Что называется линейным уравнением. Линейные уравнения

1. Понятие уравнения с одной переменной

2. Равносильные уравнения. Теоремы о равносильности уравнений

3. Решение уравнений с одной переменной

Уравнения с одной переменной

Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в вы­сказывание. Например, при х = -2 предложение = 5 х + 2 обращается в истинное числовое равенство 4 ·(-2) = 5 ·(-2) + 2, а при х = 1 - в лож­ное 4·1 = 5·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем урав­нения (или его решением). Решить уравнение - это значит найти мно­жество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на мно­жестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,-1}.

Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действи­тельных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х : если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)·2 = 6 х + 1, заданное на множестве действи­тельных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имееткорней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовыва­ют, заменяя другим, более простым; полученное уравнение опять пре­образовывают, заменяя более простым, и т.д. Этот процесс продол­жают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями за­данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

Класс: 7

Урок № 1.

Тип урока: закрепление пройденного материала.

Цели урока:

Образовательные:

  • формирование навыка решения уравнения с одним неизвестным сведением его к линейному уравнению с помощью свойств равносильности.

Развивающие:

  • формирование ясности и точности мысли, логического мышления, элементов алгоритмической культуры;
  • развитие математической речи;
  • развитие внимания, памяти;
  • формирование навыков само и взаимопроверки.

Воспитательные:

  • формирование волевые качества;
  • формирование коммуникабельность;
  • выработка объективной оценки своих достижений;
  • формирование ответственности.

Оборудование: интерактивная доска, доска для фломастеров, карточки с заданиями для самостоятельной работы, карточки для коррекции знаний для слабоуспевающих учащихся, учебник, рабочая тетрадь, тетрадь для домашних работ, тетрадь для самостоятельных работ.

Ход урока

2. Проверка домашнего задания – 4 мин.

Учащиеся проверяют домашнюю работу, решение которой выведено с обратной стороны доски одним из учащихся.

3. Устная работа– 6 мин.

(1) Пока идет устный счет, слабоуспевающие учащиеся получают карточку для коррекции знаний и выполняют 1), 2), 4) и 6) задания по образцу. (См. Приложение 1. )

Карточка для коррекции знаний.

(2) Для остальных учащихся задания проецируются на интерактивную доску: (См. Презентацию : Слайд 2 )

  1. Вместо звездочки поставь знак “+” или “–”, а вместо точек – числа:
    а) (*5)+(*7) = 2;
    б) (*8) – (*8) = (*4)–12;
    в) (*9) + (*4) = –5;
    г) (–15) – (*…) = 0;
    д) (*8) + (*…) = –12;
    е) (*10) – (*…) = 12.
  2. Составь уравнения, равносильные уравнению:
    а) х – 7 = 5;
    б) 2х – 4 = 0;
    в) х –11 = х – 7;
    г) 2(х –12) = 2х – 24.

3. Логическая задача: Вика, Наташа и Лена в магазине купили капусту, яблоки и морковь. Все купили разные продукты. Вика купила овощ, Наташа – яблоки или морковь, Лена купила не овощ. Кто что купил? (Один из учащихся, выполнивший задание выходит к доске и заполняет таблицу.) (Слайд 3)

Вика Наташа Лена
К
Я
М

Заполнить таблицу

Вика Наташа Лена
К +
Я +
М +

4. Обобщение умения решать уравнения сведением их к линейному уравнению –9 мин.

Коллективная работа с классом. (Слайд 4)

Решим уравнение

12 – (4х – 18) = (36 + 5х) + (28 – 6х). (1)

для этого выполним следующие преобразования:

1. Раскроем скобки. Если перед скобками стоит знак “плюс”, то скобки можно опустить, сохранив знак каждого слагаемого, заключенного в скобки. Если перед скобками стоит знак “минус”, то скобки можно опустить, изменив знак каждого слагаемого, заключенного в скобки:

12 – 4х + 18 = 36 + 5х + 28 – 6х. (2)

Уравнения (2) и (1) равносильны:

2. Перенесем с противоположными знаками неизвестные члены так, чтобы они были только в одной части уравнения (или в левой, или в правой). Одновременно перенесем известные члены с противоположными знаками так, чтобы они были только в другой части уравнения.

Например, перенесем с противоположными знаками неизвестные члены в левую, а известные – в правую часть уравнения, тогда получим уравнение

– 4х – 5х + 6х = 36 + 28 – 18 - 12, (3)

равносильное уравнению (2) , а следовательно, и уравнению (1) .

3. Приведем подобные слагаемые:

–3х = 34. (4)

Уравнение (4) равносильно уравнению (3) , а следовательно, и уравнению (1) .

4. Разделим обе части уравнения (4) на коэффициент при неизвестном.

Полученное уравнение х = будет равносильно уравнению (4), а следовательно, и уравнениям (3), (2), (1)

Поэтому корнем уравнения (1) будет число

По этой схеме (алгоритму) решаем уравнения на сегодняшнем уроке:

  1. Раскрыть скобки.
  2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.
  3. Привести подобные члены.
  4. Разделить обе части уравнения на коэффициент при неизвестном.

Примечание: следует отметить, что приведенная схема не является обязательной, так как часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными. При решении же других уравнений бывает проще отступить от этой схемы, как, например, в уравнении:

7(х – 2) = 42.

5. Тренировочные упражнения – 8 мин.

№ № 132(а, г), 135(а, г), 138(б, г) – с комментарием и записью на доске.

6. Самостоятельная работа – 14 мин. (выполняется в тетрадях для самостоятельных работ с последующей взаимопроверкой проверкой; ответы будут отображены на интерактивной доске)

Перед самостоятельной работой учащимся будет предложено задание на сообразительность – 2 мин.

Не отрывая карандаша от бумаги и не проходя дважды по одному и тому же участку линии, начертите распечатанное письмо. (Слайд 5)

(Учащиеся используют пластиковые листы и фломастеры.)

1. Решить уравнения (на карточках) (См. Приложение 2 )

Дополнительное задание № 135 (б, в).

7. Подведение итогов урока – 1 мин.

Алгоритм сведения уравнения к линейному уравнению.

8. Сообщение домашнего задания – 2 мин.

п.6, № № 136 (а-г), 240 (а), 243(а, б), 224 (Разъяснить содержание домашнего задания).

Урок № 2.

Цели урока:

Образовательные:

  • повторение правил, систематизация, углубление и расширение ЗУНов учащихся по решению линейных уравнений;
  • формирование умения применять полученные знания при решении уравнений различными способами.

Развивающие:

  • развитие интеллектуальных умений: анализа алгоритма решения уравнения, логического мышления при построении алгоритма решения уравнения, вариативности выбора способа решения, систематизации уравнений по способам решения;
  • развитие математической речи;
  • развитие зрительной памяти.

Воспитательные:

  • воспитание познавательной активности;
  • формирование навыков самоконтроля, взаимоконтроля и самооценки;
  • воспитание чувства ответственности, взаимопомощи;
  • привитие аккуратности, математической грамотности;
  • воспитание чувства товарищества, вежливости, дисциплинированности, ответственности;
  • Здоровьесбережение.

а) образовательная: повторение правил, систематизация, углубление и расширение ЗУНов учащихся по решению линейных уравнений;

б) развивающая: развитие гибкости мышления, памяти, внимания и сообразительности;

в) воспитательная: привитие интереса к предмету и к истории родного края.

Оборудование: интерактивная доска, сигнальные карточки (зеленая и красная), листы с тестовой работой, учебник, рабочая тетрадь, тетрадь для домашних работ, тетрадь для самостоятельных работ.

Форма работы: индивидуальная, коллективная.

Ход урока

1. Организационный момент – 1мин.

Поприветствовать учащихся, проверить их готовность к уроку, объявить тему урока и цель урока.

2. Устная работа – 10 мин.

(Задания для устного счета выводятся на интерактивную доску.) (Слайд 6)

1) Решите задачи:

а) Мама старше дочери на 22 года. Сколько лет маме, если им вместе 46 лет
б) В семье трое братьев и каждый следующий младше предыдущего в два раза. Вместе всем братьям 21 год. Сколько лет каждому?

2) Решите уравнения: (Пояснить)

4) Пояснить задания из домашней работы, вызвавшие затруднение.

3. Выполнение упражнений – 10 мин. (Слайд 8)

(1) Какому неравенству удовлетворяет корень уравнения:

а) x > 1;
б) x < 0;
в) x > 0;
г) x < –1.

(2) При каком значении выражении у значение выражения 2у – 4 в 5 раз меньше значения выражения 5у – 10?

(3) При каком значении k уравнение kx – 9 = 0 имеет корень равный – 2?

Посмотри и запомни (7 секунд). (Слайд 9)

Через 30 секунд учащиеся воспроизводят рисунок на пластиковых листах.

4. Физкультминутка – 1,5 мин.

Упражнение для глаз и для рук

(Учащиеся смотрят и повторяют упражнения, которые проецируются на интерактивную доску.)

5. Самостоятельная тестовая работа – 15 мин.

(Учащиеся выполняют тестовую работу в тетрадях для самостоятельных работ, дублируя ответы в рабочих тетрадях. Сдав тесты, учащиеся сверяют ответы с ответами, отображенными на доске)

Учащиеся, справившиеся с работой раньше всех, помогают слабоуспевающим учащимся.

6. Подведение итогов урока – 2 мин.

– Какое уравнение с одной переменной называется линейным?

– Что называется корнем уравнения?

– Что значит “решить уравнение”?

– Сколько корней может иметь уравнение?

7. Сообщение домашнего задания. – 1 мин.

п.6, № № 294(а, б),244, 241(а, в), 240(г) – Уровень А, В

п.6, № № 244, 241(б, в), 243(в),239, 237– Уровень С

(Разъяснить содержание домашнего задания.)

8. Рефлексия – 0,5 мин.

– Вы довольны своей работой на уроке?

– Какой вид деятельности вам понравился больше всего на уроке.

Литература:

  1. Алгебра 7. / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Пешков, С.В. Суворова. Под редакцией С.А. Теляковского. / М.: Просвещение, 1989 – 2006.
  2. Сборник тестовых заданий для тематического и итогового контроля. Алгебра 7 класс/ Гусева И.Л., Пушкин С.А., Рыбакова Н.В. . Общая ред.: Татур А.О. – М.: “Интеллект-Центр” 2009 – 160 с.
  3. Поурочное планирование по алгебре. / Т.Н.Ерина. Пособие для учителей /М: Изд. “Экзамен”, 2008. – 302, с.
  4. Карточки для коррекции знаний по математике для 7 класса./ Левитас Г.Г. /М.: Илекса, 2000. – 56 с.

Равенство с переменной f(х) = g(х) называется уравнением с одной переменной х. Любое значение переменной, при котором f(х) и g(х) принимают равные числовые значения, называется корнем такого уравнения. Следовательно, решить уравнение – значит найти все корни уравнения или доказать, что их нет.

Уравнение x 2 + 1 = 0 не имеет действительных корней, но имеет корни мнимые: в данном случае это корни х 1 = i, х 2 = -i. В дальнейшем нас же будут интересовать лишь действительные корни уравнения.

Если уравнения имеют одинаковые корни, то они называются равносильными. Те уравнения, которые корней не имеют, относятся к равносильным.

Определим, равносильны ли уравнения:

а) х + 2 = 5 и х + 5 = 8

1. Решим первое уравнение

2. Решим второе уравнение

Корни уравнений совпадают, поэтому х + 2 = 5 и х + 5 = 8 равносильны.

б) x 2 + 1 = 0 и 2x 2 + 5 = 0

Оба данных уравнения не имеют действительных корней, поэтому являются равносильными.

в) х – 5 = 1 и x 2 = 36

1. Найдем корни первого уравнения

2. Найдем корни второго уравнения

х 1 = 6, х 2 = -6

Корни уравнений не совпадают, поэтому х – 5 = 1 и x 2 = 36 неравносильны.

При решении уравнения его стараются заменить равносильным, но более простым уравнением. Поэтому важно знать, в результате каких преобразований данное уравнение переходит в уравнений, равносильное ему.

Теорема 1. Если в уравнении из одной части в другую перенести какое-либо слагаемое, изменив при этом знак, то получится уравнение, равносильное данному.

Например, уравнение x 2 + 2 = 3х равносильно уравнению x 2 + 2 – 3х = 0.

Теорема 2. Если обе части уравнения умножить или разделить на одно и то же число (не равное нулю), то получится уравнение, равносильное данному.

Например, уравнение (x 2 – 1)/3 = 2х равносильно уравнению x 2 – 1 = 6х. Обе части первого уравнения мы умножили на 3.

Линейным уравнением с одной переменной называется уравнение вида ах = b, где а и b – действительные числа, причем а называется коэффициентом при переменной, а b – свободным членом.

Рассмотрим три случая для линейного уравнения ах = b.

1. а ≠ 0. В таком случае х = b/а (т.к. а отлично от нуля).

2. а = 0, b = 0. Уравнение примет вид: 0 ∙ х = 0. Это уравнение верно при любом х, т.е. корень уравнения – любое действительное число.

3. а = 0, b ≠ 0. В данном случае уравнение не будет иметь корней, т.к. деление на нуль запрещено (0 ∙ х = b).

В результате преобразований многие уравнения сводятся к линейным.

Решим уравнения

а) (1/5)х + 2/15= 0

1. Перенесем компонент 2/15 из левой части уравнения в правую с противоположным знаком. Такое преобразование регламентируется теоремой 1. Итак, уравнение примет вид: (1/5)х = -2/15.

2. Чтобы избавиться от знаменателя, домножим обе части уравнения на 15. Сделать это позволяет нам теорема 2. Итак, уравнение примет вид:

(1/5)х ∙ 15= – 2/15 ∙ 15

Т.о., корень уравнения равен -2/3.

б) 2/3 + х/4 + (1 – х)/6 = 5х/12 – 1

1. Чтобы избавиться от знаменателя, домножим обе части уравнения на 12 (по теореме 2). Уравнение примет вид:

12(2/3 + х/4 + (1 – х)/6) = 12(5х/12 – 1)

8 + 3х + 2 – 2х = 5х – 12

10 + х = 5х – 12

2. Пользуясь теоремой 1, «соберем» все числа справа, а компоненты с х – слева. Уравнение примет вид:

10 +12 = 5х – х

Т.о., корень уравнения равен 5,5.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

  • Равенство с переменной называют уравнением.
  • Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  • Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  • Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры. Решить уравнение.

1. 1,5х+4 = 0,3х-2.

1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство:

1,2х = -6. Привели подобные слагаемые по правилу:

х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как

х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:

чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число:

6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

2. 3(2х-9) = 4(х-4).

6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: (a-b) c = a c-b c.

6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 5,5.

3. 7х- (3+2х)=х-9.

7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: -1,5.

3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.

3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.

3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

Линейное уравнение — это алгебраическое уравнение. В этом уравнении полная степень составляющих его многочленов равна единице.

Линейные уравнения представляют в таком виде:

В общей форме: a 1 x 1 + a 2 x 2 + … + a n x n + b = 0

В канонической форме: a 1 x 1 + a 2 x 2 + … + a n x n = b.

Линейное уравнение с одной переменной.

Линейное уравнение с 1-ой переменной приводится к виду:

ax + b =0.

Например:

2х + 7 = 0 . Где а=2, b=7;

0,1х - 2,3 = 0. Где а=0,1, b=-2,3;

12х + 1/2 = 0. Где а=12, b=1/2.

Число корней зависимо от a и b :

Когда a = b =0 , значит, у уравнения есть неограниченное число решений, так как .

Когда a =0 , b ≠ 0 , значит, у уравнения нет корней, так как .

Когда a ≠ 0 , значит, у уравнения есть только один корень .

Линейное уравнение с двумя переменными.

Уравнением с переменной x является равенство типа A(x)=B(x) , где A(x) и B(x) — выражения от x . При подстановке множества T значений x в уравнение получаем истинное числовое равенство, которое называется множеством истинности этого уравнения либо решение заданного уравнения , а все такие значения переменной — корни уравнения.

Линейные уравнения 2-х переменных представляют в таком виде:

В общей форме: ax + by + c = 0,

В канонической форме: ax + by = -c,

В форме линейной функции: y = kx + m , где .

Решением либо корнями этого уравнения является такая пара значений переменных (x;y) , которая превращает его в тождество . Этих решений (корней) у линейного уравнения с 2-мя переменными неограниченное количество. Геометрической моделью (графиком) данного уравнения есть прямая y=kx+m .

Если в уравнении есть икс в квадрате, то такое уравнение называется

Поделитесь с друзьями или сохраните для себя:

Загрузка...