Роль биологии в космических исследованиях краткое сообщение. Космическая биология

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

    контрольная работа , добавлен 25.02.2012

    Методология современной биологии. Философско-методологические проблемы биологии. Этапы трансформации представлений о месте и роли биологии в системе научного познания. Понятие биологической реальности. Роль философской рефлексии в развитии наук о жизни.

    реферат , добавлен 30.01.2010

    Зарождение биологии как науки. Идеи, принципы и понятия биологии XVIII в. Утверждение теории эволюции Ч. Дарвина и становление учения о наследственности. Эволюционные воззрения Ламарка, Дарвина, Менделя. Эволюция полигенных систем и генетический дрейф.

    курсовая работа , добавлен 07.01.2011

    Влияние наглядности на качество усвоения знаний учащихся по биологии на всех этапах урока. История возникновения понятия "наглядности", как дидактического принципа обучения. Классификация наглядных пособий по биологии и методика их применения на уроках.

    курсовая работа , добавлен 03.05.2009

    Теоретические основы, предмет, объект и закономерности биологии. Сущность, анализ и доказательство аксиом теоретической биологии, обобщенных Б.М. Медниковым и характеризующих жизнь и отличающуюся от нее нежизнь. Особенности генетической теории развития.

    реферат , добавлен 28.05.2010

    Понятие увеличительных приборов (лупа, микроскоп), их назначение и устройство. Основные функциональные и конструктивно-технологические части современного микроскопа, используемого на уроках биологии. Проведение лабораторных работ на уроках биологии.

    курсовая работа , добавлен 18.02.2011

    Исследование биографии и научной деятельности Чарльза Дарвина, основоположника эволюционной биологии. Обоснование гипотезы происхождения человека от обезьяноподобного предка. Основные положения эволюционного учения. Сфера действия естественного отбора.

    презентация , добавлен 26.11.2016

    Использование водорослей в космосе. Отрицательные стороны. Наука, которая занимается проблемами биологии в космосе - называется - космическая биология. Одна из проблем, которых применение водорослей на блага человечества в покорении космоса.

    Суздальцева Мария

    —Чтобы понять какова роль биологии в космических исследованиях мы должны обратиться к космической биологии.

    —Цель работы: изучить влияние на живой организм комплекса необычных факторов внешней среды.

    —1.Изучить особенность космической биологии.

    —2.На примере живых организмов, определить значение лабораторных и лётных экспериментов.

    —3.Установить степень гуманности экспериментов.

    4.Установить значение космической биологии.
    Гипотеза: Возможно ли с помощью космической биологии разведать новые космические трассы и организовать космический туризм.

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Исследовательская работа Значение биологии в космических исследованиях Выполнила: Суздальцева Мария Ученица МАОУ «Гимназия имени Н.В.Пушкова » Руководитель: Учитель биологии Омельченко Ю.Е

    Обоснование те мы: Чтобы понять какова роль биологии в космических исследованиях мы должны обратиться к космической биологии. Цель работы: изучить влияние на живой организм комплекса необычных факторов внешней среды. Задачи: 1.Изучить особенность космической биологии. 2.На примере живых организмов, определить значение лабораторных и лётных экспериментов. 3.Установить степень гуманности экспериментов. 4.Установить значение космической биологии. Гипотеза: Возможно ли с помощью космической биологии разведать новые космические трассы и организовать космический туризм.

    Введение. Космическая биология-это комплекс преимущественно биологических наук, изучающих: 1) особенности жизнедеятельности земных организмов в условиях космического пространства и при полётах на космических летательных аппаратах 2) принципы построения биологических систем обеспечения жизнедеятельности членов экипажей космических кораблей и станций 3) внеземные формы жизни.

    Космическая биология - синтетическая наука, собравшая в единое целое достижения различных разделов биологии, авиационной медицины, астрономии, геофизики, радиоэлектроники и многих др. наук и создавшая на их основе собственные методы исследования. Работы по космической биологии ведутся на различных видах живых организмов, начиная с вирусов и заканчивая млекопитающими.

    Основная часть. Первоочередная задача космической биологии - изучение влияния факторов космического полёта (ускорение, вибрация, невесомость, измененная газовая среда, ограниченная подвижность и полная изоляция в замкнутых герметичных объёмах и др.) и космического пространства (вакуум, радиация, уменьшенная напряжённость магнитного поля и др.).

    Основная часть. Исследования по космической биологии ведутся в лабораторных экспериментах, в той или иной мере воспроизводящих влияние отдельных факторов космического полёта и космического пространства. Однако наиболее существенное значение имеют лётные биологические эксперименты, в ходе которых можно изучить влияние на живой организм комплекса необычных факторов внешней среды.

    На искусственных спутниках Земли и космических кораблях в полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты.

    На участках выхода на орбиту у животных обнаруживалось ускорение учащения пульса и дыхания, которые постепенно исчезали после перехода корабля на орбитальный полёт.

    Нормализация пульса после воздействия ускорений в невесомости происходит значительно медленнее, чем после испытаний на центрифуге в условиях Земли.

    Анализ двигательной активности собак показал довольно быструю адаптацию к необычным условиям невесомости и восстановление способности к координированным движениям. Такие же результаты были получены и в экспериментах на обезьянах. Исследованиями условных рефлексов у крыс и морских свинок после возвращения их из космического полёта установлено отсутствие изменений по сравнению с предполётными опытами.

    Важными для дальнейшего развития экофизиологического направления исследований явились эксперименты на советском биоспутнике "Космос-110" с двумя собаками на борту и на американском биоспутнике "Биос-3", на борту которого находилась обезьяна.

    Генетические исследования, проведённые в орбитальных космических полётах, показали, что пребывание в космическом пространстве оказывает стимулирующий эффект на сухие семена лука и нигеллы.

    В результате проведённых биологических исследований на высотных и баллистических ракетах, ИСЗ, ККС и др. космических летательных аппаратах установлено, что человек может жить и работать в условиях космического полёта сравнительно продолжительное время.

    Выводы: 1.В ходе работы я выяснила,что исследования по космической биологии позволили разработать ряд защитных мероприятий и подготовили возможность безопасного полёта в космос человека, что и было осуществлено полётами советских, а затем и американских кораблей с людьми на борту. 2.Убедилась,что и сследования в этой области будут и впредь особенно нужны для биологической разведки новых космических трасс. Это потребует разработки новых методов биотелеметрии (способ дистанционного исследования биологических явлений и измерения биологических показателей), создания вживляемых устройств для малой телеметрии (совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю), превращения различных видов возникающей в организме энергии в необходимую для питания таких устройств электрическую энергию, новых методов "сжатия" информации и др. 3. Я изучаю, и буду продолжать изучать научную литературу по данной проблеме; Я собираюсь продолжить работу по данной теме. Потому, что убеждена,что космическая биология сыграет важную роль и в разработке необходимых для длительных полётов бикомплексов.

    Список литературы: Литература 1 . Авиакосмическая и экологическая медицина. - 2000. – T. 34, N 2. 2. Копаладзе Р.А. // Регламентация экспериментов на животных - этика, законодательства, альтернативы: Обзор / Под ред. Н.А. Горбуновой. - M., 1998. 3 . Лукьянов А.С., Лукьянова Л.Л., Чернавская H.M., Гилязов С.Ф. Биоэтика. Альтернативы экспериментам на животных. - M., 1996. 4 . Павлова Т.Н. Биоэтика в высшей школе. - M., 1997. 5 . Приемы работы с экспериментальными животными: Методические рекомендации. - M., 1989. 6 . Санитарные правила по устройству, оборудованию и содержанию экспериментально-биологических клиник (вивариев). - M., 1973. 7 . Фоссе P. // Лаб. животные. - 1991. - T. 1, N 1. - С. 39-45. 8 . Ховард -Джонс H. // Хроника ВОЗ. - 1985. - T. 39. - С. 3-8. 9 . Швейцер А. Упадок и возрождение культуры. - M., 1993. 10 . Guide for the Care and Use of Laboratory Animals. - Washington: National Academy Press, 1996. 11 . Regan T. The Case for Animal Rights. - London; N.-Y., 1984.

    КОСМИЧЕСКАЯ БИОЛОГИЯ, наука, изучающая влияние факторов космического полёта и космического пространства на процессы жизнедеятельности земных организмов, осуществляющая поиск внеземных форм жизни. К факторам космического полёта относят ускорения при взлёте и возвращении на Землю, вибрации на этапе взлёта, условия обитания внутри космического аппарата, изоляцию от внешнего мира, невесомость, удалённость от Земли в случае полётов на Луну и планеты; к факторам космического пространства - ионизирующее излучение радиационных поясов Земли, корпускулярное излучение Солнца, галактическое космическое излучение, пониженную напряжённость магнитного поля в случае полётов за пределами магнитосферы Земли, жёсткое УФ-излучение, вакуум, резкие перепады температур, метеоритную опасность. Исследования в области космической биологии проводятся на Земле путём моделирования различных факторов и условий, но наиболее существенное значение имеют эксперименты в условиях космического полёта. В проведении биологических исследований в космическом пространстве помимо учёных СССР (позднее России) и США, внёсших наиболее значительный вклад в развитие космической биологии, участвуют также учёные Франции, Италии, ФРГ и некоторых других стран.

    Предпосылками появления космической биологии явились проводимые в 1930-е годы исследования биологического действия радиации в высотных полётах аэростатов, а также начатые в 1949 году в нашей стране исследования биологического действия динамических факторов (ускорения, вибрации, кратковременной невесомости) и космической радиации в полётах ракет на высоте от 100 до 450 км. В экспериментах на собаках, обезьянах, кроликах, мышах и морских свинках в полётах ракет было показано, что динамические факторы, характерные для любого космического полёта, вполне переносимы организмом и не приводят к каким-либо существенным изменениям его функционального состояния, не выявлено повреждающего действия радиации.

    Рождением космической биологии можно считать 1957 год, когда на втором искусственном спутнике Земли (ИСЗ) в орбитальный полёт отправили первое живое существо - собаку Лайку. Анализ телеметрической информации показал, что жизнь в космосе возможна, и это послужило мощным стимулом для ускоренного создания корабля «Восток», предназначенного для полёта человека в космос. В период, предшествующий полёту Ю. А. Гагарина, в четырёх кратковременных орбитальных полётах советских, возвращаемых на Землю космических кораблей-спутников (модифицированные корабли «Восток») были проведены эксперименты на различных организмах, тканевых и клеточных культурах. Эти исследования не выявили повреждающих эффектов и отдалённых биологических последствий кратковременных космических полётов, открыв тем самым путь человеку в космос.

    В последующие годы биологические эксперименты проводились в полётах как пилотируемых, так и беспилотных КА. Так, в 1966 проведён эксперимент с длительным (22 суток) пребыванием двух собак в полёте ИСЗ «Космос-110». В 1968-1969 советские автоматические КА серии «Зонд», на которых находились черепахи, облетели Луну. Комплекс экспериментов с различными биообъектами (семена, растения, икра лягушек, микроорганизмы и др.) был произведён на советском ИСЗ «Космос-368» (1970), КК «Союз» и на первой в мире орбитальной станции «Салют» (1971); западногерманский эксперимент с медицинскими пиявками - на высотных ракетах США и Франции; совместный итало-американский эксперимент с лягушками - на спутнике OFA (1970). Микробиологические исследования на поверхности Луны были выполнены экипажем КК «Аполлон-16» (1972), на «Аполлоне-17» вместе с астронавтами находились мыши. Для решения проблем космической биологии существенное значение имело создание в 1970-80-е годы орбитальных станций «Союз» и «Мир», медико-биологических лабораторий в составе КК «Спейс шаттл», российский КА для научных и технологических экспериментов: биоспутника «Бион» и КА «Фотон». Хотя в условиях орбитального космического полёта не отмечалось существенных необратимых изменений в организмах, в то же время пребывание в условиях невесомости в ряде случаев сопровождалось значительными изменениями в мышечной, костной, сердечнососудистой и вестибулярной системах. Эти результаты свидетельствовали, с одной стороны, о том, что, по-видимому, не существует каких-либо биологических ограничений на пути дальнейшего проникновения человека в космос, с другой - о необходимости разработки и применения в пилотируемых космических полётах средств профилактики неблагоприятного действия невесомости на организм человека. Исходя из этого, космическую биологию следует рассматривать как научный фундамент космической медицины, основная задача которой - медико-биологическое и санитарно-гигиеническое обеспечение космических полётов экипажей.

    Космическая биология является по своей сути интегративной наукой, использующей достижения других областей биологии для изучения феномена жизни, условий её возникновения и распространения во Вселенной. В этой связи она тесно взаимодействует с биофизикой, радиобиологией, астробиологией и другими науками. Хотя пока не удалось обнаружить признаков жизни ни на Луне, ни на Марсе, ни в открытом космосе, поиск прямых или косвенных доказательств её существования (или существования её предшественников) продолжается с использованием автоматических межпланетных космических аппаратов.

    Большой вклад в становление и развитие космической биологии внесли отечественные учёные - О. Г. Газенко, В. В. Парин, А. И. Григорьев, В. И. Яздовский, среди американских учёных - Дж. Генри, А. Грейбил, О. Рейнолдс и Г. Клейн, руководившие коллективами учёных и инженеров, которые должны были дать ответ на вопрос о возможности жизни и работы в космосе без ущерба для здоровья человека и обеспечить выполнение намеченной программы полёта.

    Лит.: Основы космической биологии и медицины. М., 1975. Т. 2. Кн. 2; Космическая биология и медицина. М., 1994. [Т. 2]; Орбитальная станция «Мир». Космическая биология и медицина. М., 2001. Т. 2; Григорьев А. И., Ильин Е. А. Животные в космосе. К 50-летию космической биологии // Вестник Российской академии наук. 2007. Т. 77. № 11.

    Слайд 1

    Чтобы понять какова роль биологии в космических исследованиях мы должны обратиться к космической биологии. Космическая биология-это комплекс преимущественно биологических наук, изучающих: 1) особенности жизнедеятельности земных организмов в условиях космического пространства и при полётах на космических летательных аппаратах 2) принципы построения биологических систем обеспечения жизнедеятельности членов экипажей космических кораблей и станций 3) внеземные формы жизни.

    Роль биологии в космических исследованиях

    Слайд 2

    Космическая биология - синтетическая наука, собравшая в единое целое достижения различных разделов биологии, авиационной медицины, астрономии, геофизики, радиоэлектроники и многих др. наук и создавшая на их основе собственные методы исследования. Работы по космической биологии ведутся на различных видах живых организмов, начиная с вирусов и заканчивая млекопитающими.

    Слайд 3

    Первоочередная задача космической биологии - изучение влияния факторов космического полёта (ускорение, вибрация, невесомость, измененная газовая среда, ограниченная подвижность и полная изоляция в замкнутых герметичных объёмах и др.) и космического пространства (вакуум, радиация, уменьшенная напряжённость магнитного поля и др.). Исследования по космической биологии ведутся в лабораторных экспериментах, в той или иной мере воспроизводящих влияние отдельных факторов космического полёта и космического пространства. Однако наиболее существенное значение имеют лётные биологические эксперименты, в ходе которых можно изучить влияние на живой организм комплекса необычных факторов внешней среды.

    Слайд 4

    На искусственных спутниках Земли и космических кораблях в полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты.

    Слайд 5

    На участках выхода на орбиту у животных обнаруживалось ускорение учащения пульса и дыхания, которые постепенно исчезали после перехода корабля на орбитальный полёт. Наиболее важный непосредственный эффект действия ускорений - изменения лёгочной вентиляции и перераспределение крови в сосудистой системе, в том числе в малом круге, а также изменения в рефлекторной регуляции кровообращения. Нормализация пульса после воздействия ускорений в невесомости происходит значительно медленнее, чем после испытаний на центрифуге в условиях Земли. Как средние, так и абсолютные значения частоты пульса в невесомости были ниже, чем в соответствующих моделирующих опытах на Земле, и характеризовались выраженными колебаниями. Анализ двигательной активности собак показал довольно быструю адаптацию к необычным условиям невесомости и восстановление способности к координированным движениям. Такие же результаты были получены и в экспериментах на обезьянах. Исследованиями условных рефлексов у крыс и морских свинок после возвращения их из космического полёта установлено отсутствие изменений по сравнению с предполётными опытами.

    Слайд 6

    Важными для дальнейшего развития экофизиологического направления исследований явились эксперименты на советском биоспутнике "Космос-110" с двумя собаками на борту и на американском биоспутнике "Биос-3", на борту которого находилась обезьяна. Во время 22-суточного полёта собаки впервые подвергались не только влиянию неизбежно присущих факторов, но и ряду специальных воздействий (раздражение синусного нерва электрическим током, пережатие сонных артерий и т. д.), имевших целью выяснить особенности нервной регуляции кровообращения в условиях невесомости. Кровяное давление у животных регистрировалось прямым путём. Во время полёта обезьяны на биоспутнике " Биос-3", продолжавшегося 8,5 суток, были обнаружены серьёзные изменения циклов сна и бодрствования (фрагментация состояний сознания, быстрые переходы от сонливости к бодрствованию, заметное сокращение фаз сна, связанных со сновидениями и глубокой дремотой), а также нарушение суточной ритмики некоторых физиологических процессов. Последовавшая вскоре после досрочного окончания полёта смерть животного была, по мнению ряда специалистов, обусловлена влиянием невесомости, которая привела к перераспределению крови в организме, потере жидкости и нарушению обмена калия и натрия.

    Слайд 7

    Генетические исследования, проведённые в орбитальных космических полётах, показали, что пребывание в космическом пространстве оказывает стимулирующий эффект на сухие семена лука и нигеллы. Ускорение деления клеток было обнаружено на проростках гороха, кукурузы, пшеницы. В культуре устойчивой к радиации расы актиномицетов (бактерии) оказалось в 6 раз больше выживших спор и развивавшихся колоний, тогда как в чувствительном к радиации штамме (чистая культура вирусов, бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определённом месте) произошло снижение соответствующих показателей в 12 раз. Послеполётные исследования и анализ полученной информации показали, что длительный космический полёт сопровождается у высокоорганизованных млекопитающих развитием детренированности сердечнососудистой системы, нарушением водно-солевого обмена, в частности значительным уменьшением содержания кальция в костях.

    Слайд 8

    В результате проведённых биологических исследований на высотных и баллистических ракетах, ИСЗ, ККС и др. космических летательных аппаратах установлено, что человек может жить и работать в условиях космического полёта сравнительно продолжительное время. Показано, что невесомость снижает переносимость организмом физических нагрузок и затрудняет реадаптацию к условиям нормальной (земной) гравитации. Важный результат биологических исследований в космосе - установление того факта, что невесомость не обладает мутагенной активностью, по крайней мере в отношении генных и хромосомных мутаций. При подготовке и проведении дальнейших экофизиологических и экобиологических исследований в космических полётах основное внимание будет уделено изучению влияния невесомости на внутриклеточные процессы, биологическим эффектам тяжёлых частиц с большим зарядом, суточной ритмике физиологических и биологических процессов, комбинированным воздействиям ряда факторов космического полёта.

    Слайд 9

    Исследования по космической биологии позволили разработать ряд защитных мероприятий и подготовили возможность безопасного полёта в космос человека, что и было осуществлено полётами советских, а затем и американских кораблей с людьми на борту. Значение космической биологии этим не исчерпывается. Исследования в этой области будут и впредь особенно нужны для решения ряда вопросов, в частности для биологической разведки новых космических трасс. Это потребует разработки новых методов биотелеметрии (способ дистанционного исследования биологических явлений и измерения биологических показателей), создания вживляемых устройств для малой телеметрии (совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю), превращения различных видов возникающей в организме энергии в необходимую для питания таких устройств электрическую энергию, новых методов "сжатия" информации и др. Чрезвычайно важную роль космическая биология сыграет и в разработке необходимых для длительных полётов биокомплексов, или замкнутых экологических систем с автотрофными и гетеротрофными организмами.

    ГОУ лицей № 000

    Калининского района г. Санкт-Петербурга

    Исследовательская работа

    Медико-биологические исследования в космосе

    Гуршевым Олегом

    Руководитель: учитель биологии

    Санкт- Петербург, 2011 г.

    Введение 2

    Начало медико-биологических исследований в середине XX века. 3

    Воздействие космического полёта на организм человека. 6

    Экзобиология. 10

    Перспективы развития исследований. 14

    Список использованных источников. 17

    Приложение (презентация, эксперименты) 18

    Введение

    Космическая биология и медицина - комплексная наука, изучающая особенности жизнедеятельности человека и других организмов в условиях космического полета. Основной задачей исследований в области космической биологии и медицины является разработка средств и методов жизнеобеспечения, сохранения здоровья и работоспособности членов экипажей космических кораблей и станций в полетах различной продолжительности и степени сложности. Космическая биология и медицина неразрывно связана с космонавтикой, астрономией , астрофизикой, геофизикой, биологией, авиационной медициной и многими другими науками.

    Актуальность темы довольно большая в наш современный и стремительный XXI век.

    Тема «Медико-биологический исследований» меня интересовала последних года два, с тех пор, как я определился в выборе профессии поэтому я решил сделать исследовательскую работу на эту тему.

    2011 год является юбилейным – 50 лет со дня первого человеческого полета в космос.


    Начало Медико-биологических исследований в середине XX века

    Отправными в становлении космической биологии и медицины считаются следующие вехи: 1949 г. - впервые появилась возможность проведения биологических исследований при полетах ракет; 1957 г. - впервые живое существо (собаку Лайку) отправили в околоземный орбитальный полет на втором искусственном спутнике Земли; 1961 г. - первый пилотируемый полет в космос, совершенный. С целью научного обоснования возможности безопасного в медицинском отношении полета человека в космос исследовалась переносимость воздействий, характерных для старта, орбитального полета, спуска и посадки на Землю космических летательных аппаратов (КЛА), а также испытывалась работа биотелеметрической аппаратуры и систем обеспечения жизнедеятельности космонавтов. Основное внимание уделялось изучению влияния на организм невесомости и космического излучения.

    Лайка (собака-космонавт) 1957 г.

    Р езультаты, полученные при проведении биологических экспериментов на ракетах, втором искусственном спутнике (1957 г.), вращаемых космических кораблях-спутниках (1960-1961 гг.), в совокупности с данными наземных клинических, физиологических, психологических, гигиенических и других исследований фактически открыли путь человеку в космос. Кроме этого, биологические эксперименты в космосе на этапе подготовки первого космического полета человека позволили выявить ряд функциональных изменений, возникающих в организме при действии факторов полета, что явилось основанием для планирования последующих экспериментов на животных и растительных организмах в полетах пилотируемых космических кораблей, орбитальных станций и биоспутников. Первый в мире биологический спутник с подопытным животным - собакой «Лайкой». Выведен на орбиту 03.11.1957 г. И находился там 5 месяцев. Спутник просуществовал на орбите до 14.04.1958 г. На спутнике имелось два радиопередатчика, телеметрическая система, программное устройство, научные приборы для исследования излучения Солнца и космических лучей, системы регенерации и терморегулирования для поддержания в кабине условий, необходимых для существования животного. Получены первые научные сведения о состоянии живого организма в условиях космического полёта.


    Достижения в области космической биологии и медицины во многом предопределили успехи в развитии пилотируемой космонавтики. Наряду с полетом , совершенном 12 апреля 1961 г., следует отметить такие эпохальные события в истории космонавтики, как высадку 21 июля 1969 г. астронавтов Армстронга (N. Armstrong) и Олдрина (Е. Aldrin) на поверхность Луны и многомесячные (до года) полеты экипажей на орбитальных станциях «Салют» и «Мир». Это стало возможным благодаря разработке теоретических основ космической биологии и медицины, методологии проведения медико-биологических исследований в космических полетах, обоснованию и внедрению методов отбора и предполетной подготовки космонавтов, а также разработке средств жизнеобеспечения, медицинского контроля, сохранения здоровья и работоспособности членов экипажа в полете.


    Команда Апполо 11 (слева на право): Neil. A. Armstrong, Command Module Pilot Michael Collins, Commander Edwin (Buzz) E. Aldrin.

    Воздействие космического полёта на организм человека

    В космическом полете на организм человека воздействует комплекс факторов, связанных с динамикой полета (ускорения, вибрация, шум, невесомость), пребыванием в герметичном помещении ограниченного объема (измененная газовая среда, гипокинезия, нервно-эмоциональное напряжение и т. д.), а также факторы космического пространства как среды обитания (космическое излучение, ультрафиолетовое излучение и др.).

    В начале и конце космического полета на организм оказывают влияние линейные ускорения . Их величины, градиент нарастания, время и направление действия в период запуска и выведения КЛА на околоземную орбиту зависят от особенностей ракетно-космического комплекса, а в период возвращения на Землю - от баллистических характеристик полета и типа КЛА. Выполнение маневров на орбите также сопровождается воздействием ускорений на организм, однако их величины при полетах современных КЛА незначительны.


    Старт космического корабля «Союз ТМА-18» к Международной космической станции с космодрома Байконур

    Основные сведения о влиянии ускорений на организм человека и способах защиты от их неблагоприятного действия были получены при исследованиях в области авиационной медицины, космическая биология и медицина лишь дополнили эти сведения. Было установлено, что пребывание в условиях невесомости, особенно длительное время, приводит к снижению устойчивости организма к действию ускорений. В связи с этим за несколько суток до спуска с орбиты космонавты переходят на специальный режим физических тренировок, а непосредственно перед спуском получают водно-солевые добавки для увеличения степени гидратации организма и объема циркулирующей крови. Разработаны специальные кресла - ложементы и противоперегрузочные костюмы, что обеспечивает повышение переносимости ускорений при возвращении космонавтов на Землю.

    Среди всех факторов космического полета постоянным и практически невоспроизводимым в лабораторных условиях является невесомость. Влияние ее на организм многообразно. Возникают как неспецифические адаптационные реакции, характерные для хронического стресса, так и разнообразные специфические изменения, обусловленные нарушением взаимодействия сенсорных систем организма, перераспределением крови в верхнюю половину тела, уменьшением динамических и практически полным снятием статических нагрузок на опорно-двигательный аппарат.

    МКС лето 2008 г.

    Обследования космонавтов и многочисленные эксперименты на животных в полетах биоспутников «Космос» позволили установить, что ведущая роль в возникновении специфических реакций, объединяемых в симптомокомплекс космической формы болезни движения (укачивание), принадлежит вестибулярному аппарату. Это связано с повышением в условиях невесомости возбудимости рецепторов отолитов и полукружных каналов и нарушением взаимодействия вестибулярного анализатора и других сенсорных систем организма. В условиях невесомости у человека и животных обнаруживаются признаки детренированности сердечно-сосудистой системы, увеличение объема крови в сосудах грудной клетки, застойные явления в печени и почках, изменение мозгового кровообращения, уменьшение объема плазмы. В связи с тем, что в условиях невесомости изменяются секреция антидиуретического гормона, альдостерона и функциональное состояние почек, развивается гипогидратация организма. При этом уменьшается содержание внеклеточной жидкости и увеличивается выведение из организма солей кальция, фосфора, азота , натрия, калия и магния. Изменения в опорно-двигательном аппарате возникают преимущественно в тех отделах, которые в обычных условиях жизнедеятельности на Земле несут наибольшую статическую нагрузку, т. е. мышцах спины и нижних конечностей, в костях нижних конечностей и позвонках. Отмечаются снижение их функциональных возможностей, замедление скорости периостального костеобразования, остеопороз губчатого вещества, декальцинация и другие изменения, которые приводят к снижению механической прочности костей.

    В начальный период адаптации к невесомости (занимает в среднем около 7 сут.) примерно у каждого второго космонавта возникают головокружение, тошнота, дискоординация движений, нарушение восприятия положения тела в пространстве, ощущение прилива крови к голове, затруднение носового дыхания, ухудшение аппетита. В ряде случаев это приводит к снижению общей работоспособности, что затрудняет выполнение профессиональных обязанностей. Уже на начальном этапе полета появляются начальные признаки изменений в мышцах и костях конечностей.

    По мере увеличения продолжительности пребывания в условиях невесомости многие неприятные ощущения исчезают или сглаживаются. Одновременно с этим практически у всех космонавтов, если не принять должных мер, прогрессируют изменения состояния сердечно-сосудистой системы, обмена веществ, мышечной и костной ткани. Для предупреждения неблагоприятных сдвигов используется широкий комплекс профилактических мер и средств: вакуумная емкость, велоэргометр, бегущая дорожка, тренировочно-нагрузочные костюмы, электромиостимулятор, тренировочные эспандеры, прием солевых добавок и т. д. Это позволяет поддерживать хорошее состояние здоровья и высокий уровень работоспособности членов экипажей в длительных космических полетах.

    Неизбежным сопутствующим фактором любого космического полета является гипокинезия - ограничение двигательной активности, которая, несмотря на интенсивные физические тренировки во время полета, приводит в условиях невесомости к общей детренированности и астенизации организма. Многочисленные исследования показали, что длительная гипокинезия, создаваемая пребыванием в постели с наклоном головного конца (-6°), оказывает на организм человека практически такое же влияние, как и длительная невесомость. Этот способ моделирования в лабораторных условиях некоторых физиологических эффектов невесомости широко использовалось в СССР и США. Максимальная длительность такого модельного эксперимента, проведенного в Институте медико-биологических проблем МЗ СССР, составила один год.

    Специфической проблемой является исследование воздействия на организм космических излучений. Дозиметрические и радиобиологические эксперименты позволили создать и внедрить в практику систему обеспечения радиационной безопасности космических полетов, которая включает средства дозиметрического контроля и локальной защиты, радиозащитные препараты (радиопротекторы).

    Орбитальная станция «МИР»

    В задачи космической биологии и медицины входит изучение биологических принципов и методов создания искусственной среды обитания на космических кораблях и станциях. Для этого отбирают живые организмы, перспективные для включения их в качестве звеньев в замкнутую экологическую систему, исследуют продуктивность и устойчивость популяций этих организмов, моделируют экспериментальные единые системы живых и неживых компонентов - биогеоценозы, определяют их функциональные характеристики и возможности практического использования в космических полетах.

    Успешно развивается и такое направление космической биологии и медицины, как экзобиология, изучающая наличие, распространение, особенности и эволюцию живой материи во Вселенной. На основании наземных модельных экспериментов и исследований в космосе получены данные, свидетельствующие о теоретической возможности существования органической материи за пределами биосферы . Проводится также программа поиска внеземных цивилизаций путем регистрации и анализа радиосигналов, идущих из космоса.

    «Союз ТМА-6»

    Экзобиология

    Одно из направлений космической биологии; занимается поисками живой материи и органических веществ в космосе и на других планетах. Основная цель экзобиологии состоит в получении прямых или косвенных данных о существовании жизни в космосе. Основанием для этого служат находки предшественников сложных органических молекул (синильной кислоты, формальдегида и др.), которые обнаружены в космическом пространстве спектроскопическими методами (всего найдено до 20 органических соединений). Методы экзобиологии различны и рассчитаны не только на обнаружение инопланетных проявлений жизни, но и на получение некоторых характеристик возможных внеземных организмов. Для предположения о существовании жизни во внеземных условиях, например, на других планетах Солнечной системы, важно выяснить способность выживания организмов при экспериментальном воспроизведении этих условий. Многие микроорганизмы могут существовать при близких к абсолютному нулю и высоких (до 80-95 °С) температуpax; их споры выдерживают глубокий вакуум и длит, высушивание. Они переносят гораздо большие дозы ионизирующего излучения, чем в космическом пространстве. Внеземные организмы, вероятно, должны обладать более высокой приспособляемостью к жизни в среде, содержащей малое количество воды. Анаэробные условия не служат препятствием для развития жизни, поэтому теоретически можно предположить существование в космосе самых различных по свойствам микроорганизмов, которые могли адаптироваться к необычным условиям, вырабатывая различные защитные приспособления. Эксперименты, осуществлённые в СССР и США, не дали доказательств существования жизни на Марсе, нет жизни на Венере и Меркурии, маловероятна она и на планетах-гигантах, а также их спутниках. В Солнечной системе жизнь есть, вероятно, лишь на Земле. Согласно одним представлениям, жизнь вне Земли возможна только на водно-углеродной основе, свойственной нашей планете. Другая точка зрения не исключает и кремниевоаммиачной основы, однако человечество пока не владеет методами обнаружения внеземных форм жизни.

    «Викинг»

    Программа «Викинг»

    Программа «Викинг» - космическая программа НАСА по изучению Марса, в частности, на предмет наличия жизни на этой планете. Программа включала запуск двух идентичных космических аппаратов - «Викинг-1» и «Викинг-2», которые должны были провести исследования на орбите и на поверхности Марса. Программа «Викинг» была кульминацией серии миссий по изучению Марса начало которым положил в 1964 г. «Маринер-4», продолжены «Маринер-6» и «Маринер-7», пролетевших в 1969, и орбитальными миссиями «Маринер-9» в 1971 и 1972 гг. «Викинги» заняли место в истории освоения Марса как первые, благополучно севшие на поверхность, американские космические аппараты. Это была одна из наиболее информативных и успешных миссий на красную планету, хотя ей и не удалось обнаружить жизнь на Марсе.

    Оба аппарата были запущены в 1975 г. с мыса Канаверал, штат Флорида. Перед полётом спускаемые аппараты были тщательно стерилизованы для предотвращения заражения Марса земными формами жизни. Время полета заняло немногим меньше года и к Марсу прибыли в 1976 г. Продолжительность миссий «Викинг» планировалась в 90 дней после приземления, но каждый аппарат проработал значительно больше этого срока. Орбитальный аппарат «Викинг-1» проработал до 7 августа 1980 г., спускаемый аппарат - до 11 ноября 1982 г. Орбитальный аппарат «Викинг-2» функционировал до 25 июля 1978 г., спускаемый аппарат - до 11 апреля 1980 г.

    Заснеженная пустыня на Марсе. Снимок «Викинга-2»

    Программа «БИОН»

    Программа «БИОН» включает в себя комплексные исследования на животных и растительных организмах в полетах специализированных спутников (биоспутников) в интересах космической биологии, медицины и биотехнологии. С 1973 по 1996 г. запущено в космос 11 биоспутников.

    Ведущее научное учреждение: ГНЦ РФ - Институт медико-биологически проблем РАН (г. Москва)
    Конструкторское бюро: ГНП РКЦ «ЦСКБ-Прогресс» (г. Самара)
    Длительность полетов: от 5 до 22,5 сут.
    Место запуска: космодром Плесецк
    Район приземления: Казахстан
    Страны-участницы: СССР, Россия, Болгария, Венгрия, Германия, Канада, Китай, Нидерланды, Польша, Румыния, США, Франция, Чехословакия

    Исследования на крысах и обезьянах в полетах биоспутников показали, что пребывание в невесомости приводит к существенным, но обратимым функциональным, структурным и метаболическим изменениям в мышцах, костях, миокарде и нейро-сенсорной системе млекопитающих. Описана феноменология и изучен механизм развития этих изменений.

    Впервые в полетах биоспутников «БИОН» реализована на практике идея о создании искусственной силы тяжести (ИСТ). В экспериментах на крысах установлено, что ИСТ, создаваемая вращением животных на центрифуге, препятствует развитию неблагоприятных изменений в мышцах, костях и миокарде.

    В рамках Федеральной космической программы России на период 2006-2015 гг. в разделе «Космические средства для фундаментальных космических исследований » запланировано продолжение программы «БИОН», запуски космических аппаратов «БИОН-М» намечены на 2010, 2013 и 2016 гг.

    «БИОН»

    Перспективы развития исследований

    Современный этап освоения и изучения космического пространства характеризуется постепенным переходом от длительных орбитальных полетов к межпланетным перелетам, ближайшим из которых видится экспедиция на Марс . В этом случае ситуация меняется коренным образом. Она меняется не только объективно, что связано со значительным увеличением длительности пребывания в космосе, посадкой на другую планету и возвращением на Землю, но и, что очень важно - субъективно, поскольку, покинув уже ставшую привычной земную орбиту, космонавты останутся (в весьма небольшой по численности группе своих коллег) «одинокими» на необъятных просторах Вселенной.

    Вместе с тем, возникают принципиально новые проблемы, связанные с резким возрастанием интенсивности космической радиации, необходимостью использования возобновляемых источников кислорода, воды и пищи, и главное, решением психологических и медицинских задач.

    DIV_ADBLOCK380">

    Трудность управления такой системой в ограниченном герметически замкнутом объеме настолько велика, что не приходится надеяться на ее скорое внедрение в практику. По всей вероятности переход на биологическую систему жизнеобеспечения будет происходить постепенно по мере готовности ее отдельных звеньев. На первом этапе развития БСЖО, очевидно, произойдет замена физико-химического метода получения кислорода и утилизации углекислого газа - на биологический. Как известно, основные «поставщики» кислорода - это высшие растения и фотосинтезирующие одноклеточные организмы. Более сложной задачей является пополнение запасов воды и пищи.

    Питьевая вода очевидно еще очень долгое время будет иметь «земное происхождение», а техническая (используемая для хозяйственных нужд) уже сейчас восполняется за счет регенерации конденсата атмосферной влаги (КДА), мочи и других источников.

    Безусловно, главный компонент будущей замкнутой экологической системы - растения. Исследования на высших растениях и фотосинтезирующих одноклеточных организмах на борту космических аппаратов показали, что условиях космического полета, растения проходят все стадии развития, начиная с прорастания семян до образования первичных органов, цветения, оплодотворения и созревания нового поколения семян. Таким образом, была экспериментально доказана принципиальная возможность осуществления полного цикла развития растений (от семени до семени) в условиях микрогравитации. Результаты космических экспериментов были настолько обнадеживающими, что позволили уже в начале 80-х годов сделать вывод о том, что разработка систем биологического жизнеобеспечения и создание на этой основе экологически замкнутой системы в ограниченном герметическом объеме является не столь уж сложной задачей. Однако с течением времени стало очевидно, что проблема не может быть решена окончательно, по крайней мере, до тех пор, пока не будут определены (расчетным или экспериментальным путем) основные параметры, позволяющие сбалансировать массо - и энергопотоки этой системы.

    Для возобновления запасов пищи необходимо также ввести в систему животных. Разумеется, на первых этапах это должны быть «малогабаритные» представители животного мира - моллюски, рыбы, птицы, а позже, возможно кролики и другие млекопитающие.

    Таким образом, космонавтам во время межпланетных перелетов необходимо не только научиться выращивать растения, содержать животных и культивировать микроорганизмы, но и разработать надежный, способ управления «космическим ковчегом». А для этого, сначала надо выяснить, как растет и развивается отдельно взятый организм в условиях космического полета, а затем какие требования предъявляет сообществу каждый отдельно взятый элемент замкнутой экологической системы.

    Моей основной задачей в исследовательской работе было выяснить, какой интересный и захватывающий пусть прошли космические исследования и какой долгий путь им ещё предстоит пройти!

    Если только себе представить, какое разнообразие всего живого есть на нашей планете, то что можно предположить тогда о космосе…

    Вселенная настолько большая и неизвестная, что такой вид исследований жизненно важен для нас, живущих на планете Земля. А мы ведь только в самом начале пути и нам предстоит столько всего познать и увидеть!

    На протяжении всего того времени, когда я делал эту работу, узнал столько всего интересного, о чем никогда не подозревал, узнал прекрасных исследователей как Карл Саган, узнал о интереснейших космических программах, проведенных в XX веке, как США, так и в СССР, узнал много о современных программах, как «БИОН», и много всего другого.

    Исследования продолжаются…

    Список использованных источников

    Большая Детская Энциклопедия Вселенная: Научно-популярное издание. - Русское энциклопедическое товарищество, 1999. Сайт http://spacembi. *****/ Большая энциклопедия Вселенная. - М. : Изд-во «Астрель», 1999.

    4. Энциклопедия Вселенная (“РОСМЭН”)

    5. Сайт Wikipedia (картинки)

    6.Космос на рубеже тысячелетий. Документы и материалы. М., Международные отношения (2000г.)

    Приложение.

    “Марссоперенос”

    "Маpссоперенос" Отработка одного из звеньев будущей биолого-технической системы жизнеобеспечения космонавтов.

    Цель: Получение новых данных о процессах газо-жидкостного обеспечения в корнеобитаемых средах в условиях космического полета

    Задачи: Экспериментальное определение коэффициентов капиллярной диффузии влаги и газов

    Ожидаемые результаты: Создание установки с корнеобитаемой средой для выращивания растений применительно к условиям микрогравитации

    · Комплект "Кювета экспериментальная" для определения характеристик влагопереноса (скорости перемещения фронта пропитки и влагосодержания в отдельных зонах)

      Видеокомплекс LIV для видеосъемки движения фронта пропитки

    Цель: Использование новых компьютерных технологий для повышения комфортности пребывания космонавта в условиях длительного космического полета.

    Задачи: Активизация конкретных областей мозга, ответственных за зрительные ассоциации космонавта, связанные с родными местами и семьей на Земле с дальнейшим повышением его работоспособности. Анализ состояния космонавта на орбите путем тестирования по специальным методикам.

    Используемая научная аппаратура:

    Блок EGE2 (индивидуальный жесткий диск космонавта с альбомом фотографий и опросником)

    "VEST" Получение данных для разработки мер профилактики неблагоприятного воздействия условий полета на здоровье и работоспособность экипажа МКС.

    Цель: Оценка новой интегрированной системы одежды из различных типов материалов для использования в условиях космического полета.

    Задачи:

      ношение одежды "VEST", специально разработанной для полета итальянского космонавта Р. Виттори на РС МКС; получение отзыва космонавта в отношении психологического и физиологического самочувствия, то есть комфортности (удобства), носкости одежды; ее эстетики; эффективности теплоустойчивости и физической гигиены на борту станции.

    Ожидаемые результаты: Подтверждение функциональности новой интегрированной системы одежды "VEST", в том числе её эргономических показателей в условиях космического полета, что позволит уменьшить массу и объем одежды, планируемой к использованию в долгосрочных космических полетах на МКС.

Поделитесь с друзьями или сохраните для себя:

Загрузка...