометрию как систему, и именно такое изложение ей придал Платон. Однако применительно к знанию термин «система» античной фи­лософией и наукой не использовался.

Хотя термин «система» был упомянут уже в 1600 г., никто из ученых того времени его не использовал. Серьезная разработка проблемы системности знания с осмыслением понятия «система» начинается лишь с XVIII века. В то время были выявлены три важнейших требования к системности знания, а значит, и признака системы:

· полноту исходных оснований (элементов, из которых выводятся остальные знания);

· выводимость (определяемость) знаний;

· целостность построенного знания.

Причем под системой знания это направление имело в виду не зна­ния о свойствах и отношениях реальности (все попытки онтологического понимания си­стемы забыты и исключены из рассмотрения), а как определенную форму организации знаний.

Гегель, при разработке универсальной системы знания и универсальной системы мира с позиций объективного идеализма, преодолел такое разграничение онтологической и гносеологической линий. В целом к концу XIX в. полностью отбрасываются онтологические основания познания, причем система порой рассматривается как результат деятельности субъекта познания.

В результате развития гносеологического направления с понятием «си­стема» оказались прочно связаны такие признаки, как целое, полнота и выводимость. Одновременно был подготовлен отход от понимания системы как глобального охвата мира или знания. Проблема системности знания постепенно сужается и трансформируется в проблему системности теорий, проблему полноты формальных теорий.

4 Разработка сущности системы в естественных науках

Не в философии, а в самой науке существовала гносеологическая линия, которая, разрабатывая сущность понимания системы, долгое время вообще не использовала этого термина.

С момента зарождения цель науки состояла в нахождении зависимостей между явлениями, вещами и их свойствами. Начиная с математики Пифагора, через Г. Галилея и И. Ньютона в науке формируется понимание того, что установление всякой закономерно­сти включает следующие шаги:

· нахождение той совокупности свойств, которые будут необходимы и достаточны, чтобы образовать некоторую взаимосвязь, закономерность;

· поиск вида математической зависимости между этими свойствами;

· установление повторяемости, необходимости этой закономерности.

Поиск того свойства, которое должно войти в закономерность, часто длился веками (если не сказать - тысячелетиями). Одновременно с поиском закономерностей всегда возникал вопрос об основаниях этих закономерностей. Со времен Аристотеля зависимость должна была иметь причинное основание, однако еще теоремы Пифагора содержали другое основание зависимости - взаимоотношение, взаимообусловленность величин, не содержащую причинного смысла.

Эта совокупность вошедших в закономерность свойств образует некоторую единую, целостную группу именно в силу того, что она обладает свойством вести себя детерминировано. Но тогда эта группа свойств обладает признаками системы и является не чем иным, как «системой свойств» - это название ей и будет дано в XX в. Только термин «система уравнений» давно и прочно вошел в научное употребление. Осознание всякой выделенной зависимости как системы свойств наступает при попытках дать определение понятию «система». Дж. Клир определяет систему как совокупность переменных, а в естественных науках традиционным становится определение динамической системы как системы описывающих ее уравнений.

Важно, что в рамках данного направления разработан важнейший признак системы – признак самоопределяемости, самодетерминации входящего в закономерность набора свойств.

Таким образом, в результате развития естественных наук были выработаны такие важнейшие признаки системы как полнота набора свойств и самодетерминированность этого набора.

5 «система» и «системный подход» в наше время

Гносеологическая линия истолкования системности знания, значительно разработав смысл понятия «система» и ряд его важнейших признаков, не вышла на путь понимания си­стемности самого объекта познания. Напротив, укрепляется положение, что система знания в любых дисциплинах образуется путем логического выведения, наподобие математики, что мы имеем дело с системой высказываний, имеющей гипотетико-дедуктивную основу. Это привело с учетом успехов математики к тому, что природа стала заменяться математи­ческими моделями. Возможности математизации определяли как выбор объекта исследо­вания, так и степень идеализации при решении задач.

Выходом из сложившейся ситуации явилась концепция Л. фон Берталанфи, с общей теории систем которого началось обсуждение мно­гообразия свойств «органичных целых». Систем­ное движение стало по сути своей онтологическим осмыслением свойств и качеств на разных уровнях организации и типов обеспечивающих их отношении, а Б.С. Флейшман положил в основу системологии упорядочение принципов усложняющегося поведения: от вещественно-энергетического баланса через гомеостаз к целенаправленности и перспективной активности.

Таким образом, происходит поворот к стремлению рассматривать объект во всей сложности, множественности свойств, качеств и их взаимосвязей. Соответственно образуется ветвь онтологических определений системы, которые трак­туют ее как объект реальности, наделенный определенными «системными» свойствами, как целостность, обладающую некоторой организующей общностью этого целого. Посте­пенно формируется употребление понятия «система» как сложного объекта, органи­зованной сложности. Одновременно с этим «математизируемость» перестает быть тем фильтром, который предельно упрощал задачу. Дж. Клир видит принципиальное отличие между классическими науками и «наукой о системах» в том, что теория систем формирует предмет исследования во всей полноте его естественных проявлений, не приспосабливая к возможностям формального аппарата.

Впервые обсуждение проблем системности явилось саморефлексией системных кон­цепций науки. Начинаются небывалые по размаху попытки осознать сущность общей теории систем, системного подхода, системного анализа и т.д. и прежде всего - выработать само понятие «система». При этом в отличие от многовекового интуитивного использования главной целью становятся методологические установления, которые должны вытекать из понятия «система».

В целом характерно, что в явном виде не предпринимаются попытки вывести из онтологического понимания системы ее гносеологическое понимание. Один из ярких представителей понимания системы как набора переменных, пред­ставляющих набор свойств, Дж. Клир, подчеркивает, что он оставляет в стороне вопрос о том, какими научными теориями, философией науки или унаследованным генетическим врожденным знанием определяется «осмысленный выбор свойств». Эта ветвь понимания системы как набора переменных дает начало математической теории систем, где понятие «система» вводится с помощью формализации и определяется в теоретико-множественных терминах.

Так постепенно складывается положение, что онтологическое и гносеологическое понимание системы переплетаются. В прикладных областях систему трактуют как «це­лостный материальный объект», а в теоретических областях науки системой называют набор переменных и совокупность дифференциальных уравнений.

Наиболее явной причиной невозможности достичь единого понимания системы являются отличия, которые связаны с ответом на следующие вопросы:

1. Относится ли понятие система

· к объекту (вещи) в целом (любому или специфическому),

· к совокупности объектов (природно или искусственно расчлененной),

· не к объекту (вещи), но к представлению объекта,

· к представлению объекта через совокупность элементов, находящихся в определенных отношениях,

· к совокупности элементов, находящихся в отношениях?

2. Выдвигается ли для совокупности элементов требование образовывать целостность, единство (определенную или не конкретизированную)?

3. Является ли «целое»

· первичным по отношению к совокупности элементов,

· производным от совокупности элементов?

4. Относится ли понятие система

· ко всему, что «различается исследователем как система»,

· только к такой совокупности, Которая включает специфический «системный» признак?

5. Все есть система или наряду с системами могут рассматриваться «не системы»?

В зависимости от того или иного ответа на данные вопросы получаем множество определений. Но если большое число авторов на протяжении 50 лет определяют систему через разные характеристики, то можно ли в их определениях все же усмотреть что-то общее? К какой группе понятий, к какой группе категорий относится понятие «система», если взглянуть на него с позиций множества существующих определений? Становится ясно, что все авторы говорят об одном и том же: через понятие система они стремятся отразить форму представления предмета научного познания. Причем в зависимости от этапа познания мы имеем дело с разными представлениями предмета, а значит, меняется и определение системы. Так, те авторы, которые хотят применить это понятие к «ор­ганичным целым», к «вещи» - относят его к выделенному объекту познания, когда предмет познания еще не выделен. Это со­ответствует самому первому акту познавательной деятельности.

Следующее определение с некоторыми оговорками отражает уже сам акт выделения предмета познания: «Понятие система стоит на самом верху иерархии понятий. Системой является все, что мы хотим рассматривать как систему...».

Далее, утверждение, что «система» - это список переменных... относя­щихся к некоторой главной проблеме, которая уже определена, позволяет перейти на следую­щий уровень, на котором выделена определенная сторона, срез объекта и совокупность характеризующих эту сторону свойств. Те, кому свойственно представление предмета познания в виде уравнений, приходят к определению системы через совокупность уравнений.

Тем самым множественность и разнообразие определений системы вызваны различием этапов формирования предмета научного познания.

Таким образом, можно сделать вывод, что система есть форма представления предмета научного познания. И в этом смысле она является фундаментальной и уни­версальной категорией. Все научное знание с момента его зарождения в Древней Греции строило предмет познания в виде системы.

Многочисленные дискуссии по поводу всех предлагавшихся определений, как правило, поднимали вопрос: кем и чем задаются эти важнейшие формирующие систему «системообразующие», «определенные», «ограничивающие» признаки? Оказывается, что ответ на эти вопросы общий, если учесть, что форма представления предмета познания должна соотноситься с самим объектом познания. Следовательно, именно объект определит то интегративное свойство (выделяемое субъектом), которое делает целостность «опре­деленной». Именно в этом смысле следует трактовать положение, что целое предшествует совокупности элементов. Отсюда следует, что определение системы должно включать не только совокупность, композицию из элементов и отношений, но и целостное свойство самого объекта, отно­сительно которого и строится система.

Принцип системности лежит в основе методологии, выражающий философские аспекты системного подхода и служащий основой изучения сущности и всеобщих черт системного знания, его гносеологических оснований и категориально-понятийного аппарата, истории системных идей и системоцентрических приемов мышления, анализа системных закономерностей различных областей объективной действительности. В реальном процессе научного познания конкретно-научного и философского направлений системные знания взаимодополняют друг друга, образуя систему знаний в системность. В истории познания выделение системных черт целостных явлений было связано с изучением отношений части и целого, закономерностей состава и структуры, внутренних связей и взаимодействий элементов, свойств интеграции, иерархии, субординации. Дифференциация научного знания порождает существенную потребность в системном синтезе знаний, в преодолении дисциплинарной узости, порожденной предметной или методологической специализацией знания.

С другой стороны, умножение разноуровневых и разнопорядковых знаний о предмете обусловливает необходимость в таком системном синтезе, который расширяет понимание предмета познания при исследовании все более глубоких оснований бытия и более системного изучения внешних взаимодействий. Важное значение имеет также и системный синтез разнообразных знаний, являющийся средством перспективного планирования, предвидения результатов практической деятельности, моделирования вариантов развития и их последствий и т. п.

Подводя итоги, видно, что в процессе человеческой деятельности принцип системности и следствия из него наполняются конкретным практическим содержанием, при этом реализация данного принципа может идти по следующим основным стратегическим направлениям.

1. Исследуются реально существующие объекты, рассматриваемые как системы, на основе системного подхода, путем выделения в этих объектах системных свойств и закономерностей, которые в дальнейшем могут быть изучены (отображены) частными методами конкретных наук.

2. На основе системного подхода, по априорному определению системы, уточняемому итерационно в процессе исследования, строится системная модель реального объекта. Эта модель в дальнейшем заменяет реальный объект в процессе исследования. При этом исследование системной модели может быть реализовано на основе как системологических концепций, так и частных методов конкретных наук.

3. Совокупность системных моделей, рассматриваемая отдельно от моделируемых объектов, сама может представлять собой объект научного исследования. При этом рассматриваются наиболее общие инварианты, способы построения и функционирования системных моделей, определяется область их применения.

Так, например, используем определение, представленное в : «Система» есть множество связанных между собой компонентов той или иной природы, упорядоченное по отношениям, обладающим вполне определенными свойствами; это множество характеризуется единством, которое выражается в интегральных свойствах и функциях множества. Соответственно отметим, что во-первых: любые системы состоят из исходных единиц – компонентов. В качестве компонентов системы могут рассматриваться объекты, свойства, связи, отношения, состояния, фазы функционирования, стадии развития. В рамках данной системы и на данном уровне абстракции компоненты представляются как неделимые, целостные и различимые единицы, то есть исследователь абстрагируется от их внутреннего строения, но сохраняет сведения об их эмпирических свойствах.

Составляющие систему объекты могут быть материальными (например, атомы, составляющие молекулы, клетки, составляющие органы) или идеальными (например, различные виды числа составляют элементы теоретической системы, называемой теорией чисел).

Свойства системы, специфичные для данного класса объектов могут стать компонентами системного анализа. Например, свойствами термодинамической системы могут быть температура, давление, объем, а напряженность поля, диэлектрическая проницаемость среды поляризация диэлектрика - по сути свойства электростатических систем. Свойства могут быть как изменяющимися, так и неизменными при данных условиях существования системы. Свойства могут быть внутренними (собственными) и внешними. Собственные свойства зависят только от связей (взаимодействий) внутри системы, это свойства системы «самой по себе». Внешние свойства актуально существуют лишь тогда, когда имеются связи, взаимодействия с внешними объектами (системами).

Связи изучаемого объекта также могут быть компонентами при его системном анализе. Связи имеют вещественно-энергетический, субстанциальный характер. Аналогично свойствам, связи могут быть внутренними и внешними для данной системы. Так, если мы описываем механическое движение тела как динамическую систему, то по отношению к этому телу связи имеют внешний характер. Если же рассмотреть более крупную систему из нескольких взаимодействующих тел, то те же механические связи следует считать внутренними по отношению к этой системе.

Отношения отличаются от связей тем, что не имеют ярко выраженного вещественно-энергетического характера. Тем не менее, их учет важен для понимания той или иной системы. Например, пространственные отношения (выше, ниже, левее, правее), временные (раньше, позже), количественные (меньше, больше).

Состояния и фазы функционирования используются при анализе систем, функционирующих на протяжении длительного промежутка времени, причем сам процесс функционирования (последовательность состояний во времени) познается путем выявления связей и отношений между различными состояниями. Примерами могут быть фазы сердечного ритма, сменяющие друг друга процессы возбуждения и торможения в коре головного мозга и др.

В свою очередь этапы, стадии, ступени, уровни развития выступают компонентами генетических систем. Если состояния и фазы функционирования относятся к поведению во времени системы, сохраняющей свою качественную определенность, то смена этапов развития связана с переходом системы в новое качество.

Во-вторых – между компонентами множества, образующего систему, существуют системообразующие связи и отношения, благодаря которым реализуется специфическое для системы единство. Система обладает общими функциями, интегральными свойствами и характеристиками, которыми не обладают ни составляющие её элементы, взятые по отдельности, ни простая «арифметическая сумма» элементов. Важной характеристикой внутренней целостности системы является ее автономность или относительная самостоятельность поведения и существования. По степени автономности можно в известной степени судить об уровне и степени их относительной организованности и самоорганизованности.

Важными характеристиками любых систем являются присущие им организация и структура, к которым привязывают математическое описание систем.

Чтобы подчеркнуть справедливость приведенных рассуждений воспользуемся определением, приведенным в работе , согласно которому: «Система – множество взаимосвязанных элементов, образующее единое целое».

Что касается относительности понятий «компонент» («элемент») и «система» («структура») то следует отметить, что любая система может, в свою очередь, выступать в качестве компонента или подсистемы другой системы. С другой стороны, компоненты, выступающие при анализе системы как нерасчлененные целые, при более детальном рассмотрении сами по себе проявляют себя как системы. В любом случае связи элементов внутри подсистемы сильнее, чем связи между подсистемами, и сильнее, чем связи между элементами, принадлежащими различным подсистемам. Существенно также то, что количество типов элементов (подсистем) ограничено, внутреннее разнообразие и сложность системы определяется, как правило, разнообразием межэлементных связей, а не разнообразием типов элементов.

При анализе любых систем важно выяснить характер связи подсистем, иерархических уровней внутри системы; в системе сочетаются взаимосвязь ее подсистем по одним свойствам и отношениям и относительная независимость по другим свойствам и отношениям. В самоуправляемых системах это выражается, в частности, в сочетании централизации деятельности всех подсистем с помощью центральной управляющей инстанции с децентрализацией деятельности уровней и подсистем, обладающих относительной автономностью.

Также следует учитывать, что сложная система - это результат эволюции более простой системы. Система не может быть изучена, если не изучен ее генезис.

Иначе говоря, познание того или иного объекта как системы должно включать в себя следующие основные моменты: 1) определение структуры и организации системы; 2) определение собственных (внутренних) интегральных свойств и функций системы; 3) определение функций системы как реакций на выходах в ответ на воздействие других объектов на входы; 4) определение генезиса системы, т.е. способов и механизмов ее образования, а для развивающихся систем - способов их дальнейшего развития.

Особенно важной характеристикой системы является ее структура. Унифицированное описание систем на структурном языке предполагает определенные упрощения и абстракции. Если при определении компонентов системы можно абстрагироваться от их строения, рассматривая их как нерасчлененные единицы, то следующий шаг заключается в отвлечении от эмпирических свойств компонентов, от их природы (физической, биологической и пр.) при сохранении различий по качеству.

Способы связи и виды отношений между компонентами системы зависят как от природы компонентов, так и от условий существования системы. Для понятия структуры специфичен особый и в то же время универсальный тип отношений и связей - отношения композиции элементов. Отношения порядка (упорядоченности) в системе существуют в двух видах: устойчивые и неустойчивые применительно к точно определенным условиям существования системы. Понятие структуры отображает устойчивую упорядоченность. Структура системы есть совокупность устойчивых связей и отношений, инвариантных по отношению к вполне определенным изменениям, преобразованиям системы. Выбор этих преобразований зависит от границ и условий существования системы. Структуры объектов (систем) того или иного класса описываются в виде законов их строения, поведения и развития.

Также отметим, что при удалении из системы одного или нескольких элементов структура может остаться неизменной, а система может сохранить свою качественную определенность (в частности, работоспособность). Удаленные элементы в некоторых случаях могут быть без ущерба заменены новыми, инокачественными. В этом проявляется преобладание внутренних структурных связей над внешними. Структура не существует как независимое от элементов организующее начало, а сама определяется составляющими ее элементами. Совокупность элементов не может сочетаться произвольным образом, следовательно, способ связи элементов (структура будущей системы) частично определяется свойствами элементов, взятых для ее построения. Например, структура молекулы определяется (частично) тем, из каких атомов она состоит. Вхождение элемента в структуру более высокого уровня мало сказывается на его внутренней структуре. Ядро атома не изменяется, если атом войдет в состав молекулы, а микросхеме «все равно», в составе какого устройства она функционирует. Элемент может выполнять присущие ему функции только в составе системы, только в координации с соседними элементами. В некоторых случаях даже сколько-нибудь длительное сохранение элементом своей качественной определенности невозможно за пределами системы.

Таким образом, при использовании системного подхода на первом этапе стоит задача представления изучаемого объекта в виде системы.

На втором этапе необходимо произвести системное исследование. Чтобы получить полное и правильное представление о системе, необходимо осуществлять это исследование в предметном, функциональном и историческом аспектах.

Целью предметного анализа является ответ на такие вопросы как: каков состав системы, и какова связь между компонентами ее структуры. В основе предметного исследования лежат главные свойства системы – целостность и делимость. При этом компонентный состав и набор связей между компонентами системы должны быть необходимыми и достаточными для существования самой системы. Очевидно, строгое разделение компонентного и структурного анализа невозможно ввиду их диалектического единства, поэтому эти исследования проводятся параллельно. Также необходимо установить место рассматриваемой системы в надсистеме и выявить все ее связи с другими элементами этой надсистемы. На этом этапе предметного анализа производится поиск ответов на вопросы о составе надсистемы, в которую входит исследуемая система и о связи исследуемой системы с другими системами через надсистему.

Следующим важным аспектом системного исследования является функциональный аспект. По сути, он представляет собой анализ динамики тех связей, которые были выявлены и идентифицированы на этапе предметного анализа и отвечает на вопросы о том как работает данный компонент системы и как работает исследуемая система в данной надсистеме.

Что касается исторического исследования, то его можно отнести к динамике развития системы, причем жизненный цикл любой системы разделяют на несколько этапов: возникновение, становление, эволюция, разрушение или преобразование. Историческое исследование предполагает проведение генетического анализа, при котором прослеживается история развития системы и определяется текущая стадия ее жизненного цикла, и прогностического анализа, намечающего пути ее дальнейшего развития .

Подводя итоги приведенного анализа, отметим, что в основе системного подхода лежит рассмотрение каждой системы как некоторой подсистемы более общей системы. Что касается характеристик подсистемы, то они определяются требованиями, предъявляемыми к системе, стоящей на более высокой ступени иерархии, причем при проектировании или анализе подсистемы необходимо учитывать взаимодействие ее с другими подсистемами, стоящими на той же ступени иерархической лестницы. При использовании системного подхода необходимо учитывать из каких компонентов образована система и способ их взаимодействия. Также пристальное внимание заслуживает то, какие функции выполняет система и образующие ее компоненты и как она взаимосвязана с другими системами, как по горизонтали, так и по вертикали, каковы механизмы сохранения, совершенствования и развития системы. Подлежит изучению вопрос возникновения и развития системы.

Указанные этапы могут многократно повторяться, каждый раз уточняя представление об исследуемой системе, до тех пор, пока не будут рассмотрены все необходимые аспекты знания на требуемом уровне абстракции.

ЗАКЛЮЧЕНИЕ

Каждая эпоха имеет свой стиль мышления, определяе­мый многими факторами, и, прежде всего уровнем развития производительных сил, в том числе и науки, и обществен­ными отношениями. Реальная жизнь индивида, хочет он того или нет, оказывает непосредственное влияние на его мировоззрение, заставляет видеть мир сквозь призму совре­менности. Как бы талантлив и объективен ни был ученый, главный акцент в своих исследованиях он неизбежно бу­дет делать на тех явлениях, процессах, взаимодействиях, ко­торые в его эпоху больше всего волнуют общество. Иначе говоря, какова общественная жизнь, таково и миропонима­ние в целом.

Что касается истины, то, будучи по своему содержанию независимой от познающего субъекта, она в то же время может по-разному отражаться в сознании человека. Созна­ние же человека формируется обществом. Истина не явля­ется чем-то сплошным, ровным и одноцветным. Она, как и сама реальность, многогранна и неисчерпаема. Какую сто­рону, грань, оттенок истины признать за всю истину, в ка­кой степени приближения к абсолюту ее увидеть, во многом зависит от человека, живущего в данное время и в данном обществе. Вот почему понимание истины, относящейся к од­ним и тем же вещам, явлениям, процессам, разнится и ме­няется в разные эпохи и в разных общественных системах. Конкретное общество, конкретный образ жизни, так или иначе, изменяют видение мира человеком.

Отсюда любая абсолютизация значения какого-либо яв­ления, закона, процесса, взаимодействия, связанная с истол­кованием его как исчерпывающего многообразие реально­сти, глубоко ошибочна и препятствует конструктивному раз­витию теоретического познания и практики. Истина всегда актуальна. Актуализация знания - вот к чему сознательно или бессознательно стремится каждый ученый. Актуали­зация истины отнюдь не исключает наличия абсолютных истин. Вращение Земли вокруг Солнца - это абсолютная истина, но понимание этой истины, скажем, Коперником, отличается от ее понимания современным ученым. Как ви­дим, абсолютная истина также актуализируется, обогаща­ется новыми открытиями, новыми представлениями. Мето­дология системного познания и преобразования мира явля­ется эффективным средством актуализации знаний.

Системное осмысление реальности, системный подход к теоретической и практической деятельности – является одним из прин­ципов диалектики, так же как и категория «система» - это одна из категорий диалектического материализма. Се­годня понятие «система» и принцип системности стали иг­рать важную роль в жизнедеятельности человека. Дело в том, что общее прогрессивное движение науки, знания про­исходит неравномерно. Всегда выделяются определенные участки, развивающиеся быстрее других, возникают ситуа­ции, требующие более глубокого и детального осмысления, а следовательно, и особого подхода к исследованию нового состояния науки. Поэтому выдвижение и усиленная разра­ботка отдельных моментов диалектического метода, способ­ствующих более глубокому проникновению в объективную реальность, вполне закономерное явление. Метод познания и результаты познания взаимосвязаны, воздействуют друг на друга: метод познания способствует более глубокому проникновению в суть вещей и явлений; в свою очередь, на­копленные знания совершенствуют метод.

В соответствии с текущими практическими интересами человечества меняется познавательное значение принципов и категорий. Подобный процесс отчетливо наблюдается когда под влиянием практических потреб­ностей происходит усиленная разработка системных идей.

Системный принцип в настоящее время, выступает в качестве элемента диалек­тического метода как системы и выполняет свою специфи­ческую функцию в познании наряду с другими элементами диалектического метода.

В настоящее время принцип системности – необхо­димое методологическое условие, требование любого иссле­дования и практики. Одной из его фундаментальных харак­теристик является понятие системности бытия, а тем са­мым и единства наиболее общих законов его развития.

ЛИТЕРАТУРА

1. Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. // Вопросы философии, 1998, №4

2. Заварзин Г.А. Индивидуалистический и системный подход в биологии // Вопросы философии, 1999, №4.

3. Философия: Учебн. Пособие для студентов вузов. / В.Ф. Берков, П.А. Водопьянов, Е.З. Волчек и др.; под общ. ред. Ю.А. Харина.- Мн., 2000.

4. Уемов А.И. Системный подход и общая теория систем. – М., 1978.

5. Садовский В. Н. Основания общей теории систем.- М., 1974

6. Клир Дж. Системология. Автоматизация решения системных задач.- М., 1990.

7. Флешиман B.C. Основы системологии. - М., 1982.

8. Балашов Е. П. Эволюционный синтез систем. - М., 1985.

9. Малюта А.Н. Закономерности системного развития. – Киев, 1990.

10. Тюхтин В.С. Отражение, система, кибернетика. – М., 1972.

11. Титов В.В. Системный подход: (Учебное пособие) /Высшие государственные курсы повышения квалификации руководящих, инженерно-технических и научных работников по вопросам патентоведения и изобретательства. – М., 1990.

В современной методологии науки, начиная с середины ХХ века, сформировался новый - системный подход - междисциплинарное философско-методологическое и специ­ально-научное направление, обладающее высоким исследовательским и объясняющим потенциалом. Как особый тип методологии, он предполагает вычленение общефилософ­ского, общенаучного и специально-научного уровней, а также рассмотрение соответст­вующего каждому из них понятийного аппарата, основных принципов и функций.

Как отмечают исследователи, идея системности в неявном, не отрефлексированном виде присутствует в размышлениях многих философов прошлого. Так, в древнегреческой философии в трудах Платона и Аристотеля широко представлена идея системности, реализуемая как целостность рассмотрения знания, системного построения логики, геометрии. Позже эти идеи развивались в трудах Лейбница - философа и математика, в частности, в «Новой системе природы» (1695), в стремлении создать «всеобщую науку». В XIX веке Гегель, по существу, обобщил опыт философии Нового времени в разработке проблемы системности, принимая за основу рассуждения целост­ность объектов исследования и системную природу философского и научного знания. И хотя прин­цип системности к этому времени явно сформулирован не был, но сама идея хорошо соотносилась с широко распространенными в естествознании систематизациями Линнея в биологии, Декандоля в ботанике, целостным изучением биологической эволюции Ч.Дарвиным и т.п. Классическим приме­ром применения идеи системности и целостности стало учение Маркса об общественно-экономической формации и рассмотрение им общества как «органической системы».

Сегодня философский принцип системности понимается как универсальное по­ложение о том, что все предметы и явления мира - это системы различных типов и видов целостности и сложности, однако открытым и обсуждаемым остается вопрос о том, какая из интерпретаций более оправдана - онтологическая или эпистемологическая. Господ­ствующая сегодня традиционная точка зрения - онтологическая, берущая начало от сис­темно-онтологических концепций Спинозы и Лейбница, приписывает «системность» са­мим объектам действительности, задача субъекта-исследователя - обнаружить систему, ее связи и отношения, описать, типологизировать и объяснить их. Но все более явно проби­вает себе дорогу эпистемологическая интерпретация, при которой «системность» рас­сматривается именно как принцип, неотделимый от теоретических установок субъекта-наблюдателя, его способности представить, сконструировать объект познания как систем­ный. В частности, известные современные ученые социолог Н.Луман, нейробиологи

У.Матурана и Ф.Варела стремились показать, что система, структура, окружающая среда не существуют в природной или социальной реальности, а формируются в нашем знании в результате операций различения и конструирования, проводимых наблюдателем. Одна­ко невозможно отрицать, что реальность должна обладать такими «параметрами», кото­рые могут быть представлены как системы. Системность предстает, таким образом, как современный способ видения объекта и стиль мышления, сменивший механистические представления и принципы интерпретации. Соответственно складывается особый язык, включающий прежде всего такие философские и общенаучные понятия, как системность, отношение, связь, элемент, структура, часть и целое, целостность, иерархия, организация, системный анализ и многие другие.

Принцип системности объединяет и синтезирует несколько идей и представлений: системности, целостности, соотношения части и целого, структурности и «элементарно­сти» объектов, универсальности, всеобщности связей, отношений, наконец, развития, по­скольку предполагается не только статичность, но и динамичность, изменчивость систем­ных образований. Как один из ведущих и синтезирующих философских принципов, он лежит в основе системного подхода - общенаучной междисциплинарной и частнонаучной системной методологии, а также социальной практики, рассматривающих объекты как системы. Он не является строгой теоретической или методологической концепцией, но как совокупность познавательных принципов позволяет фиксировать недостаточность внесистемного, не целостного видения объектов и, расширяя познаваемую реальность, помогает строить новые объекты исследования, задавая им характеристики, предлагает новые схемы их объяснения. Он близок по ориентированности структурно-функциональному анализу и структурализму, которые, однако, формулируют достаточно «жесткие» и однозначные правила и нормы, обретая соответственно черты конкретных научных методологий, например, в области структурной лингвистики.

Главное понятие системной методологии - система - получило серьезную разра­ботку как в методологических исследованиях, так и в общей теории систем - учении о специально-научном исследовании различных типов систем, закономерностей их сущест­вования, функционирования и развития. Основателем теории является Л. фон Берталанфи (1930), его предшественником в нашей стране был А.А.Богданов, создатель «Тектологии» (1913) - учения об универсальной организационной науке.

Система составляет целостный комплекс взаимосвязанных элементов; образует особое единство со средой; обладает иерархичностью: представляет собой элемент системы более высокого порядка, ее элементы в свою очередь выступают как системы

более низкого порядка. От системы следует отличать так называемые неорганизованные совокупности - случайное скопление людей, различного рода свалки, «развал» старых книг у старьевщика и многие другие, в которых отсутствует внутренняя организация, свя­зи случайны и несущественны, нет целостных, интегративных свойств, отличных от свойств отдельных фрагментов.

Особенность «живых», социальных и технических систем - передача информации и осуществление процессов управления на основе различных типов «целеполагания». Раз­работаны различные - эмпирические и теоретические - классификации систем, выявлены их типы.

Так, известными исследователями системной методологии В.Н.Садовским, И.В.Блаубергом, Э.Г. Юдиным выделены классы неорганичных и органичных систем, в отличие от неорганизованных совокупностей. Органичная система - это саморазвивающееся целое, проходя­щее этапы усложнения и дифференциации и обладающее рядом специфических особенностей. Это наличие в системе, наряду со структурными, и генетических связей, координации и субординации, управляющих механизмов, например, биологические корреляции, центральная нервная система, ор­ганы управления в обществе и другие. В таких системах свойства частей определяются закономер­ностями, структурой целого, части преобразуются вместе с целым в ходе его развития. Элементы системы определенное число степеней свободы (вероятностное управление) и постоянно обновля­ются вслед за изменением целого. В неорганичных системах зависимость между системой и ее эле­ментами менее тесна, свойства частей и их изменения определяются внутренней структурой, а не структурой целого, изменения целого могут не привести к изменениям в элементах, которые суще­ствуют самостоятельно и даже бывают активнее системы в целом. Стабильность элементов обу­словливает устойчивость таких систем. Органичные системы, как наиболее сложные, требуют осо­бых исследований, они наиболее перспективны в методологическом отношении (Проблемы методо­логии системного исследования. М., 1970. С. 38-39).

Из различения этих двух типов систем следует, что понятие элемента не является абсолютным и однозначно определенным, поскольку система может расчленяться разны­ми способами. Элемент - это «предел возможного членения объекта», «минимальный компонент системы», способный выполнить определенную функцию.

К фундаментальным задачам, решаемым сегодня в сфере становления и развития методологии системного исследования, относятся следующие: построение понятий и мо­делей для системного представления объектов, разработка приемов и аппарата описания всех параметров системы: типа связей, отношения со средой, иерархии строения, характе­ра управления, построение формализованных - знаковых, идеальных, математических -систем для описания реальных системных объектов и возможности применения правил логического вывода. В конкретных науках на уровне специальной методологии осуществ-

ляются системные разработки с использованием конкретных методов, приемов системно­го анализа, применяемых именно для данной области исследования.

Системная постановка проблемы предполагает не просто переход на «системный язык», но предварительное выяснение возможности представить объект как целостность, вычленить системообразующие связи и структурные характеристики объекта и т.п. При этом всегда возникает необходимость выяснить предметную соотнесенность, т.е. соот­ветствие понятий, методов, принципов данному объекту в его системном видении и в со­четании с методами других наук, например, приложим ли к системно представленному объекту математический аппарат и каким он должен быть.

Ряд методологических требований относится к описанию элементов объекта, в ча­стности, оно должно осуществляться с учетом места элемента в системе в целом, посколь­ку от этого существенно зависят его функции; один и тот же элемент необходимо рас­сматривать как обладающий разными параметрами, функциями, свойствами, проявляю­щимися различно в соответствии с иерархическими уровнями или типом системы. Объект как система может быть плодотворно исследован только в единстве с условиями ее суще­ствования, окружающей средой, его структура понимается как закон или принцип соеди­нения элементов. Программа системного исследования должна исходить из признания та­ких важных особенностей элементов и системы, как порождение особого свойства целого из свойств элементов и, в свою очередь, порождение свойств элементов под воздействием свойств системы как целого.

Эти общеметодологические требования системного подхода могут быть дополнены его конкретными особенностями в современных науках. Так, Э.Г.Юдин рассмотрел развитие идей сис­темности и применение методологических принципов этого подхода в психологии. В частности, он показал, что гештальтпсихология впервые поставила вопрос о целостном функционировании пси­хики, законы гештальта представила как законы организации целого на основе объединения функ­ций и структуры. При этом подход с позиций целостности, системности не только объединял объ­ект, но и задавал схему его расчленения и анализа. Известно, что гештальт-психология и ее схемы подверглись серьезной критике, но вместе с тем «основные методологические идеи психологии формы едва ли принадлежат истории и составляют часть всей современной психологии культуры, а следы их плодотворного влияния можно найти практически во всех главных сферах психологии» (Юдин Э.Г. Методология науки. Системность. Деятельность. М., 1997. С. 185-186).

Крупнейший психолог ХХ века Ж.Пиаже процесс психического развития также трактовал как динамическую систему взаимодействия организма со средой, обладающую иерархией структур, надстраивающихся друг над другом и не сводимых одна к другой. Осуществляя операциональный подход и размышляя о системно-структурной природе интеллекта, находящегося на вершине сис­темной иерархии, он высказал новую для своего времени идею о построении «логики целостно-

стей», которая не реализована и сегодня. «Чтобы осознать операциональный характер мышления, надо достичь систем как таковых, и если обычные логические схемы не позволяют увидеть такие системы, то нужно построить логику целостностей» (Пиаже Ж. Избранные психологические труды. М., 1969. С. 94).

Стремясь овладеть системной методологией, применяя ее принципы и понятия, следует иметь в виду следующее. Использование системного подхода не является прямой дорогой к истинному знанию, как методологический прием системное видение лишь оп­тимизирует познавательную деятельность, делает ее более продуктивной, но для получе­ния и обоснования достоверного знания необходимо применять весь «арсенал» общемето­дологических и специальных принципов и методов.

Воспользуемся примером Э.Г.Юдина, чтобы понять, о чем идет речь. Известный ученый Б.А.Рыбаков, стремясь установить автора «Слова о полку Игореве», не имел в виду системный подход и не использовал соответствующих понятий, но объединил и совместил несколько различ­ных способов анализа социально-политических условий Киевской Руси того времени, симпатий и антипатий автора, выраженных в «Слове», его образованность, стилевые и иные особенности лето­писи той эпохи. Была составлена и использована генеалогическая таблица киевских князей. В ходе исследования прояснялись особые системы связей и отношений в каждом из привлеченных случаев, которые не рассматривались отдельно, но были наложены друг на друга. В результате область по­иска и число возможных кандидатур резко сократились и с большой долей вероятности было выска­зано предположение, что автором являлся киевский боярин Петр Бориславич, летописец киевских князей. Очевидно, что здесь был использован принцип целостности, чтобы усилить эффективность исследования и преодолеть разрозненность, неполноту и частичный характер факторов. Результат несомненно был интересным, приращение знаний - очевидным, вероятность достаточно высока, од­нако другие специалисты в этой области, в частности, Д.С.Лихачев, высказали достаточно много контраргументов и не признали истинности выводов, вопрос об авторе остается открытым и сего­дня.

В этом примере, отражающем одновременно особенности гуманитарных исследо­ваний, где невозможна формализация и применение математического аппарата, прояви­лось два момента: первый - целостность (системность) объекта была сконструирована, в действительности он не являлся системой с объективными закономерными связями, сис­темность представлена только в своей методологической функции и не имеет онтологиче­ского содержания; второй - системный подход не следует рассматривать как «прямой путь» к истинному знанию, задачи и функции у него другие и прежде всего, как уже было сказано, расширение сферы видения реальности и конструирование нового объекта иссле­дования, выявление новых типов связей и отношений, применение новых методов.

Системная методология получила новые импульсы в своем развитии при обраще­нии к самоорганизующимся системам или, иначе, при представлении объекта как самоор-

ганизующейся системы, например, головного мозга, сообщества организмов, человеческо­го коллектива, экономической системы и других. Системы этого типа характеризуются активным влиянием на среду, гибкостью структуры и особым «адаптивным механизмом», а также непредсказуемостью - могут менять способ действия при изменении условий, способны обучаться, учитывать прошлый опыт. Обращение же к сложноорганизованным эволюционирующим и неравновесным системам вывело исследователей к принципиально новой теории самоорганизации - синергетике, возникшей в начале 70-х годов ХХ века (термин ввел немецкий физик Г.Хакен от греческого sinergeia - cодействие, сотрудниче­ство), сочетающей системно-информационный, структуралистский подходы с принципа­ми самоорганизации, неравновесности и нелинейности динамических систем.

Поделитесь с друзьями или сохраните для себя:

Загрузка...