Схема содержания неорганических соединений в клетке. Неорганические вещества клетки

В состав клетки входит около 70 элементов Периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы :

    • макроэлементы – H, O, N, C,. Mg, Na, Ca, Fe, K, P, Cl, S;
    • микроэлементы – В, Ni, Cu, Co, Zn, Mb и др.;
    • ультрамикроэлементы – U, Ra, Au, Pb, Hg, Se и др.
  • органогены (кислород, водород, углерод, азот),
  • макроэлементы,
  • микроэлементы.

В состав клетки входят молекулы неорганических и органических соединений.

Неорганические соединения клетки вода и неорганические ионы.
Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды

Значение для биологических процессов

Высокая теплоемкость (из-за водородных связей между молекулами) и теплопроводность (из-за небольших размеров молекул)

Транспирация
Потоотделение
Периодическое выпадение осадков

Прозрачность в видимом участке спектра

Высокопродуктивные биоценозы прудов, озер, рек (из-за возможности фотосинтеза на небольшой глубине)

Практически полная несжимаемость (из-за сил межмолекулярного сцепления)

Поддержание формы организмов: форма сочных органов растений, положение трав в пространстве, гидростатический скелет круглых червей, медуз, амниотическая жидкость поддерживает и защищает плод млекопитающих

Подвижность молекул (из-за слабости водородных связей)

Осмос: поступление воды из почвы; плазмолиз

Вязкость (водородные связи)

Смазывающие свойства: синовиальная жидкость в суставах, плевральная жидкость

Растворитель (полярность молекул)

Кровь, тканевая жидкость, лимфа, желудочный сок, слюна, у животных; клеточный сок у растений; водные организмы используют растворенный в воде кислород

Способность образовывать гидратационную оболочку вокруг макромолекул (из-за полярности молекул)

Дисперсионная среда в коллоидной системе цитоплазмы

Оптимальное для биологических систем значение сил поверхностного натяжения (из-за сил межмолекулярного сцепления)

Водные растворы – средство передвижения веществ в организме

Расширение при замерзании (из-за образования каждой молекулой максимального числа – 4 – водородных связей_

Лед легче воды, выполняет в водоемах функцию теплоизолятора

Неорганические ионы :
катионы K+, Na+, Ca2+ , Mg2+ и анионы Cl–, NO3- , PO4 2-, CO32-, НPO42-.

Разность между количеством катионов и анионов (Nа+ , К+ , Сl-) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения .
Анионы фосфорной кислоты создают фосфатную буферную систему , поддерживающую рН внутриклеточной среды организма на уровне 6-9.
Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7-4.
Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот.
Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих.
Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

Таблица. Роль макроэлементов на клеточном и организменном уровне организации.

Таблица.

Тематические задания

Часть А

А1. Полярностью воды обусловлена ее способность
1) проводить тепло
3) растворять хлорид натрия
2) поглощать тепло
4) растворять глицерин

А2 . Больным рахитом детям необходимо давать препараты, содержащие
1) железо
2) калий
3) кальций
4) цинк

А3 . Проведение нервного импульса обеспечивается ионами:
1) калия и натрия
2) фосфора и азота
3) железа и меди
4) кислорода и хлора

А4 . Слабые связи между молекулами воды в ее жидкой фазе называются:
1) ковалентными
2) гидрофобными
3) водородными
4) гидрофильными

А5 . В состав гемоглобина входит
1) фосфор
2) железо
3) сера
4) магний

А6 . Выберите группу химических элементов, обязательно входящую в состав белков
1) Na, K, O, S
2) N, P, C, Cl
3) C, S, Fe, O
4) C, H, O, N

А7 . Пациентам с гипофункцией щитовидной железы дают препараты, содержащие
1) йод
2) железо
3) фосфор
4) натрий

Часть В

В1 . Выберите функции воды в клетке
1) энергетическая
2) ферментативная
3) транспортная
4) строительная
5) смазывающая
6) терморегуляционная

В2 . Выберите только физические свойства воды
1) способность к диссоциации
2) гидролиз солей
3) плотность
4) теплопроводность
5) электропроводность
6) донорство электронов

Часть С

С1 . Какие физические свойства воды определяют ее биологическое значение?


В клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Химические процессы, протекающие в клетке, - одно из основных условий ее жизни, развития и функционирования.

Основные вещества клетки = Нуклеиновые кислоты + Белки + Жиры (липиды) + Углеводы + Вода + Кислород + Углекислый газ.

В неживой природе эти вещества нигде не встречаются вместе.
По количественному содержанию в живых системах все химические элементы подразделяются на три группы.

1. Макроэлементы . Основные или биогенные элементы, на их долю приходится более 95 % массы клеток клетки, входит в состав практически всех органических веществ клетки: углерод, кислород, водород, азот. А также жизненно важные элементы, количество которых составляет до 0,001% от массы тела - кальций, фосфор, сера, калий, хлор, натрий, магний и железо.

2. Микроэлементы - элементы, количество которых составляет от 0,001% до 0, 000001 % от массы тела: цинк, медь.

3. Ультрамикроэлементы - химические элементы, количество которых не превышает от 0,000001 % от массы тела. К ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же сюда относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания.

Химические вещества, входящие в состав клетки:

Неорганические- соединения, которые встречаются и в неживой природе: в минералах, природных водах;
- органические- химические соединения, в состав которых входят атомы углерода. Органические соединения чрезвычайно многообразны, но только четыре класса их имеют всеобщее биологическое значение: белки, липиды (жиры), углеводы, нуклеиновые кислоты, АТФ.

Неорганические соединения

Вода - одно из самых распространённых и важных веществ на земле. В воде растворяется больше веществ, чем в любой другой жидкости. Именно поэтому в водной среде клетки осуществляется множество химических реакций. Вода растворяет продукты обмена веществ и выводит их из клетки и организма в целом. Вода обладает высокой теплопроводностью, что создаёт возможность равномерного распределения теплоты между тканями тела.
Вода обладает большой теплоемкостью, т.е. способностью поглощать теплоту при минимальном изменении собственной температуры. Благодаря этому она предохраняет клетку от резких изменений температуры.

Минеральные соли находятся в клетке, как правило, в виде катионов (K+, Na+, Ca2+, Mg2+) и анионов (HPO42-, H2PO4-, Сl-, HCO3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды. (У многих клеток среда слабощелочная и ее pH почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Органические соединения

Углеводы широко распространены в живых клетках. В состав молекулы углеводов входит углерод, водород и кислород.
К липидам относятся жиры, жироподобные вещества. В клетке при окислении жиров образуется большое количество энергии, которая используется на различные процессы. Жиры могут накапливаться в клетках и служить запасом энергии.

Белки - обязательная составная часть всех клеток. В состав этих биополимеров входят 20 типов мономеров. Такими мономерами являются аминокислоты. Образование линейных молекул белков происходит в результате соединения аминокислот друг с другом. Карбоксильная группа одной аминокислоты сближается с аминогруппой другой, и при отщеплении молекулы воды между аминокислотными остатками возникает прочная ковалентная связь, называемая пептидной. Соединение, состоящее из большого числа аминокислот, называется полипептидом. Каждый белок по составу является полипептидом.

Нуклеиновые кислоты. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота(ДНК) и рибонуклеиновая кислота(РНК). Нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация обо всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты – аденозинтри-фосфорная кислота(АТФ). Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, нервных импульсов, то есть для всех процессов жизнедеятельности. АТФ - универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключённая в потребляемой пище, запасаются в молекулах АТФ.

Учебник для 10-11 классов

Раздел I. Клетка - единица живого
Глава I. Химический состав клетки

В живых организмах содержится большое количество химических элементов. Они образуют два класса соединений - органические и неорганические. Химические соединения, основой строения которых являются атомы углерода, составляют отличительный признак живого. Эти соединения называют органическими. Органические соединения чрезвычайно многообразны, но только четыре класса их имеют всеобщее биологическое значение: белки, нуклеиновые кислоты, углеводы и липиды.

§ 1. Неорганические соединения

Биологически важные химические элементы. Из известных нам более 100 химических элементов в состав живых организмов входят около 80, причем только в отношении 24 известно, какие функции в клетке они выполняют. Набор этих элементов не случаен. Жизнь зародилась в водах Мирового океана, и живые организмы состоят преимущественно из тех элементов, которые образуют легко растворимые в воде соединения. Большинство таких элементов принадлежит к числу легких, их особенностью является способность вступать в прочные (ковалентные) связи и образовывать множество различных сложных молекул.

В составе клеток человеческого тела преобладают кислород (более 60%), углерод (около 20%) и водород (около 10%). На азот, кальций, фосфор, хлор, калий, серу, натрий, магний, вместе взятые, приходится около 5%. Остальные 13 элементов составляют не более 0,1%. Сходный элементный состав имеют клетки большинства животных; отличаются лишь клетки растений и микроорганизмов. Даже те элементы, которые в клетках содержатся в ничтожно малых количествах, ничем не могут быть заменены и совершенно необходимы для жизни. Так, содержание иода в клетках не превышает 0,01%. Однако при недостатке его в почве (из-за этого и в пищевых продуктах) задерживается рост и развитие детей. Содержание меди в клетках животных не превышает 0,0002%. Но при недостатке меди в почве (отсюда и в растениях) возникают массовые заболевания сельскохозяйственных животных.

Значение для клетки основных элементов приведено в конце этого параграфа.

Неорганические (минеральные) соединения. В состав живых клеток входит ряд относительно простых соединений, которые встречаются и в неживой природе - в минералах, природных водах. Это неорганические соединения.

Вода - одно из самых распространенных веществ на Земле. Она покрывает большую часть земной поверхности. Почти все живые существа состоят в основном из воды. У человека содержание воды в органах и тканях варьирует от 20% (в костной ткани) до 85% (в головном мозге). Около 2/3 массы человека составляет вода, в организме медузы до 95% воды, даже в сухих семенах растений вода составляет 10-12%.

Вода обладает некоторыми уникальными свойствами. Свойства эти настолько важны для живых организмов, что нельзя представить жизнь без этого соединения водорода и кислорода.

Уникальные свойства воды определяются структурой ее молекул. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода (рис. 1). Молекула воды полярна (диполь). Положительные заряды сосредоточены у атомов водорода, так как кислород электроотрицательнее водорода.

Рис. 1. Образование водородных связей в воде

Отрицательно заряженный атом кислорода одной молекулы воды притягивается к положительно заряженному атому водорода другой молекулы с образованием водородной связи (рис. 1).

По прочности водородная связь примерно в 15-20 раз слабее ковалентной связи. Поэтому водородная связь легко разрывается, что наблюдается, например, при испарении воды. Вследствие теплового движения молекул в воде одни водородные связи разрываются, другие образуются.

Таким образом, в жидкой воде молекулы подвижны, что немаловажно для процессов обмена веществ. Молекулы воды легко проникают через клеточные мембраны.

Из-за высокой полярности молекул вода является растворителем других полярных соединений. В воде растворяется больше веществ, чем в любой другой жидкости. Именно поэтому в водной среде клетки осуществляется множество химических реакций. Вода растворяет продукты обмена веществ и выводит их из клетки и организма в целом.

Вода обладает большой теплоемкостью, т. е. способностью поглощать теплоту при минимальном изменении собственной температуры. Благодаря этому она предохраняет клетку от резких изменений температуры. Поскольку на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении).

Вода обладает высокой теплопроводностью. Такое свойство создает возможность равномерного распределения теплоты между тканями тела.

Вода служит растворителем для «смазочных» материалов, необходимых везде, где есть трущиеся поверхности (например, в суставах).

Вода имеет максимальную плотность при 4°С. Поэтому лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности, что защищает водоем от промерзания.

По отношению к воде все вещества клетки разделяются на две группы: гидрофильные - «любящие воду» и гидрофобные - «боящиеся воды» (от греч. «гидро» - вода, «филео» - любить и «фобос» - боязнь).

К гидрофильным относятся вещества, хорошо растворимые в воде. Это соли, сахара, аминокислоты. Гидрофобные вещества, напротив, в воде практически нерастворимы. К ним относятся, например, жиры.

Клеточные поверхности, отделяющие клетку от внешней среды, и некоторые другие структуры состоят из водонерастворимых (гидрофобных) соединений. Благодаря этому сохраняется структурная целостность клетки. Образно клетку можно представить в виде сосуда с водой, где протекают биохимические реакции, обеспечивающие жизнь. Стенки этого сосуда нерастворимы в воде. Однако они способны избирательно пропускать водорастворимые соединения.

Помимо воды, в числе неорганических веществ клетки нужно назвать соли, представляющие собой ионные соединения. Они образованы катионами калия, натрия, магния и иных металлов и анионами соляной, угольной, серной, фосфорной кислот. При диссоциации таких солей в растворах появляются катионы (К + , Na + , Са 2+ , Mg 2+ и др.) и анионы (СI - , НСО 3 - , HS0 4 - и др.). Концентрация ионов на внешней поверхности клетки отличается от их концентрации на внутренней поверхности. Разное число ионов калия и натрия на внутренней и внешней поверхности клетки создает разность зарядов на мембране. На внешней поверхности клеточной мембраны очень высокая концентрация ионов натрия, а на внутренней поверхности очень высокая концентрация ионов калия и низкая - натрия. Вследствие этого образуется разность потенциалов между внутренней и внешней поверхностью клеточной мембраны, что обусловливает передачу возбуждения по нерву или мышце.

Ионы кальция и магния являются активаторами многих ферментов, и при недостатке их нарушаются жизненно важные процессы в клетках. Ряд важных функций выполняют в живых организмах неорганические кислоты и их соли. Соляная кислота создает кислую среду в желудке животных и человека и в специальных органах насекомоядных растений, ускоряя переваривание белков пищи. Остатки фосфорной кислоты (Н 3 Р0 4), присоединяясь к ряду ферментных и иных белков клетки, изменяют их физиологическую активность. Остатки серной кислоты, присоединяясь к нерастворимым в воде чужеродным веществам, придают им растворимость и способствуют таким образом выведению их из клеток и организмов. Натриевые и калиевые соли азотистой и фосфорной кислот, кальциевая соль серной кислоты служат важными составными частями минерального питания растений, их вносят в почву как удобрения для подкормки растений. Более подробно значение для клетки химических элементов приведено ниже.

Биологически важные химические элементы клетки

  1. Какова биологическая роль воды в клетке?
  2. Какие ионы содержатся в клетке? Какова их биологическая роль?
  3. Какую роль играют содержащиеся в клетке катионы?

Химический состав клетки.

В клетках живых организмов содержаться те же хим. эл., что и в окружающей неживой природе. В клетках обнаружено более 80 эл. из таблицы Д.И. Менделеева. Функции 27 из них определены.

Макро эл. около 99% от массы клетки O, C, H, N. F, K, S, Fe, Mg, Na, Ca.

Микро эл. от 0,001% до 0,000001% массы тела B, Кобальт, Cu, Молибден, Zn, ванадий, I, Br.

Ультра-микро эл. менее 0,000001% радий, золото, бериллий, цезий, силен и др.

Все эти эл. входят в состав органических и неорганических соединений.

Неорганические вещества.

I. Вода (Н2О). Живая клетка содержит около 70% Н2О от массы.

1) Универсальный растворитель.

2) Участвует в био-хим. реакциях (гидролиз, окислительно-восстановительные, фотосинтез)

3) Участвует в явлениях осмоса.

4) Транспортная.

5) Вода практически не сжимается, определяя этим тургор.

6) Обладает силой поверхностного натяжения.

7) Обладает высокой теплоёмкостью, теплопроводностью.

II. Минеральные вещества. Минеральные вещества в клетке находится в виде солей.

2) Регулируют био. – хим. процессы.

Органические вещества.

I. Углеводы (сахариды). В животных клетках 1-5% углеводов, в растительных до 90% (фотосинтез). Мономер – глюкоза.

Функции: структурная, защитная, запасающая, строительная, энергетическая.

II. Липиды – жиры, жироподобные соединения. Мономер – глицерин и высокомолекулярные жирные кислоты.

Функции: структурная (строительные), запасающая, защитная, регуляторная, энергетическая.

III. Белки – высокомолекулярные полимерные органические соединения. Содержание белков в различных клетках от 50-80%. Мономеры – аминокислоты.

Функции: структурная, рецепторная, транспортная, защитная, двигательная, регуляторная, энергетическая.

IV. ДНК - дезоксирибонуклеиновая кислота.

Функции: хранение наследственной информации, передача ген. информации, структурный компонент.

V. АТФ – аденозинтрифосфорная кислота.

Функции: универсальный хранитель и переносчик энергии в клетке.

Вода и минеральные вещества

Живая клетка содержит около 70% Н2О от массы. Н2О находится в двух формах:

1) Свободная (95%) – в межклеточном пространстве, сосудах, вакуолях, полостях органов.

2) Связанная (5%) – с высоко-молекулярными органическими веществами.

Свойство:

8) Универсальный растворитель. По растворимости в воде вещества делятся на гидрофильные – растворимые и гидрофобные – не растворимые (жиры, нуклеиновые кислоты, некоторые белки).

9) Участвует в био-хим. реакциях (гидролиз, окислительно-восстановительные, фотосинтез)



10) Участвует в явлениях осмоса – прохождение растворителя через полупроницаемую оболочку в сторону растворимого вещества за счёт силы осмотического давления. Осмотическое давление у млекопитающих равно 0,9% р-р NaCl.

11) Транспортная – вещества растворимые в воде транспортируются в клетку или из неё путём диффузии.

12) Вода практически не сжимается, определяя этим тургор.

13) Обладает силой поверхностного натяжения – это сила осуществляет капиллярный кровоток восходящий и нисходящий в растениях.

14) Обладает высокой теплоёмкостью, теплопроводностью, которое поддерживает тепловое равновесие.

При недостатке Н2О нарушаются процессы обмена веществ, потеря 20% Н2О приводит к гибели.

Минеральные вещества.

Минеральные вещества в клетке находятся в виде солей. По совей реакции растворы могут быть кислыми, основными, нейтральными. Эту концентрацию выражают при помощи водородного показателя рН.

рН = 7 нейтральная реакция жидкости

рН < 7 кислая

рН > 7 основная

Изменение рН на 1-2 единицы губительно для клетки.

Функция минеральных солей:

1) Поддерживают тургор клетки.

2) Регулируют био-хим. процессы.

3) Поддерживают постоянный состав внутренней среды.

1) Ионы кальция стимулируют мышечное сокращение. Снижение концентрации в крови вызывает судороги.

2) Соли калия, натрия, кальция. Соотношение этих ионов обеспечивает нормальное сокращение сердечной системы.

3) Йод компонент щитовидной железы.

9) Органические соединения клетки: углеводы, липиды, белки, аминокислоты, ферменты.

I. Углеводы

Входят в состав клеток всех живых организмов. В животных клетках 1-5% углеводов, в растительных до 90% (фотосинтез).

Хим. состав: C, H, O. Мономер – глюкоза.

Группы углеводов:

1) Моносахариды – бесцветные, сладки, хорошо растворимы в воде (глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза).

2) Олигосахарида (дисахариды) – сладкие, растворимые (сахароза, мальтоза, лактоза).

3) Полисахариды – несладкие, плохо растворимы в воде (крахмал, целлюлоза – в растительных клетках, хитин у грибов и членистоногих, гликоген у животных и человека). Гликоген запасается в мышцах, печени. При его расщеплении выделяется глюкоза.

Функции углеводов:

1) Структурная – входит в состав оболочек растительных клеток.

2) Защитная – секреты выделяемые железами содержат углеводы, которые предохраняют полые органы (бронхи, желудок, кишечник) от мех. Повреждений, а растения от проникновения болезнетворных бактерий

3) Запасающая. Питательные вещества (крахмал, гликоген) откладываются в клетках в запас.

4) Строительная. Моносахариды служат исходным материалом для построения органических веществ.

5) Энергетическая. 60% энергии организм получает при распаде углеводов. При расщеплении 1 грамма углевода выделяется 17,6 кДж энергии.

II. Липиды (жиры, жиро-подобные соединения).

Хим. состав

C, O, H. Мономер – глицерин и высоко-молекулярные жирные кислоты.

Свойства: не растворимы в воде, растворимы в органических растворителях (бензин, хлороформ, эфир, ацетон).

По хим. строению липиды делятся на след группы:

1) Нейтральная. Они делятся на твёрдые (при 20 градусах остаются твёрдыми), мягкие (сливочное масло и жир чел. тела), жидкие (растительные масла).

2) Воска. Покрывают: кожу, шерсть, перья животных, стебли, листья, плоды растений.

Сложные эфиры образуемые жирными кислотами и многоатомным спиртом.

3) Фосфолипиды. Один, два остатка жирных кислот, замещены остатком фосфорной кислоты. Основное компонент клеточной мембраны.

4) Стероиды – это липиды не содержащие жирных кислот. К стероидам относятся гормоны (кортизон, половые), витамины (A, D, E).

Стероид холестерин: важный компонент клеточной мембраны. Избыток холестерина может привести к заболеваниям сердечно-сосудистой системы и образованию желчных камней.

Функции липидов:

1) Структурная (строительная) – входя в состав клеточных мембран.

2) Запасающая – откладываются в запас в растениях в плодах и семенах, у животных в подкожно жировой клетчатке. При окислении 1г жира вырабатывается более 1г воды.

3) Защитная – служат для теплоизоляции организмов, т.к. обладает плохой теплопроводностью.

4) Регуляторная – гормоны (кортикостерон, андрогены, эстрогены и др.) регулируют обменные процессы в организме.

5) Энергетическая: при окислении 1г жира выделяется 38,9 кДЖ.

III. Белки.

Высокомолекулярные полимерные органические соединения. Содержание белков в различных клетках от 50-80%. Каждый чел. на Земле имеет свой не повторимый набор только ему свойственных белков (исключение однояйцевые близнецы). Специфичность белковых наборов обеспечивает иммунный статус каждого человека.

Хим. состав: C, O, N, H, S, P, Fe.

Мономеры. Всего их 20, из них 9 незаменимых. Они поступают в организм с пищей в готовом виде.

Свойства:

1) Денатурация – разрушение белковых молекул под воздействием высокой температуры, кислот, хим. веществ, обезвоживания, облучения.

2) Ренатурация – восстановление прежней структуры при возвращении нормальных условий среды (кроме первичной).

Строение (уровни организации белковой молекулы):

1) Первичная структура.

Это полипептидная цепочка состоящая из последовательности аминокислот.

2) Вторичная структура.

Спирально-закрученная полипептидная цепь.

3) Третичная структура.

Спираль принимает причудливую конфигурацию – глобула.

4) Четвертичная структура.

Несколько глобул соединяются в сложный комплекс.

Функции белков:

1) Каталитическая (ферментативная) – белки служат катализаторами (ускорителями био-хим. реакций).

2) Структурная – входят в состав мембран, органелл клетки, костей, волос, сухожилий и т.д.

3) Рецепторная – белки рецепторы воспринимают сигнал из внешней среды и передают их в клетку.

4) Транспортная – белки-переносчики осуществляют перенос веществ через клеточные мембраны (белок гемоглобин переносит кислород из лёгких в клетки др. тканей).

5) Защитная – белки предохраняют организм от повреждения и вторжения чужеродных организмов (белки иммуноглобулины обезвреживают чужеродные белки. Интерферон подавляет развитие вирусов).

6) Двигательная – белки актин и лизин участвуют в сокращении мышечных волокон.

7) Регуляторная – белки гормоны регулируют физиологические процессы. Например инсулин, глюкагон регулируют уровень глюкозы в крови.

8) Энергетическая – при расщеплении 1г белка выделяется 17,6 кДЖ энергии.

IV. Аминокислоты.

Это мономер белков.

Формула:

В состав аминокислоты входят аминогруппы H2N и карбоксильная группа COOH. Аминокислоты отличаются друг от друга своими радикалами R.

Аминокислоты соединяются пептидными связями в полипептидные цепочки.

NH-CO---NH-CO---NH-CO

Полипептидная связь.

Карбоксильная группа одной аминокислоты присоединяется к аминогруппе соседней аминокислоты.

V. Ферменты.

Это белковые молекулы способные катализировать (ускорять био-хим. реакции в клетке в сони, миллионы раз).

Функции и свойства:

Ферменты специфичны, то есть катализируют только определённую хим. реакцию или сходные.

Действуют в строго определённой последовательности.

Активность ферментов зависит от температуры, реакции среды, наличия коферментов- небелковые соединения, ими могут служить витамины, ионы, различные Me. Оптимальная температура действия ферментов 37-40 градусов.

Активность ферментов регулируется:

При повышении температур усиливается, под действием лекарств, ядов, подавляется.

Отсутствие или недостаток ферментов приводит к тяжёлым заболеваниям (гемофилия вызвана недостатком фермента отвечающего за свёртываемость крови).

Ферменты используются в медицине для получения вакцин. В промышленности для получения из крахмала сахара, из сахара спирта и др. веществ.

Строение:

В активном центре субстрат взаимодействует с ферментом, которые подходят друг к другу как «ключ к замку».

10) Нуклеиновые кислоты: ДНК, РНК, АТФ.

ДНК, РНК впервые выделены из ядра клеток в 1869 г. швейцарским учёным Мишером. Нуклеиновые кислоты – это полимеры мономером которого являются нуклеотиды состоящие из 2 нуклеиновых оснований аденин и гуанин и 3 пиримидиновых цитозин, урацил, тимин.

I) ДНК (дезоксирибонуклеиновая кислота).

Расшифровали в 1953 г. Уотсон и Крик. 2 нити спирально обвивающие друг друга. ДНК находится в ядре.

Нуклеотид состоит из 3 остатков:

1) Углеводный – дезоксирибоза.

2) Фосфорной кислоты.

3) Азотистые основания.

Нуклеотиды отличаются друг от друга только азотистыми основаниями.

Ц – цитидиловый, Г – гуаниновый, Т – тимидиловый, А – адениновый.

Сборка молекул ДНК.

Соединение нуклеотидов в нити ДНК происходит посредством ковалентных связей через углевод одного нуклеотида и остатком фосфорной кислоты соседнего.

Соединение двух нитей.

Две нити соединяются друг с другом водородными связями между азотистыми основаниями. Азотистые основания соединяются по принципу комплементарности А-Т, Г-Ц. Комплементарность (дополнение) – строгое соответствие нуклеотидов расположенных в парных нитях ДНК. В азотистых основаниях находится генетический код.

Свойства и функции ДНК:

I) Репликация (редупликация) – само удваивание. Происходит в синтетический период интерфазы.

1) Фермент разрывает водородные связи и спирали раскручиваются.

2) Одна цепь отделяется от другой части молекулы ДНК (каждая цепь используется в качестве матрицы).

3) На молекулы воздействует фермент ДНК – полимераза.

4) Присоединение каждой цепи ДНК комплементарных нуклеотидов.

5) Образование двух молекул ДНК.

II) Хранение наследственной информации в виде последовательности нуклеотидов.

III) Передача на ген. инф.

IV) Структурная ДНК присутствует в хромосоме в качестве структурного компонента.

II) РНК (рибонуклеиновая кислота).

Полимер состоящий из одной цепочки. Они находятся: в ядрышке, цитоплазме, рибосомах, митохондриях, пластидах.

Мономер – нуклеотид состоящий из 3 остатков:

1) Углеводный – рибоза.

2) Остаток фосфорной кислоты.

3) Азотистое основание (непарные) (А, Г, Ц, У – вместо тимина).

Функции РНК: передача и реализация наследственной информации через синтез белка.

Типы РНК:

1) Информационное (иРНК) или матричная (мРНК) 5% всей РНК.

Она синтезируется в процессе транскрипции на определённом участке молекулы ДНК – гене. иРНК переносит инф. О структуре белка (последовательность нуклеотидов) из ядра в цитоплазму на рибосомы и становится матрицей для синтеза белка.

2) Рибосомные (рибосомальный рРНК) 85% всей РНК, синтезируется в ядрышке, входят в состав хромосом, формируют активный центр рибосомы где происходит биосинтез белка.

3) Транспортный (тРНК) 10% всей РНК, образуется в ядре и переходит в цитоплазму и транспортируют аминокислоты к месту синтеза белка, то есть к рибосомам. Поэтому имеет форму листа клевера:

III) АТФ (аденозинтрифосфорная кислота).

Нуклеотид состоящий из 3 остатков:

1) Азотистое основание – аденин.

2) Углеводный остаток – рибоза.

3) Три остатка фосфорной кислоты.

Связи между остатками фосфорной кислоты богаты энергией и называются макроэлементами. При отщеплении 1 молекулы фосфорной кислоты АТФ переходит в АДФ, двух молекула на АМФ. При этом выделяется энергия 40 кДЖ.

АТФ (три) > АДФ (ди) > АМФ (моно).

АТФ синтезируется в митохондриях, в результате реакции фосфорилирование.

Один остаток фосфорной кислоты присоединяется к АДФ. Они всегда есть в клетке, как продукт её жизнедеятельности.

Функции АТФ: универсальный хранитель и переносчик информации.

Впервые химические вещества классифицировал в конце IX столетия арабский ученый Абу Бакр ар-Рази. Он, опираясь на происхождение веществ, распределили их по трем группам. В первой группе он отвел место минеральным, во второй - растительным и в третьей - животным веществам.

Этой классификации было суждено просуществовать почти целое тысячелетие. Лишь в XIX веке из тех групп сформировали две - органические и неорганические вещества. Химические вещества обоих типов строятся благодаря девяноста элементам, внесенным в таблицу Д. И. Менделеева.

Группа неорганических веществ

Среди неорганических соединений различают простые и сложные вещества. Группа простых веществ объединяет металлы, неметаллы и благородные газы. Сложные вещества представлены оксидами, гидроксидами, кислотами и солями. Все могут строиться из любых химических элементов.

Группа органических веществ

В состав всех органических соединений в обязательном порядке входит углерод и водород (в этом их принципиальное отличие от минеральных веществ). Вещества, образованные C и H называются углеводородами - простейшими органическими соединениями. В составе производных углеводородов находится азот и кислород. Они, в свою очередь, классифицированы на кислород- и азотсодержащие соединения.

Группа кислородсодержащих веществ представлена спиртами и эфирами, альдегидами и кетонами, карбоновыми кислотами, жирами, восками и углеводами. К азотсодержащим соединениям причислены амины, аминокислоты, нитросоединения и белки. У гетероциклических веществ положение двояко - они, в зависимости от строения, могут относиться и к тому и к другому виду углеводородов.

Химические вещества клетки

Существование клеток возможно, если в их состав входят органические и неорганические вещества. Они погибают, когда в них отсутствует вода, минеральные соли. Клетки умирают, если сильно обеднены нуклеиновыми кислотами, жирами, углеводами и белками.

Они способны к нормальной жизнедеятельности, если в них находится несколько тысяч соединений органической и неорганической природы, способных вступать во множество различных химических реакций. Биохимические процессы, текущие в клетке - основа ее жизнедеятельности, нормального развития и функционирования.

Химические элементы, насыщающие клетку

Клетки живых систем содержат группы химических элементов. Они обогащены макро-, микро- и ультрамикроэлементами.

  • Макроэлементы, прежде всего, представлены углеродом, водородом, кислородом и азотом. Эти неорганические вещества клетки образуют практически все ее органические соединения. А еще к ним причислены жизненно необходимые элементы. Клетка не способна жить и развиваться без кальция, фосфора, серы, калия, хлора, натрия, магния и железа.
  • Группа микроэлементов образована цинком, хромом, кобальтом и медью.
  • Ультрамикроэлементы - еще одна группа, представляющая важнейшие неорганические вещества клетки. Группа сформирована золотом и серебром, оказывающим бактерицидное действие, ртутью, препятствующей обратному всасыванию воды, заполняющей почечные канальцы, оказывающей влияние на ферменты. В нее же включена платина и цезий. Определенную роль в ней отводят селену, дефицит которого ведет к различным видам рака.

Вода в составе клетки

Важность воды, распространенного на земле вещества для жизни клетки, неоспорима. В ней растворяются многие органические и неорганические вещества. Вода - та благодатная среда, где протекает невероятное количество химических реакций. Она способна растворять продукты распада и обмена. Благодаря ей клетку покидают шлаки и токсины.

Эта жидкость наделена высокой теплопроводностью. Это позволяет теплу равномерно распространяться по тканям тела. У нее существенная теплоемкость (способность поглощать теплоту, когда собственная температура изменяется минимально). Такая способность не позволяет возникать в клетке резким перепадам температур.

Вода обладает исключительно высоким поверхностным натяжением. Благодаря ему растворенные неорганические вещества, как и органические, без труда передвигаются по тканям. Множество небольших организмов, используя особенность поверхностного натяжения, держатся на водной поверхности и свободно по ней скользят.

Тургор растительных клеток зависит от воды. С опорной функцией у определенных видов животных справляется именно вода, а не какие-нибудь другие неорганические вещества. Биология выявила и изучила животных с гидростатическими скелетами. К ним относятся представители иглокожих, круглых и кольчатых червей, медуз и актиний.

Насыщенность клеток водой

Работающие клетки заполнены водой на 80 % от их общего объема. Жидкость пребывает в них в свободной и связанной форме. Белковые молекулы прочно соединяются со связанной водой. Они, окруженные водной оболочкой, изолируются друг от дружки.

Молекулы воды полярны. Они образуют водородные связи. Благодаря водородным мостикам вода обладает высокой теплопроводностью. Связанная вода позволяет клеткам выдерживать пониженные температуры. На долю свободной воды приходится 95 %. Она способствует растворению веществ, вовлекаемых в клеточный обмен.

Высокоактивные клетки в тканях мозга содержат до 85 % воды. Мышечные клетки насыщены водой на 70 %. Менее активным клеткам, образующим жировую ткань, достаточно 40 % воды. Она в живых клетках не только растворяет неорганические химические вещества, она ключевой участник гидролиза органических соединений. Под ее воздействием органические вещества, расщепляясь, превращаются в промежуточные и конечные вещества.

Важность минеральных солей для клетки

Минеральные соли представлены в клетках катионами калия, натрия, кальция, магния и анионами HPO 4 2- , H 2 PO 4 - , Cl - , HCO 3 - . Правильные пропорции анионов и катионов создают необходимую для жизни клетки кислотность. Во многих клетках поддерживается слабощелочная среда, которая практически не меняется и обеспечивает их стабильное функционирование.

Концентрация катионов и анионов в клетках отлична от их соотношения в межклеточном пространстве. Причина тому - активная регуляция, направленная на транспортировку химических соединений. Такое течение процессов обуславливает постоянство химических составов в живых клетках. После гибели клеток концентрация химических соединений в межклеточном пространстве и цитоплазме обретает равновесие.

Неорганические вещества в химической организации клетки

В химическом составе живых клеток нет каких-либо особых элементов, характерных только для них. Это определяет единство химических составов живых и неживых объектов. Неорганические вещества в составе клетки играют огромную роль.

Сера и азот помогают формироваться белкам. Фосфор участвует в синтезе ДНК и РНК. Магний - важная составляющая ферментов и молекул хлорофилла. Медь необходима окислительным ферментам. Железо - центр молекулы гемоглобина, цинк входит в состав гормонов, вырабатываемых поджелудочной железой.

Важность неорганических соединений для клеток

Соединения азота преобразуют белки, аминокислоты, ДНК, РНК и АТФ. В растительных клетках ионы аммония и нитраты в процессе окислительно-восстановительных реакций превращаются в NH 2 , становятся участниками синтеза аминокислот. Живые организмы используют аминокислоты для формирования собственных белков, необходимых для строительства тел. После гибели организмов белки вливаются в круговорот веществ, при их распаде азот выделяется в свободной форме.

Неорганические вещества, в составе которых есть калий, играют роль «насоса». Благодаря «калиевому насосу» в клетки сквозь мембрану проникают вещества, в которых они остро нуждаются. Калиевые соединения приводят к активизации жизнедеятельности клеток, благодаря им проводятся возбуждения и импульсы. Концентрация ионов калия в клетках весьма высока в отличие от окружающей среды. Ионы калия после гибели живых организмов легко переходят в природное окружение.

Вещества, содержащие фосфор, способствуют формированию мембранных структур и тканей. В их присутствии образуются ферменты и нуклеиновые кислоты. Солями фосфора в той или иной степени насыщены различные слои почвы. Корневые выделения растений, растворяя фосфаты, усваивают их. Вслед за отмиранием организмов остатки фосфатов, подвергаются минерализации, превращаясь в соли.

Неорганические вещества, содержащие кальций, способствуют формированию межклеточного вещества и кристаллов в растительных клетках. Кальций из них проникает в кровь, регулируя процесс ее свертывания. Благодаря ему формируются кости, раковины, известковые скелеты, коралловые полипы у живых организмов. Клетки содержат ионы кальция и кристаллы его солей.

Поделитесь с друзьями или сохраните для себя:

Загрузка...