Table of derivatives of elementary algebraic functions with conclusions. Derivatives of basic elementary functions

We present a summary table for convenience and clarity when studying the topic.

Constanty = C

Power function y = x p

(x p) " = p x p - 1

Exponential functiony = ax

(a x) " = a x ln a

In particular, whena = ewe have y = e x

(e x) " = e x

Logarithmic function

(log a x) " = 1 x ln a

In particular, whena = ewe have y = logx

(ln x) " = 1 x

Trigonometric functions

(sin x) " = cos x (cos x) " = - sin x (t g x) " = 1 cos 2 x (c t g x) " = - 1 sin 2 x

Inverse trigonometric functions

(a r c sin x) " = 1 1 - x 2 (a r c cos x) " = - 1 1 - x 2 (a r c t g x) " = 1 1 + x 2 (a r c c t g x) " = - 1 1 + x 2

Hyperbolic functions

(s h x) " = c h x (c h x) " = s h x (t h x) " = 1 c h 2 x (c t h x) " = - 1 s h 2 x

Let us analyze how the formulas of the specified table were obtained or, in other words, we will prove the derivation of derivative formulas for each type of function.

Derivative of a constant

Evidence 1

In order to derive this formula, we take as a basis the definition of the derivative of a function at a point. We use x 0 = x, where x takes the value of any real number, or, in other words, x is any number from the domain of the function f (x) = C. Let's write down the limit of the ratio of the increment of a function to the increment of the argument as ∆ x → 0:

lim ∆ x → 0 ∆ f (x) ∆ x = lim ∆ x → 0 C - C ∆ x = lim ∆ x → 0 0 ∆ x = 0

Please note that the expression 0 ∆ x falls under the limit sign. It is not the uncertainty “zero divided by zero,” since the numerator does not contain an infinitesimal value, but precisely zero. In other words, the increment of a constant function is always zero.

So, the derivative of the constant function f (x) = C is equal to zero throughout the entire domain of definition.

Example 1

The constant functions are given:

f 1 (x) = 3, f 2 (x) = a, a ∈ R, f 3 (x) = 4. 13 7 22 , f 4 (x) = 0 , f 5 (x) = - 8 7

Solution

Let us describe the given conditions. In the first function we see the derivative of the natural number 3. In the following example, you need to take the derivative of A, Where A- any real number. The third example gives us the derivative of the irrational number 4. 13 7 22, the fourth is the derivative of zero (zero is an integer). Finally, in the fifth case we have the derivative of the rational fraction - 8 7.

Answer: derivatives of given functions are zero for any real x(over the entire definition area)

f 1 " (x) = (3) " = 0 , f 2 " (x) = (a) " = 0 , a ∈ R , f 3 " (x) = 4 . 13 7 22 " = 0 , f 4 " (x) = 0 " = 0 , f 5 " (x) = - 8 7 " = 0

Derivative of a power function

Let's move on to the power function and the formula for its derivative, which has the form: (x p) " = p x p - 1, where the exponent p is any real number.

Evidence 2

Here is the proof of the formula when the exponent is a natural number: p = 1, 2, 3, …

We again rely on the definition of a derivative. Let's write down the limit of the ratio of the increment of a power function to the increment of the argument:

(x p) " = lim ∆ x → 0 = ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x

To simplify the expression in the numerator, we use Newton’s binomial formula:

(x + ∆ x) p - x p = C p 0 + x p + C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + + C p p - 1 x (∆ x) p - 1 + C p p (∆ x) p - x p = = C p 1 x p - 1 ∆ x + C p 2 x p - 2 (∆ x) 2 + . . . + C p p - 1 x (∆ x) p - 1 + C p p (∆ x) p

Thus:

(x p) " = lim ∆ x → 0 ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x = = lim ∆ x → 0 (C p 1 x p - 1 ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p) ∆ x = = lim ∆ x → 0 (C p 1 x p - 1 + C p 2 x p - 2 ∆ x + . . + C p p - 1 x (∆ x) p - 2 + C p p (∆ x) p - 1) = = C p 1 · x p - 1 + 0 + .

Thus, we have proven the formula for the derivative of a power function when the exponent is a natural number.

Evidence 3

To provide evidence for the case when p- any real number other than zero, we use the logarithmic derivative (here we should understand the difference from the derivative of a logarithmic function). To have a more complete understanding, it is advisable to study the derivative of a logarithmic function and additionally understand the derivative of an implicit function and the derivative of a complex function.

Let's consider two cases: when x positive and when x negative.

So x > 0. Then: x p > 0 . Let us logarithm the equality y = x p to base e and apply the property of the logarithm:

y = x p ln y = ln x p ln y = p · ln x

At this stage, we have obtained an implicitly specified function. Let's define its derivative:

(ln y) " = (p · ln x) 1 y · y " = p · 1 x ⇒ y " = p · y x = p · x p x = p · x p - 1

Now we consider the case when x – a negative number.

If the indicator p is an even number, then the power function is defined for x< 0 , причем является четной: y (x) = - y ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p · x p - 1

Then x p< 0 и возможно составить доказательство, используя логарифмическую производную.

If p is an odd number, then the power function is defined for x< 0 , причем является нечетной: y (x) = - y (- x) = - (- x) p . Тогда x p < 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y " (x) = (- (- x) p) " = - ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p x p - 1

The last transition is possible due to the fact that if p is an odd number, then p - 1 either an even number or zero (for p = 1), therefore, for negative x the equality (- x) p - 1 = x p - 1 is true.

So, we have proven the formula for the derivative of a power function for any real p.

Example 2

Functions given:

f 1 (x) = 1 x 2 3 , f 2 (x) = x 2 - 1 4 , f 3 (x) = 1 x log 7 12

Determine their derivatives.

Solution

We transform some of the given functions into tabular form y = x p , based on the properties of the degree, and then use the formula:

f 1 (x) = 1 x 2 3 = x - 2 3 ⇒ f 1 " (x) = - 2 3 x - 2 3 - 1 = - 2 3 x - 5 3 f 2 " (x) = x 2 - 1 4 = 2 - 1 4 x 2 - 1 4 - 1 = 2 - 1 4 x 2 - 5 4 f 3 (x) = 1 x log 7 12 = x - log 7 12 ⇒ f 3" ( x) = - log 7 12 x - log 7 12 - 1 = - log 7 12 x - log 7 12 - log 7 7 = - log 7 12 x - log 7 84

Derivative of an exponential function

Proof 4

Let us derive the derivative formula using the definition as a basis:

(a x) " = lim ∆ x → 0 a x + ∆ x - a x ∆ x = lim ∆ x → 0 a x (a ∆ x - 1) ∆ x = a x lim ∆ x → 0 a ∆ x - 1 ∆ x = 0 0

We got uncertainty. To expand it, let's write a new variable z = a ∆ x - 1 (z → 0 as ∆ x → 0). In this case, a ∆ x = z + 1 ⇒ ∆ x = log a (z + 1) = ln (z + 1) ln a . For the last transition, the formula for transition to a new logarithm base was used.

Let us substitute into the original limit:

(a x) " = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln (z + 1) = = a x · ln a · lim ∆ x → 0 1 ln (z + 1) 1 z = a x · ln a · 1 ln lim ∆ x → 0 (z + 1) 1 z

Let us remember the second remarkable limit and then we obtain the formula for the derivative of the exponential function:

(a x) " = a x · ln a · 1 ln lim z → 0 (z + 1) 1 z = a x · ln a · 1 ln e = a x · ln a

Example 3

The exponential functions are given:

f 1 (x) = 2 3 x , f 2 (x) = 5 3 x , f 3 (x) = 1 (e) x

It is necessary to find their derivatives.

Solution

We use the formula for the derivative of the exponential function and the properties of the logarithm:

f 1 " (x) = 2 3 x " = 2 3 x ln 2 3 = 2 3 x (ln 2 - ln 3) f 2 " (x) = 5 3 x " = 5 3 x ln 5 1 3 = 1 3 5 3 x ln 5 f 3 " (x) = 1 (e) x " = 1 e x " = 1 e x ln 1 e = 1 e x ln e - 1 = - 1 e x

Derivative of a logarithmic function

Evidence 5

Let us provide a proof of the formula for the derivative of a logarithmic function for any x in the domain of definition and any permissible values ​​of the base a of the logarithm. Based on the definition of derivative, we get:

(log a x) " = lim ∆ x → 0 log a (x + ∆ x) - log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a

From the indicated chain of equalities it is clear that the transformations were based on the property of the logarithm. The equality lim ∆ x → 0 1 + ∆ x x x ∆ x = e is true in accordance with the second remarkable limit.

Example 4

Logarithmic functions are given:

f 1 (x) = log ln 3 x , f 2 (x) = ln x

It is necessary to calculate their derivatives.

Solution

Let's apply the derived formula:

f 1 " (x) = (log ln 3 x) " = 1 x · ln (ln 3) ; f 2 " (x) = (ln x) " = 1 x ln e = 1 x

So, the derivative of the natural logarithm is one divided by x.

Derivatives of trigonometric functions

Proof 6

Let's use some trigonometric formulas and the first wonderful limit to derive the formula for the derivative of a trigonometric function.

According to the definition of the derivative of the sine function, we get:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x

The formula for the difference of sines will allow us to perform the following actions:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x = = lim ∆ x → 0 2 sin x + ∆ x - x 2 cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2

Finally, we use the first wonderful limit:

sin " x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x

So, the derivative of the function sin x will cos x.

We will also prove the formula for the derivative of the cosine:

cos " x = lim ∆ x → 0 cos (x + ∆ x) - cos x ∆ x = = lim ∆ x → 0 - 2 sin x + ∆ x - x 2 sin x + ∆ x + x 2 ∆ x = = - lim ∆ x → 0 sin ∆ x 2 sin x + ∆ x 2 ∆ x 2 = = - sin x + 0 2 lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = - sin x

Those. the derivative of the cos x function will be – sin x.

We derive the formulas for the derivatives of tangent and cotangent based on the rules of differentiation:

t g " x = sin x cos x " = sin " x · cos x - sin x · cos " x cos 2 x = = cos x · cos x - sin x · (- sin x) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g " x = cos x sin x " = cos " x · sin x - cos x · sin " x sin 2 x = = - sin x · sin x - cos x · cos x sin 2 x = - sin 2 x + cos 2 x sin 2 x = - 1 sin 2 x

Derivatives of inverse trigonometric functions

The section on the derivative of inverse functions provides comprehensive information on the proof of the formulas for the derivatives of arcsine, arccosine, arctangent and arccotangent, so we will not duplicate the material here.

Derivatives of hyperbolic functions

Evidence 7

We can derive the formulas for the derivatives of the hyperbolic sine, cosine, tangent and cotangent using the differentiation rule and the formula for the derivative of the exponential function:

s h " x = e x - e - x 2 " = 1 2 e x " - e - x " = = 1 2 e x - - e - x = e x + e - x 2 = c h x c h " x = e x + e - x 2 " = 1 2 e x " + e - x " = = 1 2 e x + - e - x = e x - e - x 2 = s h x t h " x = s h x c h x " = s h " x · c h x - s h x · c h " x c h 2 x = c h 2 x - s h 2 x c h 2 x = 1 c h 2 x c t h " x = c h x s h x " = c h " x · s h x - c h x · s h " x s h 2 x = s h 2 x - c h 2 x s h 2 x = - 1 s h 2 x

If you notice an error in the text, please highlight it and press Ctrl+Enter

If you follow the definition, then the derivative of a function at a point is the limit of the ratio of the increment of the function Δ y to the argument increment Δ x:

Everything seems to be clear. But try using this formula to calculate, say, the derivative of the function f(x) = x 2 + (2x+ 3) · e x sin x. If you do everything by definition, then after a couple of pages of calculations you will simply fall asleep. Therefore, there are simpler and more effective ways.

To begin with, we note that from the entire variety of functions we can distinguish the so-called elementary functions. These are relatively simple expressions, the derivatives of which have long been calculated and entered into the table. Such functions are quite easy to remember - along with their derivatives.

Derivatives of elementary functions

Elementary functions are all those listed below. The derivatives of these functions must be known by heart. Moreover, it is not at all difficult to memorize them - that’s why they are elementary.

So, derivatives of elementary functions:

Name Function Derivative
Constant f(x) = C, CR 0 (yes, zero!)
Power with rational exponent f(x) = x n n · x n − 1
Sinus f(x) = sin x cos x
Cosine f(x) = cos x −sin x(minus sine)
Tangent f(x) = tg x 1/cos 2 x
Cotangent f(x) = ctg x − 1/sin 2 x
Natural logarithm f(x) = log x 1/x
Arbitrary logarithm f(x) = log a x 1/(x ln a)
Exponential function f(x) = e x e x(nothing changed)

If an elementary function is multiplied by an arbitrary constant, then the derivative of the new function is also easily calculated:

(C · f)’ = C · f ’.

In general, constants can be taken out of the sign of the derivative. For example:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

Obviously, elementary functions can be added to each other, multiplied, divided - and much more. This is how new functions will appear, no longer particularly elementary, but also differentiated according to certain rules. These rules are discussed below.

Derivative of sum and difference

Let the functions be given f(x) And g(x), the derivatives of which are known to us. For example, you can take the elementary functions discussed above. Then you can find the derivative of the sum and difference of these functions:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

So, the derivative of the sum (difference) of two functions is equal to the sum (difference) of the derivatives. There may be more terms. For example, ( f + g + h)’ = f ’ + g ’ + h ’.

Strictly speaking, there is no concept of “subtraction” in algebra. There is a concept of “negative element”. Therefore the difference fg can be rewritten as a sum f+ (−1) g, and then only one formula remains - the derivative of the sum.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Function f(x) is the sum of two elementary functions, therefore:

f ’(x) = (x 2 + sin x)’ = (x 2)’ + (sin x)’ = 2x+ cos x;

We reason similarly for the function g(x). Only there are already three terms (from the point of view of algebra):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Answer:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Derivative of the product

Mathematics is a logical science, so many people believe that if the derivative of a sum is equal to the sum of derivatives, then the derivative of the product strike">equal to the product of derivatives. But screw you! The derivative of a product is calculated using a completely different formula. Namely:

(f · g) ’ = f ’ · g + f · g

The formula is simple, but it is often forgotten. And not only schoolchildren, but also students. The result is incorrectly solved problems.

Task. Find derivatives of functions: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Function f(x) is the product of two elementary functions, so everything is simple:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (−sin x) = x 2 (3cos xx sin x)

Function g(x) the first multiplier is a little more complicated, but the general scheme does not change. Obviously, the first factor of the function g(x) is a polynomial and its derivative is the derivative of the sum. We have:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)’ · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Answer:
f ’(x) = x 2 (3cos xx sin x);
g ’(x) = x(x+ 9) · e x .

Please note that in the last step the derivative is factorized. Formally, this does not need to be done, but most derivatives are not calculated on their own, but to examine the function. This means that further the derivative will be equated to zero, its signs will be determined, and so on. For such a case, it is better to have an expression factorized.

If there are two functions f(x) And g(x), and g(x) ≠ 0 on the set we are interested in, we can define a new function h(x) = f(x)/g(x). For such a function you can also find the derivative:

Not weak, right? Where did the minus come from? Why g 2? And like this! This is one of the most complex formulas - you can’t figure it out without a bottle. Therefore, it is better to study it with specific examples.

Task. Find derivatives of functions:

The numerator and denominator of each fraction contain elementary functions, so all we need is the formula for the derivative of the quotient:


According to tradition, we factorize the numerator - this will greatly simplify the answer:

A complex function is not necessarily a half-kilometer-long formula. For example, it is enough to take the function f(x) = sin x and replace the variable x, say, on x 2 + ln x. It will work out f(x) = sin ( x 2 + ln x) - this is a complex function. It also has a derivative, but it will not be possible to find it using the rules discussed above.

What should I do? In such cases, replacing a variable and formula for the derivative of a complex function helps:

f ’(x) = f ’(t) · t', If x is replaced by t(x).

As a rule, the situation with understanding this formula is even more sad than with the derivative of the quotient. Therefore, it is also better to explain it using specific examples, with a detailed description of each step.

Task. Find derivatives of functions: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Note that if in the function f(x) instead of expression 2 x+ 3 will be easy x, then we get an elementary function f(x) = e x. Therefore, we make a replacement: let 2 x + 3 = t, f(x) = f(t) = e t. We look for the derivative of a complex function using the formula:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

And now - attention! We perform the reverse replacement: t = 2x+ 3. We get:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Now let's look at the function g(x). Obviously it needs to be replaced x 2 + ln x = t. We have:

g ’(x) = g ’(t) · t’ = (sin t)’ · t’ = cos t · t

Reverse replacement: t = x 2 + ln x. Then:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

That's all! As can be seen from the last expression, the whole problem has been reduced to calculating the derivative sum.

Answer:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Very often in my lessons, instead of the term “derivative,” I use the word “prime.” For example, the stroke of the sum is equal to the sum of the strokes. Is that clearer? Well, that's good.

Thus, calculating the derivative comes down to getting rid of these same strokes according to the rules discussed above. As a final example, let's return to the derivative power with a rational exponent:

(x n)’ = n · x n − 1

Few people know that in the role n may well be a fractional number. For example, the root is x 0.5. What if there is something fancy under the root? Again, the result will be a complex function - they like to give such constructions in tests and exams.

Task. Find the derivative of the function:

First, let's rewrite the root as a power with a rational exponent:

f(x) = (x 2 + 8x − 7) 0,5 .

Now we make a replacement: let x 2 + 8x − 7 = t. We find the derivative using the formula:

f ’(x) = f ’(t) · t ’ = (t 0.5)’ · t’ = 0.5 · t−0.5 · t ’.

Let's do the reverse replacement: t = x 2 + 8x− 7. We have:

f ’(x) = 0.5 · ( x 2 + 8x− 7) −0.5 · ( x 2 + 8x− 7)’ = 0.5 · (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Finally, back to the roots:

Very easy to remember.

Well, let’s not go far, let’s immediately consider the inverse function. Which function is the inverse of the exponential function? Logarithm:

In our case, the base is the number:

Such a logarithm (that is, a logarithm with a base) is called “natural”, and we use a special notation for it: we write instead.

What is it equal to? Of course, .

The derivative of the natural logarithm is also very simple:

Examples:

  1. Find the derivative of the function.
  2. What is the derivative of the function?

Answers: The exponential and natural logarithm are uniquely simple functions from a derivative perspective. Exponential and logarithmic functions with any other base will have a different derivative, which we will analyze later, after we go through the rules of differentiation.

Rules of differentiation

Rules of what? Again a new term, again?!...

Differentiation is the process of finding the derivative.

That's all. What else can you call this process in one word? Not derivative... Mathematicians call the differential the same increment of a function at. This term comes from the Latin differentia - difference. Here.

When deriving all these rules, we will use two functions, for example, and. We will also need formulas for their increments:

There are 5 rules in total.

The constant is taken out of the derivative sign.

If - some constant number (constant), then.

Obviously, this rule also works for the difference: .

Let's prove it. Let it be, or simpler.

Examples.

Find the derivatives of the functions:

  1. at a point;
  2. at a point;
  3. at a point;
  4. at the point.

Solutions:

  1. (the derivative is the same at all points, since it is a linear function, remember?);

Derivative of the product

Everything is similar here: let’s introduce a new function and find its increment:

Derivative:

Examples:

  1. Find the derivatives of the functions and;
  2. Find the derivative of the function at a point.

Solutions:

Derivative of an exponential function

Now your knowledge is enough to learn how to find the derivative of any exponential function, and not just exponents (have you forgotten what that is yet?).

So, where is some number.

We already know the derivative of the function, so let's try to reduce our function to a new base:

To do this, we will use a simple rule: . Then:

Well, it worked. Now try to find the derivative, and don't forget that this function is complex.

Happened?

Here, check yourself:

The formula turned out to be very similar to the derivative of an exponent: as it was, it remains the same, only a factor appeared, which is just a number, but not a variable.

Examples:
Find the derivatives of the functions:

Answers:

This is just a number that cannot be calculated without a calculator, that is, it cannot be written down in a simpler form. Therefore, we leave it in this form in the answer.

    Note that here is the quotient of two functions, so we apply the corresponding differentiation rule:

    In this example, the product of two functions:

Derivative of a logarithmic function

It’s similar here: you already know the derivative of the natural logarithm:

Therefore, to find an arbitrary logarithm with a different base, for example:

We need to reduce this logarithm to the base. How do you change the base of a logarithm? I hope you remember this formula:

Only now we will write instead:

The denominator is simply a constant (a constant number, without a variable). The derivative is obtained very simply:

Derivatives of exponential and logarithmic functions are almost never found in the Unified State Examination, but it will not be superfluous to know them.

Derivative of a complex function.

What is a "complex function"? No, this is not a logarithm, and not an arctangent. These functions can be difficult to understand (although if you find the logarithm difficult, read the topic “Logarithms” and you will be fine), but from a mathematical point of view, the word “complex” does not mean “difficult”.

Imagine a small conveyor belt: two people are sitting and doing some actions with some objects. For example, the first one wraps a chocolate bar in a wrapper, and the second one ties it with a ribbon. The result is a composite object: a chocolate bar wrapped and tied with a ribbon. To eat a chocolate bar, you need to do the reverse steps in reverse order.

Let's create a similar mathematical pipeline: first we will find the cosine of a number, and then square the resulting number. So, we are given a number (chocolate), I find its cosine (wrapper), and then you square what I got (tie it with a ribbon). What happened? Function. This is an example of a complex function: when, to find its value, we perform the first action directly with the variable, and then a second action with what resulted from the first.

In other words, a complex function is a function whose argument is another function: .

For our example, .

We can easily do the same steps in reverse order: first you square it, and then I look for the cosine of the resulting number: . It’s easy to guess that the result will almost always be different. An important feature of complex functions: when the order of actions changes, the function changes.

Second example: (same thing). .

The action we do last will be called "external" function, and the action performed first - accordingly "internal" function(these are informal names, I use them only to explain the material in simple language).

Try to determine for yourself which function is external and which internal:

Answers: Separating inner and outer functions is very similar to changing variables: for example, in a function

  1. What action will we perform first? First, let's calculate the sine, and only then cube it. This means that it is an internal function, but an external one.
    And the original function is their composition: .
  2. Internal: ; external: .
    Examination: .
  3. Internal: ; external: .
    Examination: .
  4. Internal: ; external: .
    Examination: .
  5. Internal: ; external: .
    Examination: .

We change variables and get a function.

Well, now we will extract our chocolate bar and look for the derivative. The procedure is always reversed: first we look for the derivative of the outer function, then we multiply the result by the derivative of the inner function. In relation to the original example, it looks like this:

Another example:

So, let's finally formulate the official rule:

Algorithm for finding the derivative of a complex function:

It seems simple, right?

Let's check with examples:

Solutions:

1) Internal: ;

External: ;

2) Internal: ;

(Just don’t try to cut it by now! Nothing comes out from under the cosine, remember?)

3) Internal: ;

External: ;

It is immediately clear that this is a three-level complex function: after all, this is already a complex function in itself, and we also extract the root from it, that is, we perform the third action (put the chocolate in a wrapper and with a ribbon in the briefcase). But there is no reason to be afraid: we will still “unpack” this function in the same order as usual: from the end.

That is, first we differentiate the root, then the cosine, and only then the expression in brackets. And then we multiply it all.

In such cases, it is convenient to number the actions. That is, let's imagine what we know. In what order will we perform actions to calculate the value of this expression? Let's look at an example:

The later the action is performed, the more “external” the corresponding function will be. The sequence of actions is the same as before:

Here the nesting is generally 4-level. Let's determine the order of action.

1. Radical expression. .

2. Root. .

3. Sine. .

4. Square. .

5. Putting it all together:

DERIVATIVE. BRIEFLY ABOUT THE MAIN THINGS

Derivative of a function- the ratio of the increment of the function to the increment of the argument for an infinitesimal increment of the argument:

Basic derivatives:

Rules of differentiation:

The constant is taken out of the derivative sign:

Derivative of the sum:

Derivative of the product:

Derivative of the quotient:

Derivative of a complex function:

Algorithm for finding the derivative of a complex function:

  1. We define the “internal” function and find its derivative.
  2. We define the “external” function and find its derivative.
  3. We multiply the results of the first and second points.

Prove formulas 3 and 5 yourself.


BASIC RULES OF DIFFERENTIATION

Using the general method of finding the derivative using the limit, one can obtain the simplest differentiation formulas. Let u=u(x),v=v(x)– two differentiable functions of a variable x.

Prove formulas 1 and 2 yourself.

Proof of Formula 3.

Let y = u(x) + v(x). For argument value xx we have y(xx)=u(xx) + v(xx).

Δ y=y(xx) – y(x) = u(xx) + v(xx)u(x)v(x) = Δ uv.

Hence,

Proof of formula 4.

Let y=u(x)·v(x). Then y(xx)=u(xxv(xx), That's why

Δ y=u(xxv(xx) – u(xv(x).

Note that since each of the functions u And v differentiable at the point x, then they are continuous at this point, which means u(xx)→u(x), v(xx)→v(x), at Δ x→0.

Therefore we can write

Based on this property, one can obtain a rule for differentiating the product of any number of functions.

Let, for example, y=u·v·w. Then,

y " = u "·( v w) + u·( v·w) " = uv·w + u·( v"·w + v·w ") = uv·w + u· v"·w+ u·v·w ".

Proof of formula 5.

Let . Then

In the proof we used the fact that v(x+Δ x)v(x) at Δ x→0.

Examples.

THEOREM ON THE DERIVATIVE OF COMPLEX FUNCTION

Let y = f(u), A u= u(x). We get the function y, depending on the argument x: y = f(u(x)). The last function is called a function of a function or complex function.

Function definition domain y = f(u(x)) is either the entire domain of definition of the function u=u(x) or that part in which the values ​​are determined u, not leaving the domain of definition of the function y= f(u).

The “function from function” operation can be performed not just once, but any number of times.

Let us establish a rule for differentiating a complex function.

Theorem. If the function u= u(x) has at some point x 0 derivative and takes on the value at this point u 0 = u(x 0), and the function y=f(u) has at point u 0 derivative y" u = f "(u 0), then a complex function y = f(u(x)) at the specified point x 0 also has a derivative, which is equal to y" x = f "(u 0u "(x 0), where instead of u the expression must be substituted u= u(x).

Thus, the derivative of a complex function is equal to the product of the derivative of a given function with respect to the intermediate argument u to the derivative of the intermediate argument with respect to x.

Proof. For a fixed value X 0 we will have u 0 =u(x 0), at 0 =f(u 0 ). For a new argument value x 0x:

Δ u= u(x 0 + Δ x) – u(x 0), Δ y=f(u 0u) – f(u 0).

Because u– differentiable at a point x 0, That u– is continuous at this point. Therefore, at Δ x→0 Δ u→0. Similarly for Δ u→0 Δ y→0.

By condition . From this relation, using the definition of the limit, we obtain (at Δ u→0)

where α→0 at Δ u→0, and, consequently, at Δ x→0.

Let us rewrite this equality as:

Δ y=y" uΔ u+α·Δ u.

The resulting equality is also valid for Δ u=0 for arbitrary α, since it turns into the identity 0=0. At Δ u=0 we will assume α=0. Let us divide all terms of the resulting equality by Δ x

.

By condition . Therefore, passing to the limit at Δ x→0, we get y" x = y"u·u" x. The theorem has been proven.

So, to differentiate a complex function y = f(u(x)), you need to take the derivative of the "external" function f, treating its argument simply as a variable, and multiply by the derivative of the "inner" function with respect to the independent variable.

If the function y=f(x) can be represented in the form y=f(u), u=u(v), v=v(x), then finding the derivative y " x is carried out by sequential application of the previous theorem.

According to the proven rule, we have y" x = y" u u"x. Applying the same theorem for u"x we get, i.e.

y" x = y" x u" v v" x = f"u( uu" v ( vv" x ( x).

Examples.

CONCEPT OF INVERSE FUNCTION

Let's start with an example. Consider the function y= x 3. We will consider the equality y= x 3 as an equation relative x. This is the equation for each value at defines a single value x: . Geometrically, this means that every straight line parallel to the axis Ox intersects the graph of a function y= x 3 only at one point. Therefore we can consider x as a function of y. A function is called the inverse of a function y= x 3.

Before moving on to the general case, we introduce definitions.

Function y = f(x) called increasing on a certain segment, if the larger value of the argument x from this segment corresponds to a larger value of the function, i.e. If x 2 >x 1, then f(x 2 ) > f(x 1 ).

The function is called similarly decreasing, if a smaller value of the argument corresponds to a larger value of the function, i.e. If X 2 < X 1, then f(x 2 ) > f(x 1 ).

So, let's be given an increasing or decreasing function y=f(x), defined on some interval [ a; b]. For definiteness, we will consider an increasing function (for a decreasing one everything is similar).

Consider two different values X 1 and X 2. Let y 1 =f(x 1 ), y 2 =f(x 2 ). From the definition of an increasing function it follows that if x 1 <x 2, then at 1 <at 2. Therefore, two different values X 1 and X 2 corresponds to two different function values at 1 and at 2. The opposite is also true, i.e. If at 1 <at 2, then from the definition of an increasing function it follows that x 1 <x 2. Those. again two different values at 1 and at 2 corresponds to two different values x 1 and x 2. Thus, between the values x and their corresponding values y a one-to-one correspondence is established, i.e. the equation y=f(x) for each y(taken from the range of the function y=f(x)) defines a single value x, and we can say that x there is some argument function y: x= g(y).

This function is called reverse for function y=f(x). Obviously, the function y=f(x) is the inverse of the function x=g(y).

Note that the inverse function x=g(y) found by solving the equation y=f(x) relatively X.

Example. Let the function be given y= e x . This function increases at –∞< x <+∞. Она имеет обратную функцию x= log y. Domain of inverse function 0< y < + ∞.

Let's make a few comments.

Note 1. If an increasing (or decreasing) function y=f(x) is continuous on the interval [ a; b], and f(a)=c, f(b)=d, then the inverse function is defined and continuous on the interval [ c; d].

Note 2. If the function y=f(x) is neither increasing nor decreasing on a certain interval, then it can have several inverse functions.

Example. Function y=x2 defined at –∞<x<+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотриминтервал 0≤x<+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ <x≤ 0 function – decreases and its inverse.

Note 3. If the functions y=f(x) And x=g(y) are mutually inverse, then they express the same relationship between variables x And y. Therefore, the graph of both is the same curve. But if we denote the argument of the inverse function again by x, and the function through y and plot them in the same coordinate system, we will get two different graphs. It is easy to notice that the graphs will be symmetrical with respect to the bisector of the 1st coordinate angle.


THEOREM ON THE DERIVATIVE INVERSE FUNCTION

Let us prove a theorem that allows us to find the derivative of the function y=f(x), knowing the derivative of the inverse function.

Theorem. If for the function y=f(x) there is an inverse function x=g(y), which at some point at 0 has a derivative g "(v 0), nonzero, then at the corresponding point x 0=g(x 0) function y=f(x) has a derivative f "(x 0), equal to , i.e. the formula is correct.

Proof. Because x=g(y) differentiable at the point y 0, That x=g(y) is continuous at this point, so the function y=f(x) continuous at a point x 0=g(y 0). Therefore, at Δ x→0 Δ y→0.

Let's show that .

Let . Then, by the property of the limit . Let us pass in this equality to the limit at Δ y→0. Then Δ x→0 and α(Δx)→0, i.e. .

Hence,

,

Q.E.D.

This formula can be written in the form .

Let's look at the application of this theorem using examples.

When deriving the very first formula of the table, we will proceed from the definition of the derivative function at a point. Let's take where x– any real number, that is, x– any number from the domain of definition of the function. Let us write down the limit of the ratio of the increment of the function to the increment of the argument at :

It should be noted that under the limit sign the expression is obtained, which is not the uncertainty of zero divided by zero, since the numerator does not contain an infinitesimal value, but precisely zero. In other words, the increment of a constant function is always zero.

Thus, derivative of a constant functionis equal to zero throughout the entire domain of definition.

Derivative of a power function.

The formula for the derivative of a power function has the form , where the exponent p– any real number.

Let us first prove the formula for the natural exponent, that is, for p = 1, 2, 3, …

We will use the definition of derivative. Let us write down the limit of the ratio of the increment of a power function to the increment of the argument:

To simplify the expression in the numerator, we turn to the Newton binomial formula:

Hence,

This proves the formula for the derivative of a power function for a natural exponent.

Derivative of an exponential function.

We present the derivation of the derivative formula based on the definition:

We have arrived at uncertainty. To expand it, we introduce a new variable, and at . Then . In the last transition, we used the formula for transitioning to a new logarithmic base.

Let's substitute into the original limit:

If we recall the second remarkable limit, we arrive at the formula for the derivative of the exponential function:

Derivative of a logarithmic function.

Let us prove the formula for the derivative of a logarithmic function for all x from the domain of definition and all valid values ​​of the base a logarithm By definition of derivative we have:

As you noticed, during the proof the transformations were carried out using the properties of the logarithm. Equality is true due to the second remarkable limit.

Derivatives of trigonometric functions.

To derive formulas for derivatives of trigonometric functions, we will have to recall some trigonometry formulas, as well as the first remarkable limit.

By definition of the derivative for the sine function we have .

Let's use the difference of sines formula:

It remains to turn to the first remarkable limit:

Thus, the derivative of the function sin x There is cos x.

The formula for the derivative of the cosine is proved in exactly the same way.

Therefore, the derivative of the function cos x There is –sin x.

We will derive formulas for the table of derivatives for tangent and cotangent using proven rules of differentiation (derivative of a fraction).

Derivatives of hyperbolic functions.

The rules of differentiation and the formula for the derivative of the exponential function from the table of derivatives allow us to derive formulas for the derivatives of the hyperbolic sine, cosine, tangent and cotangent.

Derivative of the inverse function.

To avoid confusion during presentation, let's denote in subscript the argument of the function by which differentiation is performed, that is, it is the derivative of the function f(x) By x.

Now let's formulate rule for finding the derivative of an inverse function.

Let the functions y = f(x) And x = g(y) mutually inverse, defined on the intervals and respectively. If at a point there is a finite non-zero derivative of the function f(x), then at the point there is a finite derivative of the inverse function g(y), and . In another post .

This rule can be reformulated for any x from the interval , then we get .

Let's check the validity of these formulas.

Let's find the inverse function for the natural logarithm (Here y is a function, and x- argument). Having resolved this equation for x, we get (here x is a function, and y– her argument). That is, and mutually inverse functions.

From the table of derivatives we see that And .

Let’s make sure that the formulas for finding the derivatives of the inverse function lead us to the same results:

As you can see, we got the same results as in the derivatives table.

Now we have the knowledge to prove formulas for the derivatives of inverse trigonometric functions.

Let's start with the derivative of the arcsine.

. Then, using the formula for the derivative of the inverse function, we get

All that remains is to carry out the transformations.

Since the arcsine range is the interval , That (see the section on basic elementary functions, their properties and graphs). Therefore, we are not considering it.

Hence, . The domain of definition of the arcsine derivative is the interval (-1; 1) .

For the arc cosine, everything is done in exactly the same way:

Let's find the derivative of the arctangent.

For the inverse function is .

Let's express the arctangent in terms of arccosine to simplify the resulting expression.

Let arctgx = z, Then

Hence,

The derivative of the arc cotangent is found in a similar way:

Share with friends or save for yourself:

Loading...