Реферат геологические процессы на земле по источникам их зарождения. Геология — наука о Земле Внешние геологические процессы

Подразделение геологических процессов на эндогенные и экзогенные.

Эндогенные процессы: вулканизм и сейсмические явления.

Сейсмические явления: причины и основные параметры землетрясений. Сейсмическое районирование для строительства.

Экзогенные геологические процессы: выветривание, деятельность ветра, деятельность поверхностных текучих вод, деятельность морей и океанов, деятельность ледников, мерзлотные процессы.

Деятельность человека как геологический фактор: добыча полезных ископаемых, строительство (городское, дорожное, гидротехническое).

Методические указания

Изучая сейсмические явления, необходимо разобраться в механизме землетрясений, в понятиях «гипоцентр» и «эпицентр», знать основные виды волн и классификацию землетрясений по глубине и силе. Экзогенные процессы проявляются в сглаживании земной поверхности перемещением горных пород с выпуклых форм рельефа в вогнутые. При этом породы подвергаются тройному воздействию:

    разрушению;

    переносу;

    отложению, накоплению и уплотнению.

Студенту необходимо разобраться в сущности протекания каждого из экзогенных геологических процессов. Особое внимание следует уделять таким понятиям, как эрозия, элювий, делювий, пролювий, аллювий, морена.

Сейсмические явления в геологии относят к внутренним эндогенным процессам. Это колебания упругих волн в земной коре. Точку зарождения землетрясений, находящуюся на глубине от поверхности, называют очагом землетрясения или гипоцентром, а точку, лежащую над ним – эпицентром. Наиболее разрушительны очаги землетрясений, залегающие неглубоко (0-10 км). Разрушения связаны с распространением сейсмических волн. От гипоцентра распространяются продольные волны со скоростью до 4-5 км/с, перпендикулярно к ним идут поперечные волны. Их скорость составляет около 2 км/с. А на поверхности возникают поверхностные волны – до 500 м/с. Комплекс этих волн вызывает сейсмодеформации – трещины в земной коре, ступенчатые оседания, вспучивания и смещения грунтов: обвалы, осыпи, оползни. В районах застройки – разрушения зданий и сооружений. Сила землетрясений характеризуется баллами по шкале Рихтера (12-ти бальная).

Районы, где ожидаются землетрясения силой в 6 баллов и более, называются сейсмоопасными. Строительство в этих районах ведется с учетом сейсмичности, т.е. учитывается рельеф местности, наличие дислокаций слоев, наличие грунтовых вод и их близость к поверхности, возможность оползней, обвалов, осыпей и т.п. При этом учитывают жесткость конструкций, этажность, массивность зданий и сооружений.

К эндогенным процессам также относятся вулканизм и сейсмические явления. Появление вулканизма представляет собой один из наиболее важных геологических процессов, имеющих огромное значение в истории развития земной коры. Ни одна область на земле не формировалась без участия вулканизма. Землетрясение- это особый вид движения плит земной коры литосферы. Они выражаются в волновых, упругих колебаниях и вызывают устойчивые деформации земной коры. По своей природе землетрясения могут быть денудационными, вулканическими, тектоническими и техногенными. Денудационные землетрясения возникают в результате толчка из-за обрушения массива горной породы. Вулканические землетрясения могут возникать при извержении вулкана. Тектонические землетрясения являются следствием тектонических процессов, происходящих в толще земной коры.

К экзогенным процессам относятся геологические процессы:

– Выветривание - изменение и разрушение горных пород на поверхности земли под влиянием резких колебаний температуры воздуха, замерзающей в пустотах и трещинах горных пород воды, углекислоты, кислорода и организмов. При этом совершаются процессы физического, химического и биологического характера.

В результате процесса выветривания формируется совершенно особое минеральное образование. Кора выветривания – верхняя (подпочвенная) часть литосферы в пределах континентов.

Технологическая деятельность ветра на континентах складывается из разрушений горных пород, переноса и отложения (аккумуляции) продуктов разрушения.

Разрушительная деятельность ветра складывается из дефляции – выдувания и развеивания таких частиц породы, и коррозии – механической обработки поверхностей обнаженных пород при помощи переносимых им твердых частиц.

Геологическая деятельность морей, озер и болот. Морская образивность (разрушающее действие морских волн).

Деятельность ледников.

Деятельность человека как геологический фактор.

Виды выветривания.

Процесс выветривания протекает при одновременном участии многих агентов, но роль их при этом далеко неодинакова. По интенсивности воздействия тех или иных агентоввыветривания и характеру изменений горных пород принято выделять три вида выветривания: физическое, химическое и биологическое (органическое).

Физическое выветривание выражается преимущественно в механическом дроблении пород без существенного изменения их минерального состава. Породы дробятся в результате колебания температур, замерзания воды, механической силы ветра и ударов песчинок, переносимых ветром, кристаллизации солей в капиллярах, давления, которые возникает в процессе роста корней растений и т. д. Большую роль в этом разрушении играют температурные явления. В условиях земной поверхности, особенно в пустынях, суточные колебания температур довольно значительны. Так, летом в дневное время породы нагреваются до + 80 °С, а ночью их температура снижается до + 20 °С. Кроме попеременного нагреванияи охлаждения разрушительное действие оказывает также неравномерное нагревание пород, что связано с различными тепловыми свойствами, окраской и размером минералов, которые составляют горные породы. На контактах отдельных минералов образуются микротрещины и порода посте пенно распадается на отдельные блоки и обломки различной формы.

Химическое выветривание выражается в разрушении пород путем растворения и изменения их состава. Наиболее активными химическими реагентами в этом процессе являются вода, кислород, углекислота и органические кислоты.

Простейшим видом химического выветривания является растворение в воде. Легко растворяютсякаменная соль, гипс. Разрушительное действие оказывает процесс гидратации.Примером может служить переход ангидрита в гипс. Этот процесс сопровождается резким увеличением объема (до 50 - 60 %), что вызывает разрушительное давление гипса на окружающие породы. В присутствии воды происходит также окисление. Например, минерал пирит, который часто присутствует в различных породах, превращается в гидрат оксида железа с одновременным образованием серной кислоты, которая, в свою очередь, весьма разрушительно действует на минералы:

При химическом выветривании значительное воздействие на породы оказывает вода, содержащая в своем составе углекислоту. В результате этого полевые шпаты превращаются в глинистые образования.

Интенсивность химического выветривания зависит от площади воздействия воды и растворов, их температуры, а также степени устойчивости минералов в отношении агентов выветривания; Наиболее устойчивыми являются минералы кварц, мусковит, корунд; менее устойчивы – кальцит, доломит и др. Интенсивности химического выветривания способствует дробление пород в результате механического выветривания.

Наибольшее значение химическое выветривание имеет в условиях тёплого и влажного климата.

Биологическое (органическое) выветривание проявляется в разрушении горных пород в процессе жизнедеятельности живых организмов и растений. Породы дробятся и в значительной мере подвергаются воздействию органических кислот. Механическое разрушение производят растения своей корневой системой. Корни деревьев способны расщеплять даже прочные скальные породы. Известны случаи, когда растение «верблюжья колючка» прорастало сквозь 20-сантиметровые железобетонные плиты. Корни травянистой растительности легко преодолевают слой асфальта на улицах города. Многие живые организмы, особенно из числа землероев, активно разрушают горные породы. В коре выветривания ими создаются многочисленные ходы, пустоты, просверливаются даже твердыепороды. На выветривание горных пород большое влияние оказывают многочисленные бактерии. В процессе своей жизнедеятельности они поглощают одни вещества и выделяют другие. Их воздействие особенно сильно сказывается в зоне почв. Отдельные виды бактерий извлекают углерод из карбонатов, разрушают силикаты, создают скопление железных руд и т. д. Растения и животные, особенно микроорганизмы (бактерии, микробы и др.) и низшие растения,(водоросли, мхи, лишайники), выделяют различные кислоты и соки, которые, в свою очередь, весьма активно взаимодействуют с минералами горных пород, разрушают их, формируют минеральные новообразования.

Отложения выветривания остаются на месте. Их образования называются элювиальными, обозначаются индексом «е».

Все процессы, связанные с геологической работой ветра, носят название эоловых. Перенос частиц ветром совершается во взвешенном

состоянии или путем перекатывания в зависимости от скорости ветра и размера частиц.

При уменьшении скорости ветра и других благоприятных условиях происходит отложение переносимого материала. Так образуются ветровые (эоловые) отложения песков (пустыни) и лёссов.

Для строительства имеет большое значение закрепленность песков. По этому признаку песчаные накопления делят на подвижные (дюны и барханы) и закрепленные (грядовые, бугристые) пески.

Лёссовые отложения характеризуются пылеватыми глинистыми частицами, сложенными в слои с высокой пористостью. В связи с этим при замачивании такие грунты деформируются по вертикали даже от собственного веса, тем более под нагрузкой от зданий и сооружений. Эти грунты называют просадочными. Строительство ведется с предварительным уплотнением этих грунтов различными методами.

Ветровые отложения – эоловые, обозначаются индексом «L».

Водные потоки от дождей и таяния снега смывают элювиальные отложения, переносят их по уклонам к склонам, в частности, к склонам долин рек и откладывают их у подножий этих склонов. Как правило, такие отложения по возрасту молодые, неуплотненные, высокопористые, чаще всего представленные суглинками. Такие суглинки называют лёссовидными из-за их пористости и способности при замачивании резко деформироваться по вертикали.

Отложения называют делювиальными и обозначают индексом «d».

Сносимый водными потоками грунт, попадая в реки, переносится энергией движущейся воды. При этом частицы грунта переносятся во взвешенном состоянии, в растворенном, волочением по дну. Процесс выпадения из воды переносимых ею частиц называется седиментацией, а накопление их- аккумуляцией. Образованные при этом отложения называются аллювием - речные отложения (обозначаются индексом "а"). Пойменный аллювий отлагается во время паводков на заливаемых пойменных террасах. Так как на поймах скорость течения воды меньше, чем в руслах, обычно в пойменных водах содержатся более мелкие частицы породы, чем в русловых. Пойменный аллювий характеризуется тонкой, почти горизонтальной слоистостью, неоднородностью гранулометрического состава и малой мощностью слоев с характерным линзообразным выклиниванием. В накоплении пойменного аллювия могут быть перерывы и на поймах образуются гумусосодержащие почвы. Русловый аллювий откладывается в руслах рек после спада паводковых вод. Наиболее крупные частицы пород, увлеченные в русло реки во время паводка, после спада вод осаждаются. Для руслового аллювия так же как и для пойменного, характерны горизонтальная или наклонная слоистость, малая мощность слоев и хорошая отсортированность материала. Дельтовый аллювий откладывается в устьях рек при их впадении в моря и озера. Впадая в водный бассейн, не имеющий течения, вода реки теряет скорость, и весь принесенный обломочный материал оседает на дно. Он отлагается на прибрежном откосе дна слегка наклонными слоями, постепенно утончающимися в сторону бассейна. В отложениях дельтового аллювия встречаются все песчаные и глинистые фракции. Приведенные характеристики пойменного, руслового и дельтового аллювия и условия его образования характерны для равнинных рек. Образование аллювия горных рек имеет свои особенности. Здесь преобладают не отложения, а размыв. Аллювиальные отложения горных рек практически следует считать несжимаемыми.

Большое площадное распространение имеет дельтовый аллювий. Мощность его значительна, у некоторых рек до сотен метров. В строении дельтового аллювия принимают участие осадки обломочные, химические и органические. В строении аккумулирующих и цокольных террас участвует аллювий террас. В его состав входят русловые и пойменные отложения.

В пределах стариц, развитых в поймах старых рек, накапливается старичный аллювий, состоящий из мягких органических илов, смешанных с пойменными песчанно-суглистыми осадками. В заболоченных старицах накапливаются отложения торфа. Старичный аллювий залегает в виде линз среди пойменного аллювия.

Большинство рек доносит породный разрушенный материал до моря или океана, где происходит грандиозное накопление осадочных пород на шельфе океана и на дне. Помимо этого море и океан в прибрежной зоне осуществляют разрушительную работу энергией волн, переносят разрушенный материал, сегрегируют его по крупности и затем откладывают на различных глубинах. Индекс отложений – «m».

В геологических процессах внешней геодинамики существенную роль играют также ледники.

Геологические данные говорят о том, что в древние времена оледенение земли было значительным.

В настоящее время льды занимают 10% поверхности суши, 98,5% ледниковой поверхности приходится на полярные области и лишь 1,5% - на высокие горы. Различают три типа ледников: горные, плоскогорий и материковые.

Горные ледники образуются высоко в горах и располагаются либо на вершинах, либо в ущельях, впадинах, различных углублениях. Такие ледники есть на Кавказе, Урале и т.д.

Лед образуется за счет перекристаллизации снега. Он обладает способностью к пластическому течению, образуя потоки в форме языков. Движение ледников по склонам ограничивается высотой, где солнечного тепла оказывается достаточно для полного таяния льда.

Ледники плоскогорий образуются в горах с плоскими вершинами. Лед залегает неразделенной сплошной массой. От него по ущельям спускаются ледники в виде языков. Такого типа ледник, в частности, располагается сейчас на Скандинавском полуострове.

Материковые ледники распространены в Гренландии, Шпицбергене, Антарктиде и др. местах, где сейчас протекает современная эпоха оледенения. Льды залегают сплошным покровом, мощностью в тысячи метров.

Геологическая деятельность льда велика и обусловлена главным образом его движением, несмотря на то, что скорость течения льда примерно в 10000 раз медленнее, чем воды в реках при тех же условиях.

При своем движении лед истирает и вспахивает поверхность земли, создавая котловины, рытвины, борозды. Эта разрушительная работа совершается под действием тяжести льда.

Двигаясь по ущельям или другой какой-либо наклонной плоскости, ледники захватывают продукты путем вымораживания их в лед. Наличие трещин благоприятствует проникновению обломков внутрь и в нижнюю часть ледников. Таким образом, обломочный материал передвигается вместе с ледником. При таянии льда весь обломочный материал отлагается и образуется значительные по мощности ледниковые отложения. Обломочный материал, который находится в движении или уже отложился, называется «морены». Ледниковые отложения иногда образуют друмлины-холмы эллипсоидальной формы в несколько десятков метров высоты, состоящие из отложений донной морены. В их состав входят, главным образом, мореные глины с валунами. Отложения называют гляциальными и обозначают индексом «g».

При таянии ледника образуется постоянные потоки талых вод, которые размывают донную и конечную морены. Вода подхватывает материал размываемых морен, выносит за пределы ледника и откладывает в определенной последовательности. Такие водно-ледниковые отложения получили название флювиогляциальных – индекс «fg».

Флювиогляциальные отложения отличаются сравнительной отсортированостью и слоистостью. Они обычно представлены толщами песка, гравия, галечника, а также глинами и покровными суглинками, мощность которых достигает многих метров. Флювиогляциальные отложения создают характерные формы рельефа:

1.Озы - накопление обломочного материала (песка, гравия) в виде высоких узких валов, длина которых колеблется от сотни метров до десятков километров, высота 5-10 метров.

2.Камы - беспорядочно разбросанных холмы, состоящие из слоистых отсортированных песков, супесей с примесью гравия и прослоев глины.

3.Зандровые поля - широкие пологоволнистые равнины, расположенные за краем конечных морен, в состав которых входят слоистые пески, гравий и галька.

На месте растаявшего ледника остаются углубления, которые становятся ложем озер и болот. Геологическая деятельность озер заключается в накоплении отложений из твердых частиц, чаще мелких фракций, принесенных ручьями, и отложений совместно с органикой. Такие отложения называют озерными и обозначают индексом «».

Мерзлотные геологические процессы заключаются в сезонном замораживании верхних слоев грунтов в зимний период и оттаивании - в летний. Это вызывает пучение и осадку грунта. В строительстве учитывают нормативную глубину промерзания, которая вычисляется как средняя величина за последние 10 лет, так как закладка фундаментов осуществляется ниже глубины промерзания.

В условиях, где средняя годовая температура отрицательна, в грунтах сформирована вечная мерзлота. В районах вечной мерзлоты деформация зданий и сооружений связана с оттаиванием грунтов, так как нарушается физическое его состояние, связанное с вскрытием котлованами. Поэтому на вечномерзлых грунтах строительство ведут по трем принципам:

Без учета мерзлого состояния (при скальном основании);

При сохранении мерзлого состояния, за счет теплоизоляции;

С оттаиванием мерзлых грунтов и последующим их укреплением или заменой на другие, например, щебеночные.

Геологические процессы подразделяют на эндогенные и экзогенные.

Эндогенные процессы - геологические процессы, связанные с энергией, возникающей в недрах Земли. К ним относятся тектонические движения земной коры, магматизм, метаморфизм горных пород и сейсмическая активность. Главными источниками энергии эндогенных процессов являются тепло и гравитационная неустойчивость -перераспределение материала в недрах Земли по плотности (гравитационная дифференциация).

К эндогенным процессам относятся:

  • - тектонические - разнообразные по направлению и интенсивности движения земной коры, вызывающие ее деформации (смятие в складки) или разрывы слоев;
  • - сейсмические - связанные с землетрясениями;
  • - магматические - связанные с магматической деятельностью;
  • - вулканические - связанные с вулканической деятельностью;
  • - метаморфические - процесс преобразования горных пород под влиянием давления и температуры без привнесения или выноса химических компонентов;
  • - скарновые - метасоматического минерало- и породообразования в результате воздействия на различные горные породы (преимущественно известняки и доломиты) высокотемпературных растворов, содержащих в том или ином количестве Бе, М?, Са, 81, А1 и другие вещества при широком участии летучих компонентов (вода, углекислота, С1, Б, В и др.), и в широком диапазоне температур и давлений при общей эволюции растворов по мере понижения температуры от щелочных к кислым;
  • - грейзеновые - метасоматического изменения гранитовых пород под действием газов, выделяющихся из охлаждающейся магмы с преобразованием полевых шпатов в светлые слюды;
  • - гидротермальные - месторождения руд металлов (Аи, Си, РЬ, 8п, XV и др.) и неметаллических ископаемых (тальк, асбест и др.), образование которых связано с отложением или переотложением рудного вещества из горячих глубинных водных растворов, часто связанных с остывающими в земной коре магматическими очагами.

Тектонические движения - механические движения земной коры, вызываемые силами, действующими в ней и главным образом в мантии Земли, и приводящие к деформации слагающих кору пород. Тектонические движения связаны, как правило, с изменением химического состава, фазового состояния (минерального состава) и внутренней структуры подвергающихся деформации горных пород. Тектонические движения охватывают одновременно очень большие площади.

Геодезические измерения показывают, что практически вся поверхность Земли находится непрерывно в движении, однако скорость тектонических движений невелика, изменяется от сотых долей до первых десятков миллиметров в год, и только накопления этих движений в ходе очень продолжительного (десятки-сотни млн лет) геологического времени приводят к крупным суммарным перемещениям отдельных участков земной коры.

Американский геолог Г. Джильберт предложил (1890 г.), а немецкий геолог X. Штилле развил (1919г.) классификацию тектонических движений с разделением их на эпейрогенические, выражающиеся в длительных поднятиях и опусканиях крупных участков земной поверхности, и орогеиические, проявляющиеся эпизодически (орогени-ческие фазы) в определённых зонах образованием складок и разрывов и ведущие к формированию горных сооружений. Эта классификация применяется до сих пор, но её основной недостаток - объединение в понятие орогенеза двух принципиально различных процессов -складко- и разрывообразования, с одной стороны, и горообразования - с другой. Были предложены и другие классификации. Одна из них (отечественные геологи А. П. Карпинский, М. М. Тетяев и др.) предусматривала выделение колебательных складко- и разрывообразующих тектонических движений, другая (немецкий геолог Э. Харман и голландский учёный Р. В. ван Беммелен) - ундационных (волновых ) и ундуляционных (складчатых ) тектонических движений. Стало ясным, что тектонические движения весьма разнообразны как по форме проявления, так и по глубине зарождения, а также, очевидно, по механизму и причинам возникновения.

По другому принципу тектонические движения были разделены ещё М. В. Ломоносовым на медленные (вековые ) и быстрые. Быстрые движения связаны с землетрясениями и, как правило, отличаются высокой скоростью, на несколько порядков превышающей скорость медленных движений. Смещения земной поверхности во время землетрясений составляют несколько метров, иногда более 10 м. Однако такие смещения проявляются эпизодически.

Существенное значение имеет подразделение тектонических движений на вертикальные {радиальные ) и горизонтальные {тангенциальные), хотя оно и носит в большей мере условный характер, так как эти движения взаимосвязаны и переходят одни в другие. Поэтому правильнее говорить о тектонических движениях с преобладающей вертикальной или горизонтальной компонентой. Преобладающие вертикальные движения обусловливают поднятия и опускания земной поверхности, в том числе образование горных сооружений. Они являются основной причиной накопления мощных толщ осадочных пород в океанах и морях, а отчасти и на суше. Горизонтальные движения наиболее ярко проявляются в образовании крупных сдвигов отдельных блоков земной коры относительно других с амплитудой в сотни и даже тысячи километров, в их надвигах с амплитудой в сотни километров, а также в образовании океанических впадин шириной в тысячи километров в результате раздвига глыб континентальной коры.

Тектонические движения отличаются определённой периодичностью или неравномерностью, которая выражается в изменениях знака и (или) скорости во времени. Относительно короткопериодические вертикальные движения с частой переменой знака (обратимые) называются колебательными. Горизонтальные движения обычно длительно сохраняют свою направленность и являются необратимыми. Колебательные тектонические движения, вероятно, служат причиной трансгрессий и регрессий моря, образования морских и речных террас.

По времени проявления выделяют новейшие тектонические движения, которые непосредственно отражаются в современном рельефе Земли и поэтому распознаются не только геологическими, но и геоморфологическими методами, и современные тектонические движения, которые изучаются также и геодезическими методами (повторное нивелирование и пр.). Они составляют предмет исследования новейшей тектоники.

Тектонические движения отдалённого геологического прошлого устанавливаются по распространению трансгрессий и регрессий океана, по суммарной толщине (мощности) накопившихся осадочных отложений, по распределению их фаций и источников обломочного материала, снесённого в депрессии. Таким способом выясняется вертикальная компонента перемещения верхних слоев земной коры или поверхности консолидированного фундамента, расположенного под осадочным чехлом. В качестве репера используется уровень Мирового океана, который считают почти постоянным, с возможными отклонениями до 50-100 м при таянии или образовании ледников, а также более значительными - до нескольких сот метров в результате изменения ёмкости океанических впадин при их разрастании и образовании срединно-океанических хребтов.

Крупные горизонтальные перемещения, которые признаются не всеми учёными, устанавливаются как по геологическим данным, путём графического выпрямления складок и восстановления надвинутых толщ горных пород в первоначальном положении, так и на основании изучения остаточной намагниченности горных пород и изменений палеоклимата. Считается, что при достаточном количестве па-леомагнитных и геологических данных можно восстанавливать былое расположение материков и океанов и определять скорость и направление перемещений, происходивших в последующее время, например с конца палеозойской эры.

Скорость горизонтальных перемещений определяется сторонниками мобилизма по ширине новообразованных океанов (Атлантического, Индийского), по палеомагнитным данным, указывающим на изменения широты и ориентировки по отношению к меридианам, и по ширине образующихся при разрастании океанического дна полос магнитных аномалий различного знака, которые сопоставляются с длительностью эпох различной полярности магнитного поля Земли. Эти оценки, как и скорость современных горизонтальных движений, измеренная геодезическими методами в рифтах (Восточная Африка), складчатых областях (Япония, Таджикистан) и на сдвигах (Калифорния), составляют 0,1-10 см/г. На протяжении миллионов лет скорость горизонтальных движений изменяется незначительно, направление остаётся почти постоянным.

Вертикальные движения имеют, напротив, переменный, колебательный характер. Повторные нивелировки показывают, что скорость опускания или поднятия на равнинах обычно не превышает 0,5 см/год, поднятие в горных областях (например, на Кавказе) достигает 2 см/год. В то же время средние скорости вертикальных тектонических движений, определяемые для больших интервалов времени (например, за десятки миллионов лет), не превышают 0,1 см/год в подвижных поясах и 0,01 см/год на платформах. Это различие в скоростях, измеренных за малые и большие промежутки времени, указывает на то, что в геологических структурах фиксируется лишь интегральный результат вековых вертикальных движений, накапливающийся при суммировании колебаний противоположного знака.

Сходство тектонических движений, повторяющихся на одних и тех же тектонических структурах, позволяет говорить об унаследованном характере вертикальных тектонических движений. К тектоническим движениям обычно не относят перемещения горных пород в приповерхностной зоне (десятки метров от поверхности), вызванные нарушениями их гравитационного равновесия под влиянием экзогенных (внешних) геологических процессов, а также периодические поднятия и опускания земной поверхности, обусловленные твёрдыми приливами Земли вследствие притяжения Луны и Солнца. Спорным является отнесение к тектоническим движениям процессов, связанных с восстановлением изостатического равновесия, например поднятий при сокращении крупных ледниковых покровов типа антарктического или гренландского. Локальный характер носят движения земной коры, вызванные деятельностью вулканов. Причины тектонических движений до сих пор достоверно не установлены; в этом отношении высказываются различные предположения.

По мнению ряда учёных, глубинные тектонические движения вызваны системой крупных конвекционных течений, охватывающих верхние и средние слои мантии Земли. С такими течениями, по-видимому, связано растяжение земной коры в океанах и сжатие в складчатых областях, над теми зонами, где происходит сближение и погружение встречных течений. Другие учёные (В. В. Белоусов) отрицают существование замкнутых конвекционных течений в мантии, но допускают подъём разогретых в низах мантии и более лёгких продуктов её дифференциации, вызывающий восходящие вертикальные движения коры. Охлаждение этих масс служит причиной её опусканий. При этом горизонтальным движениям не придаётся существенного значения, и они считаются производными от вертикальных. При выяснении природы движений и деформаций земной коры некоторые исследователи отводят определённую роль напряжениям, возникающим в связи с изменениями скорости вращения Земли, другие считают их слишком незначительными.

Глубинное тепло Земли имеет преимущественно радиоактивное происхождение. Непрерывная генерация тепла в недрах Земли ведёт к образованию его потока, направленного к поверхности. На некоторых глубинах при благоприятном сочетании вещественного состава, температуры и давления могут возникать очаги и слои частичного плавления. Таким слоем в верхней мантии является астеносфера - основной источник образования магмы; в ней могут возникать конвекционные токи, которые служат предположительной причиной вертикального и горизонтального движений литосферы. В зонах вулканических поясов островных дуг и окраин континентов основные очаги магм связаны со сверхглубинными наклонными разломами (зоны Завариц-кого-Беньофа), уходящими под них со стороны океана (приблизительно до глубины 700 км). Под влиянием теплового потока или непосредственно тепла, приносимого поднимающейся глубинной магмой, возникают так называемые коровые очаги магмы в самой земной коре; достигая приповерхностных частей коры, магма внедряется в них в виде различных по форме интрузивов или изливается на поверхность, образуя вулканы.

Гравитационная дифференциация вела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии. Накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят к землетрясениям.

Оба вида глубинных процессов тесно связаны: радиоактивное тепло, понижая вязкость материала, способствует его дифференциации, а последняя ускоряет вынос тепла к поверхности. Предполагается, что сочетание этих процессов ведёт к неравномерности во времени выноса тепла и лёгкого вещества к поверхности, что, в свою очередь, можно объяснить наличием в истории земной коры тектономагматических циклов.

Тектонические циклы (этапы) - большие (более 100 млн лет) периоды геологической истории Земли, характеризующиеся определённой последовательностью тектонических и общегеологических событий. Наиболее ярко проявляются в подвижных областях Земли, где цикл начинается погружениями земной коры с образованием глубоких морских бассейнов, накоплением мощных толщ осадков, подводным вулканизмом, образованием основных и ультраосновных интрузивно-магматических пород. Возникают островные дуги, проявляется андезитовый вулканизм, морской бассейн расчленяется на более мелкие, начинаются складчато-надвиговые деформации. Далее происходит формирование складчатых и складчато-покровных горных сооружений, окаймленных и разделённых передовыми (краевыми, предгорными) и межгорными прогибами, которые заполняются продуктами разрушения гор - мопассами. Этот процесс сопровождается региональным метаморфизмом, гранитообразованием, липарит-базальтовы-ми наземными вулканическими излияниями.

Сходная последовательность событий наблюдается и на платформах: смена континентальных условий за счет трансгрессии моря, а затем снова регрессии и установления континентального режима с образованием кор выветривания, с соответствующим изменением типа осадков - вначале континентальных, затем лагунных, нередко соленосных или угленосных, далее морских обломочных, в середине цикла преимущественно карбонатных или кремнистых, в конце снова морских, лагунных (соли) и континентальных (иногда ледниковых).

Интенсивным складчато-надвиговым деформациям и горообразованию в одних подвижных зонах нередко соответствуют образование в их тылу новых зон погружений и формирование систем рифтов -авлакогенов на платформах.

Средняя продолжительность тектонических циклов в фанерозое 150-180 млн лет (в докембрии тектонические циклы были, по-видимому, более продолжительными). Наряду с такими циклами иногда выделяют более крупные - мегациклы (мегаэтапы) - длительностью в сотни миллионов лет. В Европе, отчасти в Северной Америке и Азии в позднем докембрии и фанерозое установлены следующие циклы: гренвильский (средний рифей); байкальский (поздний рифей-венд); каледонский (кембрий-девон); герцинский (девон-пермь); киммерийский или мезозойский (триас-юра); альпийский (мел-кайнозой).

Первоначальное схематичное представление о тектонических циклах как строго синхронных в масштабах всей планеты, повсеместно повторяющихся и отличающихся одинаковым комплексом явлений, до сих пор справедливо оспаривается. В действительности, конец одного и начало другого циклов нередко оказываются синхронными (в разных, часто смежных регионах). В каждой отдельной подвижной системе наиболее полно выражены обычно один или два цикла, непосредственно предшествующие превращению ее в складчатую горную систему, а более ранние отличаются неполнотой набора характерных для них явлений, которые иногда сливаются друг с другом. В масштабе всей истории Земли тектоническая цикличность выступает лишь как осложнение общего её направленного развития. Отдельные циклы образуют стадии мегациклов, а они, в свою очередь, - крупные этапы истории Земли в целом. Причины цикличности пока не установлены. Высказываются предположения о периодичном накоплении тепла и возрастании теплового потока, исходящего из глубоких недр Земли, о циклах подъёма или круговорота (конвекции) продуктов дифференциации вещества мантии и др.

Пространственные неравномерности тех же глубинных процессов привлекаются к объяснению разделения земной коры на более или менее геологически активные регионы, например на горноскладчатые области и платформы.

С эндогенными процессами связано формирование рельефа Земли и образование многих важнейших полезных ископаемых.

Экзогенные процессы - геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Экзогенные процессы протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой. К ним относятся осадкообразование и образование месторождений осадочных полезных ископаемых, выветривание, геологическая деятельность ветра (эоловые процессы, дефляция), проточных поверхностных и подземных вод (эрозия, денудация), озёр и болот, вод морей и океанов (абразия), ледников (экзарация).

Экзогенные процессы включают разные виды выветривания в виде разрушений:

  • - дефляционные - выдувание, обтачивание и шлифование горных пород минеральными частицами, переносимыми ветром;
  • - селевые - образование и перемещение грязевых или грязекаменных потоков;
  • - эрозионные - размывание почв и горных пород водными потоками;

или разных процессов накопления осадков:

  • - аллювиальные - отложения рек в виде песка, галечника, конгломератов;
  • - делювиальные - перемещение продуктов выветривания горных пород вниз по склону под влиянием силы тяжести, дождевых и талых вод;
  • - коллювиальные - смещение склоновых обломков под влиянием силы тяжести;
  • - оползневые - отрыв земельных масс и горных пород и перемещение их по склону под влиянием силы тяжести;
  • - осадкообразующие - отложение осадков из воды, воздуха (в участках затишья) или на склонах под действием силы тяжести;
  • - пролювиальные - перемещение временными потоками продуктов разрушения горных пород и отложение их у подножий гор часто в виде конусов выноса;
  • - рудообразующие - накопление рудного вещества под действием разных причин: самородного золота - в результате выпадения из водных потоков, оксидов алюминия - выпадения из водных растворов и т. д.;
  • - элювиальные - продукты разрушения горных пород остаются на месте своего образования.

Выветривание - процесс разрушения и изменения горных пород в условиях земной поверхности в результате механического и химического воздействия атмосферы, грунтовых и поверхностных вод и организмов. По характеру среды, в которой происходит выветривание, оно может быть атмосферным и подводным. По роду воздействия выветривания на горные породы различают физическое выветривание , ведущее только к механическому распаду породы на обломки; химическое выветривание, при котором изменяется химический состав горной породы с образованием минералов, более стойких в условиях земной поверхности; органическое (биологическое) выветривание, сводящееся к механическому раздроблению или химическому изменению породы в результате жизнедеятельности организмов. Своеобразным типом выветривания является почвообразование, при котором особенно активную роль играют биологические факторы. Выветривание горных пород происходит под влиянием воды (атмосферные осадки и грунтовые воды), углекислоты и кислорода, водяных паров, атмосферного и грунтового воздуха, сезонных и суточных колебаний температуры, жизнедеятельности макро- и микроорганизмов и продуктов их разложения. На скорость и степень выветривания, мощность образующихся продуктов выветривания и на их состав кроме перечисленных агентов влияют также рельеф и геологическое строение местности, состав и структура материнских пород. Подавляющее число физических и химических процессов выветривания (окисление, сорбция, гидратация, коагуляция) происходит с выделением энергии. Обычно виды выветривания действуют одновременно, но в зависимости от климата тот или иной из них преобладает.

Физическое выветривание происходит главным образом в условиях сухого и жаркого климата и связано с резкими колебаниями температуры горных пород при нагревании солнечными лучами (инсоляция) и последующем ночном охлаждении; быстрое изменение объёма поверхностных частей пород ведёт к их растрескиванию. В областях с частыми колебаниями температуры около О °С механическое разрушение пород происходит под влиянием морозного выветривания; при замерзании воды, проникшей в трещины, объём ее увеличивается и порода разрывается.

Химические и органические типы выветривания свойственны главным образом пластам с влажным климатом. Основные факторы химического выветривания - воздух и особенно вода, содержащая соли, кислоты и щелочи. Водные растворы, циркулирующие в толще пород, помимо простого растворения способны производить также сложные химические изменения.

Физические и химические процессы выветривания происходят в тесной взаимосвязи с развитием и жизнедеятельностью животных и растений и действием продуктов их распада после смерти. Наиболее благоприятными для образования и сохранения продуктов выветривания (минералов) являются условия тропического или субтропического климата и незначительное эрозионное расчленение рельефа. При этом толще горных пород, подвергшихся выветриванию, свойственна (в направлении сверху вниз) геохимическая зональность, выраженная характерным для каждой зоны комплексом минералов. Последние образуются в результате следующих друг за другом процессов: распада пород под влиянием физического выветривания, выщелачивания оснований, гидратации, гидролиза и окисления. Эти процессы часто идут до полного разложения первичных минералов, вплоть до образования свободных оксидов и гидроксидов.

В зависимости от степени кислотности - щёлочности среды, а также участия биогенных факторов образуются минералы различного химического состава: от устойчивых в щелочной среде (в нижних горизонтах) до устойчивых в кислой или нейтральной среде (в верхних горизонтах). Разнообразие продуктов выветривания, представленных различными минералами, определяется составом минералов первичных горных пород. Например, на ультраосновных породах (серпентинитах) верхняя зона представлена породами, в трещинах которых образуются карбонаты (магнезит, доломит). Далее следуют горизонты карбонатизации (кальцит, доломит, арагонит), гидролиза, с которым связано образование нонтронита и накопление никеля (ЫЮ до 2,5 %), окремнения (кварц, опал, халцедон). Зона конечного гидролиза и окисления сложена гидрогётитом (охристым), гётитом, магнетитом, оксидами и гидроксидами марганца (никель- и кобальтсодержащими). С процессами выветривания связаны крупные месторождения никеля, кобальта, магнезита и природно-легированных железных руд.

В тех случаях, когда продукты выветривания не остаются на месте своего образования, а уносятся с поверхности выветривающихся пород водой или ветром, нередко возникают своеобразные формы рельефа, зависящие как от характера выветривания, так и от свойств горных пород, в которых процесс как бы проявляет и подчеркивает особенности их строения (рис. 15).

Рис. 15.

Россия (БСЭ).

Для изверженных пород (гранитов, диабазов и др.) характерны массивные округлённые формы выветривания; для слоистых осадочных и метаморфических - ступенчатые (карнизы, ниши и т. п.). Неоднородность пород и неодинаковая устойчивость их различных участков против выветривания ведёт к образованию останцев в виде изолированных гор, столбов (рис. 16), башен и т. п.

Во влажном климате на наклонных поверхностях однородных, сравнительно легко растворимых в воде пород, например, известняков, стекающие воды разъедают неправильной формы углубления, разделённые острыми выступами и гребнями, в результате чего образуется неровная поверхность, известная под названием карров.

Рис. 16.

реки Енисей у Красноярска (БСЭ).

В процессе перерождения остаточных продуктов выветривания образуется много растворимых соединений, которые сносятся грунтовой водой в водные бассейны и входят в состав растворённых солей или выпадают в осадок. Процессы выветривания приводят к образованию различных осадочных пород и многих полезных ископаемых: каолинов, охр, огнеупорных глин, песков, руд железа, алюминия, марганца, никеля, кобальта, россыпей золота, платины и др., зон окисления колчеданных месторождений с их полезными ископаемыми и др.

Дефляция (от позднелат. с 1 е/ 1 аИо - выдувание, сдувание) - развевание, разрушение горных пород и почв под действием ветра, сопровождающееся перенесением и обтачиванием оторванных частиц. Особенно сильна дефляция в пустынях, в тех их частях, со стороны которых дуют господствующие ветры (например, в южной части пустыни Каракумы). Совокупность процессов дефляции и физического выветривания приводит к образованию обточенных скал причудливой формы в виде башен, колонн, обелисков и т. п.

Эрозия почвы - разрушение почвы водой и ветром, перемещение продуктов разрушения и их переотложение.

Образование эоловых форм рельефа происходит под действием ветра преимущественно в районах с аридным климатом (пустыни, полупустыни); встречается также по берегам морей, озер и рек со скудным растительным покровом, не способным защитить от действия ветра рыхлые и разрушенные выветриванием породы субстрата. Наиболее распространены аккумулятивные и аккумулятивнодефляционные формы , образующиеся в результате перемещения и отложения ветром песчаных частиц, а также выработанные (дефляционные) эоловые формы рельефа, возникающие за счет выдувания (дефляции) рыхлых продуктов выветривания, разрушения горных пород под воздействием динамических ударов самого ветра и особенно под действием ударов мелких частиц, переносимых ветром в ветропесчаном потоке.

Форма и величина аккумулятивных и аккумулятивно-дефляционных образований зависит от режима ветров (силы, частоты, направления, структуры ветрового потока), преобладающего в данной местности и действовавшего в прошлом, от насыщенности песчаными частицами ветропесчаного потока, степени связности рыхлого субстрата растительностью, от увлажнения и других факторов, а также от характера подстилающего рельефа. Наибольшее влияние на облик эоловых форм рельефа в песчаных пустынях оказывает режим активных ветров, действующих аналогично водному потоку с турбулентным движением среды близ твердой поверхности. Для средне- и мелкозернистого сухого песка (при диаметре зерен 0,5-0,25 мм) минимальная скорость активного ветра составляет 4 м/с. Аккумулятивные и дефляционно-аккумулятивные формы, как правило, перемещаются в соответствии с сезонно господствующим направлением ветров: поступательно при годовом воздействии активных ветров одного или близких направлений; колебательно и колебательно-поступательно, если направления этих ветров в течение года существенно меняются (на противоположные, перпендикулярные и т. п.). Особенно интенсивно (со скоростью до нескольких десятков метров в год) происходит перемещение оголенных песчаных аккумулятивных форм.

Для аккумулятивных и дефляционно-аккумулятивных эоловых форм рельефа пустынь характерно одновременное присутствие наложенных друг на друга форм нескольких категорий величин: 1 -я категория - ветровая рябь, высотой от долей миллиметра до 0,5 м, расстоянием между гребнями от нескольких миллиметров до 2,5 м; 2-я категория - щитовидные скопления высотой не менее 40 см; 3-я категория - барханы до 2-3 м высотой, соединяющиеся в продольную ветрам гряду или в поперечную ветрам барханную цепь; 4-я категория -барханный рельеф высотой до 10-30 м; 5-я и 6-я категории - крупные формы (высотой до 500 м), образующиеся в основном восходящими потоками воздуха. В пустынях умеренного пояса, где большую роль играет растительность, сдерживающая работу ветра, рельефообразо-вание идет замедленнее и самые крупные формы не превышают 60-70 м, наиболее характерны здесь прикустовые косички, холмики-косы и прикустовые бугры высотой от нескольких дециметров до 10-20 м.

Поскольку господствующий режим ветров (пассатный, муссонно-бризный, циклональный и др.) и скрепленность рыхлого субстрата в первую очередь определяются зонально-географическими факторами, аккумулятивные и аккумулятивно-дефляционные эоловые формы рельефа распределяются в целом зонально. Согласно классификации, предложенной географом Б. А. Федоровичем, оголенные легкоподвижные песчаные формы характерны, главным образом, для тропических экстрааридных пустынь (Сахара, пустыни Аравийского полуострова, Ирана, Афганистана, Такла-Макан); полузаросшие слабоподвижные - преимущественно для внетропических пустынь (пустыни Средней Азии и Казахстана, Джунгарии, Монголии, Австралии); заросшие в основном неподвижные дюнные формы - для внепустын-ных территорий (главным образом древнеледниковых областей Европы, Западной Сибири, Северной Америки). Детальная классификация аккумулятивных и дефляционно-аккумулятивных эоловых форм рельефа в зависимости от режима ветров дана при описании дюн и барханов.

Среди выработанных микроформ (до нескольких десятков сантиметров в поперечнике) наиболее распространены решетчатые или сотовые скалы, сложенные в основном терригенными породами; среди форм средней величины (метры и десятки метров) - ярданги, ложбины, котлы и ниши выдувания, скалы причудливой формы (грибообразные, кольцевые и др.), скопления которых нередко образуют целые эоловые «города»; к крупным выработанным формам (несколько километров в поперечнике) относят котловины выдувания и солончаково-дефляционные впадины, образующиеся при совместном воздействии интенсивно протекающих процессов физикохимического (солевого) выветривания и дефляции (в том числе огромные площади до сотен километров; например, впадина Карагие в Западном Казахстане). Всестороннее изучение эоловых форм рельефа, их морфологии, происхождения, динамики имеет важное значение при хозяйственном освоении пустынь.

Абразия (от лат. аЪгаяю - соскабливание, сбривание) - разрушение волнами и прибоем берегов морей, озёр и крупных водохранилищ. Интенсивность абразии зависит от степени волнового воздействия водоёма. Важнейшим условием, предопределяющим абразионное развитие берега, является относительно крутой угол исходного откоса (больше 1 °) прибрежной части дна моря или озера. Абразия создаёт на берегах абразионную террасу, или бенч, и абразионный уступ, или клиф (рис. 17). Образующиеся при этом в результате разрушения горных пород песок, гравии, галька могут вовлекаться в процессы перемещения наносов и служить материалом для береговых аккумулятивных форм. Часть материала сносится волнами и течениями к подножию абразионного подводного склона и образует здесь прислонённую аккумулятивную террасу. По мере расширения абразионной террасы абразия постепенно затухает (так как расширяется полоса мелководья, на преодоление которой расходуется энергия волн) и при поступлении наносов может смениться аккумуляцией. На склонах искусственных водохранилищ, уклоны которых в прошлом формировались иными, не абразионными факторами, темп абразии особенно высок - до десяти метров в год.


Рис. 17.

К - клиф; АТ - абразионная терраса (бенч); ПАТ - подводная аккумулятивная терраса; УВ - уровень воды. Пунктирной линией обозначен доабрази-онный рельеф (БСЭ).

Экзарация (от позднелат. ехагайо - выпахивание) - ледниковое выпахивание, разрушение ледником горных пород, слагающих его ложе, и удаление продуктов разрушения (отторженцев, валунов, гальки, песка, глины и др.) движущимся ледником. В результате экзарации возникают троги, озёрные котловины, «бараньи лбы», «курчавые скалы», ледниковые шрамы, штриховка. Наряду с разрушением горных пород происходят их сглаживание, полировка и шлифовка.

Главные формы проявления экзогенных процессов на поверхности Земли:

  • - разрушение горных пород и химическое преобразование слагающих их минералов (физическое, химическое, органическое выветривание);
  • - удаление и перенос разрыхлённых и растворимых продуктов разрушения горных пород водой, ветром и ледниками;
  • - отложение (аккумуляция) этих продуктов в виде осадков на суше или на дне водных бассейнов и постепенное их преобразование в осадочные горные породы в результате последовательных процессов се-диментогенеза, диагенеза и катагенеза.

Экзогенные процессы в сочетании с эндогенными участвуют в формировании рельефа Земли, в образовании толщ осадочных горных пород и связанных с ними месторождений полезных ископаемых. Например, в условиях проявления специфических процессов выветривания и осадконакопления образуются руды алюминия (бокситы), железа, никеля и др.; в результате селективного отложения минералов водными потоками формируются россыпи золота и алмазов; в условиях, благоприятствующих накоплению органического вещества и обогащенных им толщ осадочных горных пород, возникают горючие полезные ископаемые.

Экзогенные геологические процессы протекают в самых верхних частях земной коры или на ее поверхности и обусловлены лучистой энергией Солнца и силой тяжести.

Геологические агенты:

1. Выветривание.

2. Геологическая деятельность ветра.

3. Поверхностные воды:

а. дождевые и талые воды,

б. временные водотоки,

в. постоянные водотоки – реки,

г. озера, болота,

д. Мировой океан.

4. Подземные воды.

5. Геологическая деятельность ледников.

6. Геологическая деятельность человека (антропогенный фактор).

Виды работ, совершаемые геологическими агентами:

· разрушающая,

· транспортирующая,

· аккумулирующая.

Денудация – это совокупность процессов разрушения горных пород и переноса продуктов разрушения, вызванных и осуществляемых внешними геологическими агентами.

Денудация: площадная и локальная. Результат денудации:

· общее сглаживание рельефа местности,

· формирование денудационных равнин – пенепленов.

Выветривание

Выветривание – разрушения горных пород на месте их выхода под действием физических и химических процессов (колебания температуры, влажности, механические виды разрушения, взаимодействие каменных масс с активными химическими веществами: вода, кислород, углекислый газ, органические кислоты).

Иногда процессы действуют комплексно, иногда по отдельности. В зависимости от преобладания тех или иных процессов различают физическое, химическое и биологическое выветривание.

Продукты выветривания:

· элювий – продукты выветривания, которые остаются на месте своего образования (современные образования). Мощность от 1миллиметра до десятков метров.

· делювий - продукты выветривания (обломочный материал), перенесенный вниз по склону талыми и дождевыми водами. Залегает в виде шлейфа по склону у подножия. Характерна сортировка обломков и параллельная склону слоистость.

· коллювий - обломочный материал, перенесенный вниз по склону за счет силы тяжести. Характерно отсутствие окатанности и сортировки, образование осыпей в местах с расчлененным горным рельефом.

Кора выветривания – совокупность всех продуктов выветривания, как оставшихся на месте, так и перемещенных, но не потерявших связь с материнской породой. Мы могли наблюдать линейную кору выветривания, представленную очень светлыми, кремовыми, с розоватым оттенком породами, в которых явно просматривается первичная порфировая структура.

Почва – слой коры выветривания, обогащенный гумусом. По возрасту выделяют древнюю (обычно перекрыта более молодыми породами, источник полезных ископаемых) и современную почву. Мы наблюдали черноземные почвы по ходу маршрута №1 в т.н. 2 вблизи кладбища.

Физическое выветривание

Физическое выветривание вызывается разнообразными факторами. В зависимости от природы воздействующего фактора характер разрушения горных пород при физическом выветривании различен. В одних случаях процесс разрушения происходит внутри самой горной породы без участия внешнего механически действующего агента. Сюда относится изменение объема составных частей породы, вызываемое колебаниями температуры. Такое явление называется температурным выветриванием. В других случаях горные породы разрушаются под механическим воздействием посторонних агентов. Такой процесс может быть условно назван механическим выветриванием.

Механическое выветривание происходит под механическим воздействием посторонних агентов. Особенно большое разрушительное действие оказывает замерзание воды. Когда вода попадает в трещины и поры горных пород, а потом замерзает, она увеличивается в объеме на 9-10%, производя при этом огромное давление. Такая сила преодолевает сопротивление горных пород на разрыв, и они раскалываются на отдельные обломки. Наиболее интенсивное расклинивающее действие производит замерзающая вода в трещинах горных пород. Такое же механическое воздействие на горные породы оказывает корневая система деревьев и роющие животные.

Дезинтеграцию пород вызывает так же рост кристаллов в капиллярных трещинах и порах. Это хорошо проявляется в условиях сухого климата, где днем при сильном нагревании капиллярная вода подтягивается к поверхности испаряется, а соли, содержащиеся в ней кристаллизуются. Под давлением растущих кристаллов капиллярные трещины разрушаются, что приводит к нарушению монолитности горной породы и ее разрушению.

Химическое выветривание

Разрушению горных пород под влиянием физического выветривания всегда в той или иной степени сопутствует химическое выветривание, а в ряде случаев последнее играет решающую роль. Это отражает тесную взаимосвязь различных форм единого процесса выветривания. Главными факторами химического выветривания являются:

· газы атмосферы: вода, кислород, углекислота,

· органические кислоты, под влиянием которых существенно изменяются структура, и состав минералов и образуются новые минералы, соответствующие определенным физико-химическим условиям.

Химическое выветривание происходит комплексно и всегда сопровождается коренным изменением состава минералов и замещением их новыми, в отличие от физического выветривания, при котором химический состав горных пород остается неизменным.

К процессам химического выветривания относятся окисление, гидратация, растворение и гидролиз.

Окисление

Окисление – переход одних соединений в другие, сопровождающийся присоединением кислорода.

Процессы окисления наиболее интенсивно протекают в минералах, содержащих закисные соединения железа, марганца и других элементов. Так, сульфиды в кислотной среде становятся не устойчивыми и постепенно замещаются сульфатами, окислами и гидроокислами. Направленность этого процесса можно схематически изобразить следующим образом:

FeS 2 + nO 2 + mH 2 O → FeSO 4 → Fe 2 (SO 4) 3 → Fe 2 O 3 ∙ H 2 O

пирит сульфат сульфат бурый железняк

закиси окиси (лимонит)

железа железа

Примером проявления физического и химического выветривания может послужить т.н. 9 – это обнажение кварцевых альбитофиров на левом берегу р. Шаты в 150 метрах от её устья вверх по течению. Кварцевые альбитофиры - это светло­-серые в свежем сколе породы, по трещинам сильно ожелезненные. Трещин настолько много, лимонита и гематита по трещинам тоже очень много, поэтому в целом всё обнажение выглядит не светло-серым, а ржаво-рыжим. Кварцевые альбитофиры – это стекловатые породы с большим количеством (до 2-3%) пирита (фото 3.1.1).

Фото 3.1.1. Физическое и химическое выветривание

Основные агенты здесь: сезонные и суточные колебания температуры, воздействие метеорных вод (дождевых), паводковых вод, действие солнечных лучей, расклинивающая деятельность корневой системы растений, окисление пирита, возникновение серной кислоты при преобразовании пирита и другие.

Гидратация

Гидратацияпроцесс поглощения или присоединения воды к минералам и образования новых водных соединений, который сопровождается увеличением объема породы и уменьшением плотности, при этом кристаллическая решетка не разрушается (гипс ↔ ангидрид).

Растворение

Растворение связано с воздействием на породы воды, в которой растворены активные ионы (Na + , K + , Mg 2+ , Ca 2+ , Cl - , SO 4 2- , HCO 3-). С растворением связано образование карстовых пещер.

Гидролиз

Гидролиз – процесс обменного разложения минералов под влиянием воды и углекислоты.

Биологическое выветривание

В сложных процессах химического разложения минералов и горных пород велика роль биосферы.

Разрушению пород способствуют разнообразные животные. Грызуны роют значительное количество нор, рогатый скот вытаптывает растительность, а черви и муравьи разрушают поверхностный слой почвы. Особенно сильно разрушение ведется микроорганизмами. Деятельность корневой системы деревьев не однозначна, она разрушает горную породу, а так же удерживает ее своими корнями.

Так, в т.н. 14 маршрута №2, расположенной на правом склоне долины р. Шата можно видеть небольшой овраг, рассекающий склон. Правый склон оврага закреплён корневой системой сосен. Густое переплетение корневой системы сдерживает рост оврага (фото 3.1.2).

Фото 3.1.2. Закрепляющая деятельность корневой системы сосен

3.3. Гравитационные и водно-гравитационные процессы

Гравитационные процессы - это процессы, происходящие за счет силы гравитации. Происходит сортировка обломков на склоне по принципу, чем больше и тяжелее обломок, тем ниже по склону он будет находиться.

Водно-гравитационные процессы - это процессы, совершенные водой под действием силы гравитации, например оползни.

Оползень - перемещение грунтовых или земляных масс по склону под действием силы тяжести, связанное в большинстве случаев с деятельностью подземных вод. Оползшую массу называют оползневым телом, а поверхность, по которой происходит передвижение его вниз - поверхностью скольжения или поверхностью смещения. Самой распространенной формой оползня является грязевой оползень, или обвал. Иногда его следы можно заметить на подмытом рекой обрывистом берегу, где пласт грунта отделился от основы. Крупный оползень способен привести к значительным изменениям рельефа.
При оползнях гравитация заставляет твердые породы сползать вниз по склону, изменяя рельеф местности. Основную массу оползня составляют обломки горных пород, образовавшиеся в результате выветривания. Вода действует как смазка, уменьшая трение между частицами.

Иногда оползни движутся медленно, а иногда со скоростью до 100 м/сек. и более (обвалы). Самый медленный оползень называют крипом. За год он проползает всего несколько сантиметров, и заметить его можно только через несколько лет, когда стены построек, заборы и деревья склонятся под напором ползущей земли.

Примером крипа может послужить маршрута №5 (фото 3.3.1). Он расположен в устье Гематитового оврага в 30 метрах от нашего лагеря в правом борту р. Шата. Здесь мы наблюдали так называемый «пьяный лес», который является признаком оползня.

Фото 3.3.1. Крип

Перенасыщенность почвы или глины водой может вызвать грязевой поток, или сель. Бывает, что земля годами прочно держится на месте, но достаточно небольшого подземного толчка, чтобы обрушить ее вниз по склону.

В горной местности оползшая вниз масса образует пологий склон у подножия горы. Многие горные склоны покрыты длинными языками щебнистых осыпей.

Эрозионные процессы

Эрозия - разрушение горных пород и почв под действием геологических агентов (водные потоки, ветер), включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

На первых этапах развития речных долин, а также в верхней части русла эрозионная деятельность наиболее активно проявляется. Выделяют два главных вида движения воды: ламинарное и турбулентное. Существует два типа речной эрозии: донная и боковая.

Донная эрозия, ведущая к углублению речной долины, преобладает в начале развития речной долины и всегда сочетается с пятящейся эрозией. Объясняется это тем, что, при одинаковом уклоне русла (а значит и скорости течения) в низовьях и верховьях, в силу большей массы воды близ устья здесь и эрозия будет максимальна. Следовательно, выработка профиля равновесия происходит от устья к истоку. В результате вертикальных движений земной коры и разной прочности размываемых пород в русле могут возникать пороги и водопады, которые получают рольместных (локальных) базисов эрозии. Относительно них река разбивается на самостоятельно развивающиеся участки, и единый для всего русла профиль равновесия сформируется только после срезания местных базисов эрозии. Вследствие донной эрозии возникает V-образный поперечный профиль речной долины. Такой профиль мы наблюдали по ходу маршрута у р. Ключ, р. Усолки (поперечный профиль с крутыми бортами) и р. Шаты, где профиль долины V-образный, в основном с крутыми бортами, но с невыработанным продольным профилем (рис. 3.4.1).

Рис. 3.4.1. V-образный поперечный профиль р. Ключ в среднем течении.

Боковая эрозия, заключающаяся в размыве берегов, наибольшее развитие получает в поздние этапы жизни речной долины, когда с приближением к профилю равновесия уменьшится скорость течения в нижней и средней частях русла. Основными причинами ее возникновения являются турбулентность течения и ускорение Кориолиса. Благодаря боковой эрозии русло изгибается, появляются излучины. Вогнутые берега излучин активно размываются, дно под ними углубляется. Близ противоположного выпуклого берега скорость потока минимальна, поэтому здесь происходит отложение переносимого рекой материала и формируются прирусловые отмели. Под действием боковой эрозии речная долина расширяется, ее поперечный профиль приобретает U-образную форму. U-образный поперечный профиль имеет р. Пышма, а возле плотины мы наблюдали боковую эрозию, в этом месте река изгибается (фото 3.4.1).

Фото 3.4.1. р. Пышма

Речная эрозия играет ведущую роль в образовании пенеплена - практически ровная, местами слабовсхолмлённая поверхность (денудационная равнина), которая образовывалась в результате разрушения старых гор длительной эрозией, называемой денудацией. (фото 3.4.2)

Фото 3.4.2. Пенеплен

Овражная эрозия – процесс линейного размыва временными водными потоками поверхности склонов, берегов рек, приводящий к образованию и развитию оврагов и расчленению ими территории. Зарождение оврага чаще всего происходит на перегибах склона и в нижней его части. Овражная эрозия в первом случае распространяется регрессивно (вверх по склону) и трансгрессивно (вниз по склону). При зарождении оврага в нижней части склона овражная эрозия распространяется только регрессивно; если овраг возник в верхней части склона, то преобладает трансгрессивная овражная эрозия. Бурное развитие овражной эрозии обусловливает быстрый рост оврага в длину и глубину и формирование отвершков.

Во время нашей практики в крутой излучине р. Шаты мы наблюдали смену растительности и овраг на границе этой смены. Также на правом берегу р. Шаты рядом с нашим лагерем мы видели овраг Гематитовый с двумя отвершками, заросший травой. Иногда на склонах растут сосны, корни которых сдерживают рост оврага. Рядом с автомобильным мостом через р. Пышму недалеко от Автозаправочной станции (АЗС) хорошо наблюдалась разрушающая работа временных водных потоков, которые размывали породу вдоль грунтовой дороги, образуя узкий каньон. При дальнейшем воздействии этот каньон может преобразоваться в овраг.

Геологические процессы делятся на эндогенные и экзогенные.

Эндогенные геологические процессы

Эндогенные геологические процессы включают магматизм, метаморфизм, землетрясения, тектонические нарушения.

Магматизм

Магматические горные породы, образовавшиеся из жидкого расплава - магмы, играют огромную роль в строении земной коры. Эти породы сформировались разными путями. Крупные их объемы застывали на различной глубине, не дойдя до поверхности, и оказывали сильное воздействие на вмещающие породы высокой температурой, горячими растворами и газами. Так образовались интрузивные тела. Если магматические расплавы вырывались на поверхность, то происходили извержения вулканов, носившие в зависимости от состава магмы спокойный либо катастрофический характер. Такой тип магматизма называют эффузивным, что не совсем точно. Нередко извержения вулканов носят взрывной характер, при котором магма не изливается, а взрывается и на земную поверхность выпадают тонко раздробленные кристаллы и застывшие капельки стекла - раплава. Подобные извержения называются эксплозивными. Поэтому говоря о магматизме, следует различать интрузивные процессы, связанные с образованием и движением магмы ниже поверхности земли, и вулканические процессы, обусловленные выходом магмы на земную поверхность. Оба эти процесса неразрывно связаны между собой, а проявление того или другого из них зависит от глубины и способа образования магмы, ее температуры, количества растворенных газов, геологического строения района, характера и скорости движений земной коры и т.д.

Как интрузивные, так и вулканические горные породы содержат залежи полезных ископаемых и, кроме того, они являются надежными индикаторами тектонических и палеогеографических условий геологического прошлого, что позволяет нам их реконструировать.

Метаморфизм

Горные породы после формирования могут попасть в такую геологическую обстановку, которая будет существенно отличаться от обстановки образования породы и на нее будут оказывать влияние различные эндогенные силы: тепло, давление (нагрузка) вышележащих толщ, глубинные флюиды, растворы и газы, воды, водород, углекислота и др. Изменение магматических и осадочных пород в твердом состоянии состоянии под воздействием эндогенных факторов и называется метаморфизмом.

Все метаморфические процессы можно разделить на две группы. В одной из них химический состав метаморфизуемых пород не изменяется, т.е. преобразование происходит изохимически. Во второй группе наблюдается изменение состава пород за счет привноса или выноса компонентов. Такой процесс называется аллохимическим. Под воздействием процессов метаморфизма происходит перекристаллизация исходных пород, изменение минерального, а нередко и химического состава. Метаморфические процессы могут быть разной интенсивности, поэтому в природе наблюдаются все постеренные переходы от практически неизмененных или слабо измененных пород, первичная текстура, структура и состав которых сохранились, до пород, измененных настолько сильно, что восстановить их первичную природу невозможно. Усиление степени метаморфизма, т.е. увеличение температуры, давления и концентрации флюидов, приводит к изменению или распаду неустойчивых минералов на более устойчивые ассоциации. При изучении метаморфических пород необходимо восстановить их первичную природу и условия образования, а также дать реконструкцию обстановки метаморфизма - давление, температуру и роль летучих компонентов. Это позволяет разобраться в мощнейших толщах хедских, архейских и протерозойских пород, слагающих главным образом фундамент древних платформ и отвечающих по возрастному интервалу большей части истории Земли - 2,5-4,6 млрд. лет. С этими же породами связаны очень важные в практическом отношении метаморфогенные месторождения, содержащие железные руды, графит, золото, уран, медь, кварциты, мраморы и др.

Землетрясения

Ежегодно на Земле регистрируется более 100 000 землетрясений. Большинство из них мы вообще не ощущаем, некоторые отзываются лишь дребезжанием посуды в шкафах и раскачиванием люстр, зато другие, к счастью гораздо более редкие, в мгновение ока превращают города в груды дымящихся обломков. На побережьях море отступает, обнажая дно, а затем на берег обрушивается гигантская волна, сметая все на своем пути, унося остатки строений в море. Крупные землетрясения сопровождаются многочисленными жертвами среди населения, которое гибнет под развалинами зданий, от пожаров, наконец, просто от возникающей паники. Землетрясения - это бедствие, катастрофа, поэтому огромные усилия затрачиваются на предсказания возможных сейсмических толчков, на выделение сейсмоопасных районов, на мероприятия, которые призваны сделать промышленные и гражданские здания сейсмостойкими.

За последнее время катастрофические землетрясения произошли в Чили (1960), на Аляске (1969), в Гватемале (1976), в Китае (1976), когда погибло 100 000 человек. На территории СССР не раз отмечались очень сильные землетрясения: Андижанское (1902), Кеминское (1911), Хаитское (1949), Ашхабадское (1929 и 1948), Ташкентское (1966), Газлийские (1970, 1976, 1984) и, наконец, страшное Спитакское землетрясение в Армении (1988).



Любое землетрясение - это тектонические деформации земной коры или верхней мантии, происходящие вследствие того, что накопившиеся напряжения в какой-то момент превысили прочность горных пород в данном месте. Разрядка этих напряжений и вызывает сейсмические колебания в виде волн, которые, достигнув земной поверхности, производят разрушения.

Очагом, или гипоцентром землетрясения является определенный объём горных пород, внутри которого осуществляются неупругие деформации и происходит разрушение пород. Эпицентр - проекция гипоцентра на земную поверхность. На карте распространения эпицентров современных землетрясений отчетливо видна их связь с периферией Тихого океана, Средиземноморским подвижным поясом (Альпы, Карпаты, Кавказ, Гималаи), а также со срединно-океаническими хребтами во всех океанах.

Тектонические нарушения

В большинстве случаев осадки, формирующиеся в озерах, морях и океанах, обладают первично горизонтальным залеганием, которое нередко нарушается тектоническими движениями, что приводит к образованию складок, с одной стороны, и разрывных нарушений, с другой.

Складка - это изгиб слоев. Различают ядро складки и ее крылья. Складки бывают антиклинальные и синклинальные. Ядра антиклинальных складок сложены породами более древними слоями, ядра синклинальных - более молодыми. Перегибы слоев образуют замки складок.

Чаще всего складки образуются при содвиге континентальных плит, когда происходит раздавливание неконсолидированных горизонтально залегающих слоев между сдвигающимися кратонами. При этом образуются линейные складки с примерно одинаковыми замками антиклинальных и синклинальных разновидностей. Под воздействием преимущественно вертикальных движений в подвижных поясах образуются брахискладки, где форма замков антиклинальных и синклинальтных складок различная. На платформах формируются куполовидные складки изометричной формы с очень пологими крыльями.

Разрывные нарушения

Разрывным нарушением называется деформация пластов горных пород с нарушением их сплошности, возникающая в случае превышения предела прочности пород тектоническими напряжениями. В любом разрывном нарушении всегда выделяется плоскость разрыва или сместителя и крылья разрыва, т.е. два блока пород по обе стороны сместителя, которые подверглись перемещению. Крыло или блок, находящийся выше сместителя, называется висячим, а ниже - лежачим. Важным параметром разрыва является его амплитуда. Расстояние от пластав лежачем крыле до того же пласта в висячем крыле называется амплитудой по сместителю. Кроме того различают стратиграфическую амплитуду, которая измеряется по нормали к плоскости напластования в любом крыле разрыва до проекции пласта; вертикальную амплитуду - проекцию амплитуды по сместителю на вертикальную плоскость; горизонтальную амплитуду - проекцию амплитуды по сместителю на горизонтальную плоскость. Положение сместителя в пространстве определяется, как и ориентировка любой другой плоскости, с помощью линий падения, простирания и угла падения.

Основные типы разрывных нарушений: сброс (сместитель наклонен в сторону опущенного крыла, угол наклона сместителя больше 45 0), взброс (сместитель наклонен в сторону поднятого крыла), надвиг (взброс с углом наклона сместителя менее 45 0), сдвиг (перемещение крыльев по простиранию сместителя), шарьяж (надвиг с почти горизонтальным положением сместителя), раздвиг (горизонтальное смещение блоков разрывного нарушения в противоположные стороны), содвиг (горизонтальное смещение блоков разрывного нарушения навстречу друг другу).

Амплитуды смещения достигают 4000 км - при раздвиге (спрединге) континентальных плит. Примерно такие же амплитуды были при содвигах континентальных плит, в результате чего формировались шарьяжи с амплитудой перемещения в сотни километров.

Экзогенные процессы

К экзогенным процессам относятся: выветривание, геологическая деятельность ветра, поверхностных текучих вод, подземных вод, ледников, геологические процессы в областях распространения многолетнемерзлых горныхъ пород, геологическая деятельность океанов и морей.

Выветривание

Под выветриванеием понимается совокупность физических, химических и биохимических процессов преобразования горных пород и слагающих их минералов в приповерхностной части земной коры. Это преобразование зависит от многих факторов: колебания температуры, химического воздействия воды и газов - углекислоты и кислорода, воздействия органических веществ, образующихся при жизни растений и животных и при их отмирании и разложении. Сказанное свидетельствует о том, что процессы выветривания тесно связаны с взаимодействием приповерхностной части земной коры с атмосферой, гидросферой и биосферой. Часть земной коры, где происходит преобразование минерального вещества, называется зоной выветривания или зоной гипергенеза. Условно выделяются два взаимосвязанных фактора: физическое и химическое выветривание.

Геологическая деятельность ветра

Геологическая деятельность ветра состоит из следующих видов: дефляции (выдувания и развевания), коррозии (обтачивания, соскабливания), переноса и аккумуляции. Все процессы, обусловленные деятельностью ветра, создаваемые ими формы рельефа и отложения называют эоловыми.

Наиболее ярко деятельность ветра проявляется в пустынях, занимающих около 20 % поверхности континентов, где сильные ветры сочетаются с малым количеством выпадающих атмосферных осадков, резкими колебаниями температуры, отсутствием растительного покрова в связи с аридным климатом.

Геологическая деятельность поверхностных текучих вод

Под текучими водами понимаются все виды поверхностного стока на суше от струй, возникающих при выпадении дождя и таяния снега, до самых крупных рек. Все воды, стекающие по поверхности Земли, производят различного вида работу. Хорошо известно, что поверхностная текучая вода - один из важнейших факторов денудации суши и преобразования лика Земли.

Как и в других экзогенных процессах, в деятельности текучих вод могут быть выделены три составляющие: разрушение, перенос и отложение, или аккумуляция, переносимого материала в конечном итоге на первом (у подножия гор) и втором (в дельтах рек) уровнях аккумуляции. По характеру и результатам деятельности можно выделить три вида поверхностного стока вод: плоскостной безрусловой склоновый сток, сток временных русловых потоков и сток постоянных водотоков - рек.

Разрушение горных пород происходит главным образом в горах. На равнинах преобладает перенос и аккумуляция. Ежегодно реками выносится в их устью около 20 км 3 песчано-глинистого материала. Крупнейшим местом временной аккумуляции обломочного материала, выносимого реками является устье рек Ганга и Брахмапутры, около 2 км 3 , или 10 % всего перенесенного и отложенного материала. Это связано с денудацией высочайшей горной системы - Гималаев.

Геологическая деятельность подземных вод

К подземным водам относятся все природные воды, находящиеся под поверхностью Земли в подвижном состоянии. Вопросы происхождения, движения, развития и распространенности подземных вод являются предметом изучения специальной отрасли геологической науки - гидрогеологии. Подземные воды тесно связаны с водой атмосферы и наземной гидросферы - океанами, морями, озерами, реками. В природных условиях происходит непрерывное взаимодействие этих вод, так называемый гидрологический круговорот.

Одним из важнейших факторов, определяющих условное начало круговорота, является испарение воды с поверхности океанов, морей и поступление влаги в атмосферу. При благоприятных условиях вода атмосферы конденсируется и выпадает в виде атмосферных осадков. Распределение последних может быть представлено следующей схемой: испарение, поверхностный сток, инфильтрация, или просачивание, подземный сток.

Водноколлекторские свойства горных пород определяются их пористостью и трещиноватостью. Наибольшая водопроницаемость наблюдается в галечниках, гравии, в крупных песках, сильно закарстованных известняках и сильно трещиноватых породах различного генезиса. Относительно слабая проницаемость отмечается в тонкозернистых песках, супесях, еще меньшая в лёссах, легких суглинках, слаботрещиноватых породах. Почти непроницаемыми (водоупорными) являются глины, тяжелые суглинки, сцементированные и другие массивные породы с ничтожной трещиноватостью.

Горные породы содержат различные виды воды:

1. Вода в виде пара.

2. Физически связанная вода, гигроскопическая и пленочная.

3. Свободная вода, капиллярная и гравитационная.

4. Вода в твердом состоянии.

5. Кристаллизационная и химически связанная вода.

В современной гидрогеологической литературе выделяют принадлежность разных видов подземных вод к конкретным зонам: зоне аэрации и зоне насыщения.

Почвенные воды и верховодка образуются в зоне аэрации. В зоне насыщения выделяют воды: грунтовые, межпластовые безнапорные и межпластовые напорные, или артезианские.

Геологическая деятельность ледников

Ледники - это естественные массы кристаллического льда, находящиеся на поверхности Земли в результате накопления и последующего преобразования твердых атмосферных осадков (снега). Необходимым условием образования ледников является сочетание низких температур с большим количеством твердых атмосферных осадков, что имеет место в холодных странах высоких широт и в вершинных частях гор.

Выделяются три основных типа ледников: 1) материковые, или покровные, 2) горные, 3) промежуточные, или смешанные. Классическими примерами ныне существующих материковых ледников служат покровы Антарктиды и Гренландии. Антарктида занимает площадь около 15 млн км 2 , из них около 13,2 млн км 2 покрыто льдом. Ледяной покров образует огромное плато высотой до 4 км..

В четвертичном периоде значительная часть Европы и Северной Америки также были покрыты материковым ледяным покровом.

При своем движении ледники производят разрушение горных пород, перенос обломков и их аккумуляцию в виде морен. Одна из таких конечных морен расположена около МГОУ за рекой Яузой на территории Лосиного острова.

Геологические процессы в областях распространения многолетнемерзлых горных пород

Хорошо известно, что поверхностные слои почв и грунтов подвергаются сезонному промерзанию зимой и оттаиванию в весенне-летнее время. Наибольшая глубина промерзания в северном полушарии наблюдается в северных приполярных районах, наименьшая - в южных. Этот верхний слой периодического промерзания и оттаивания отличается большой динамичностью и называется деятельным слоем. Ниже него на обширных пространствах Северной Евразии и Северной Америки развиты многолетнемерзлые горные породы (ММП). В России они занимают больше половины площади.

Зону распространения ММП называют мерзлой зоной земной коры или криолитозоной. Соответственно и наука, изучающая криолитозону и процессы, связанные с ней, называется геокриологией или мерзлотоведением.

В зоне ММП наблюдается целый ряд геологических процессов. Повторно-жильные льды формируются в северной геокриологической зоне. Их развитие связано с морозобойными трещинами, образующими системы полигонов. Морозное пучение характерно для различных районов криолитозоны. Инъекционные бугры пучения образуются в условиях закрытой системы. К склоновым процессам относятся солифлюкция и курумы.

Геологическая деятельность океанов и морей

Вся совокупность водных пространств океанов и морей, занимающих 70,8 % поверхности Земли, называется Мировым океаном, или океаносферой. Мировой океан включает четыре океана: Тихий, Атлантический, Индийский и Северный Ледовитый, все окраинные (Берингово, Охотское, Японское и др.) и внутриконтинентальные моря (Средиземное, Черное, Балтийское и др.).

В рельефе дна океанов и морей выделяются шельф, материковый склон, ложе Мирового океана с поднятиями (срединно-океаническими хребтами, валами, вулканическими островами и гайотами) и глубоководными впадинами (Тонга-Кермадекской, Курило-Камчатской, Идзу-Бонинской и др.).

В Мировом океане у подножия материкового склона формируется на третьем уровне седиментации основная часть обломочного материала, образующегося при денудации, часть последнего разносится геострофическими течениями по дну Мирового океана. На глубинах менее 4 км чаще во внутренних частях Мирового океана образуются карбонатные илы, впоследствии превращающиеся в известняки. В глубоководных частях океанов формируются диатомовые и радиоляритовые илы, а также красные глубоководные глины с криоконитом. В пределах срединноокеанических хребтов под действием черных ведьм (черных курильщиков) образуются месторождения меди, полиметаллов и золота.

Все геологические процессы делятся на экзогенные (внешние) в эндогенные (внутренние). Экзогенные геологические процессы происходят в результате воздействия внешних оболочек земли (гидросферы и атмосферы) на земную кору и охватывают ее поверхностные части. Они обнаруживают связь с внешними, в частности, климатическими условиями и обычно подчиняются климатической зональности. По своей направленности экзогенные процессы подразделяется на денудационные и аккумулятивные, однако между собой неразрывно связаны, как, например, связаны явления смыва, Размыва и оврагообразования с процессами накопления делювия, овражного аллювия, отложений конусов выноса и т.д. Обычно достаточно точно выделяются части территории, в одних из которых превалируют денудационные процессы и процессы, их подновляющие, тогда как в других сосредоточены главным образом процессы аккумуляции и литификации осадков. Подобное разгра ничение позволяет выделить особенности геодинамической обстановки и состояние и свойства горных пород покровной толщи изучаемой территории. Экзогенные геологические процессы возникают в результате геологической работы поверхностных вод, подземных вод и атмосферы. Одни из них обязаны своим развитием в основном поверхностным водам (явления смыва и размыва, оврагообразования и т. д.), другие - подземным водам (карст, фильтрационное разрушение горных пород), третьи - атмосфере (ветровая коррозия горных пород, процессы развевания и навевания - движущиеся пески). Некоторые экзогенные процессы возникают в результате совместных действий подземных и поверхностных вод (например, оползни) или подземных вод и атмосферы (выветривание горных пород, разнообразные виды объемных деформаций почво-грунтов). По этому принципу выделяются естественные группы экзогенных геологических процессов. Экзогенные геологические процессы поддаются с различной степенью эффективности инженерному управлению, например, путем вертикальной планировки территории, регулирования подземного и поверхностного стока, режима влажности и температурного режима горных пород. Эндогенные геологические процессы возникают под действием внутренней энергии, выделяемой землей. Из числа эндогенных Геологических процессов, определяющих в наибольшей степени геодинамическую обстановку месторождения, наибольший интерес представляют сейсмические процессы, неотектонические движения земной коры и явления геотермии. Эндогенные геологические процессы не поддаются инженерному управлению, поэтому строительство и эксплуатация горных предприятий в зонах продления этих процессов основывается на их прогнозировании и создании падежных, приспособленных к данной геодинамнческой обстановке инженерных конструкций, а также технологических схем и методов разработки полезных ископаемых. Таким образом, современные геологические процессы и горногеологические явления в совокупности определяют геодинамическую обстановку производства горных работ. Геодинамическая 0бстановка характеризуется состоянием геофизических полей, Пронизывающих геологическую среду (полей напряжений и деформаций, геотермического, гидрогеодинамического) и горногеологических явлений.

Раздел инженерной геологии, в котором рассматриваются современные геологические процессы и горно-геологические явления с позиции их влияния на условия разработки месторождений полезных ископаемых, называется инженерной геодинамикой . Основными задачами геодинамики являются: 1) изучение современных геологических процессов с целью определения их влияния на устойчивость, надежность и долговечность горнотехнических сооружений; 2) прогноз изменений геодинамической обстановки района производства горных работ; 3) обоснование защитных инженерных мероприятий, обеспечивающих безопасное ведение горных работ, рациональное использование недр и охрану окружающей среды. Перечисленные задачи решаются путем детального изучения структуры массива пород и его геодинамического состояния с широким привлечением методов инженерной петрографии (грунтоведения), натурного и модельного экспериментирования и механики структурированных сред.

34 Эндогенные процессы – это геологические процессы, связанные с энергией, возникающей в недрах Земли. К эндогенным процессам относятся тектонические движения земной коры, магматизм, метаморфизм горных пород, сейсмическая активность. Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационная дифференциация).

Тектонические процессы бывают медленными и быстрыми, медленные в свою очередь разделяются на радиальные или колебательные и тангенциальные.Рассмотрим каждый вид в отдельности. Медленные колебательные тектонические движения: эти движения могут быть восходящими или нисходящими. Особенностью этих движений, которая отличает их от остальных видов эндогенных процессов, является то, что они могут быть очень значительными по масштабам и продолжительности. Могут охватывать своим влиянием очень крупные территории и определять тем самым их наиболее важные инженерно-геологические условия на очень длительное время. Важной особенностью этого вида тектонических движений является также то, что они могут вызывать и способствовать развитию определенных видов экзогенных процессов, явлений. В результате этих видов движений отдельные крупные участки земной коры на протяжении многих столетий поднимаются, а другие опускаются со скоростью от нескольких миллиметров до нескольких сантиметров в год.

Инженерно-геологическое значение огромно, ведь от них зависит положение границы между морем и сушей, интенсивность размытия берегов волнами моря, то есть процессами абразии, образование крупных оползней и другие явления. Эти процессы необходимо учитывать в первую очередь при строительстве городов у моря, гидротехнических сооружений, плотин, мелиоративных сооружений. Для наблюдения за такими явлениями создаются специальные наблюдательные станции, которые используют геодезические измерения очень высокой точности. Медленные тангенциальные тектонические движения: их делят на пликативные или складкообразовательные и дизъюнктивные или разрывные. Наличие подобных дислокаций усложняет инженерно-геологические условия строительных площадок, в частности нарушается однородность грунтов в основаниях сооружений, образуются зоны дробления, снижается прочность грунтов, по трещинам разрывов периодически происходят смещения, а также циркулируют подземные воды. При крутом падении грунтов фундамент сооружения может располагаться одновременно на различных по свойствам грунтах, что нередко приводит к деформации сооружения. Также негативные последствия могут иметь расположения сооружений на линии разлома. Для строительных целей наиболее благоприятными условиями является горизонтальное залегание слоев, большая их мощность, однородность состава, отсутствие разрывов, в таких случаях сооружение получает наибольшую устойчивость, так как есть предпосылки для равномерной сжимаемости пластов или их уплотнения под всем сооружением.Быстрые тектонические движения: землетрясения являются наиболее катастрофическими, они могут быть очень значительными по масштабам и по продолжительности, и определять таким образом инженерно-геологические условия крупных территорий, однако, в отличие от медленных, они происходят не постоянно, а периодически Причем они могут проявлять очень высокую активность, которая может оказывать катастрофическое влияние на инженерно-геологические условия, здания, людей, животных. Особенностью землетрясений является также то, что они могут быть вызваны не только природными процессами, но и иногда деятельностью человека, в частности различными взрывами. В инженерной геологии землетрясения оцениваются по их силе, то есть по тому воздействию, которое они оказывают на поверхность земли, на рельеф, здания, людей, животных. В России для оценки силы землетрясения принята двенадцатибальная шкала Меркалли. За землетрясениями ведут постоянное наблюдение, в том числе при помощи приборов-сейсмографов, на основании многолетних наблюдений и их статистической обработки составлены карты землетрясений, с разделениями территорий на участки по максимальной силе землетрясений, которая там когда-либо наблюдалась, в соответствии с этими картами вся земная поверхность разделена на зоны: сейсмические, асейсмические, пенесейсмические. К сейсмическим относят районы с силой землетрясения от 7 баллов и выше, асейсмические - землетрясений нет вообще, пенесейсмические - районы, в которых землетрясения бывают редко и не превышают по силе 6 баллов. Землетрясения способствуют развитию опасных экзогенных процессов, таких как: оползни, обвалы, осыпи и другие. При проведении строительных работ в сейсмических районах выполняется сейсмическое микрорайонирование. Оно заключается в корректировке баллов по сейсмической карта с учетом конкретных инженерно-геологических условий той или иной строительной площадки. Это необходимо делать потому, что баллы сейсмических карт дают только некоторые усредненные характеристики условий районы и не отражают конкретных условий локальной строительной площадки. В связи с этим, данные баллы подлежат уточнению на основе детальных инженерно-геологических исследований строительной площадки, которые необходимо производить до начала проектных работ. В результате таких уточнений происходит увеличение исходных баллов по сейсмической карте на единицу для участков, сложенных рыхлыми породами, и их уменьшение на единицу для участков, сложенных прочными скальными породами. Породы промежуточных категорий могут сохранить без изменений свою исходную балльность, такая корректировка баллов справедлива в основном для равнинных районов, для горных районов надо учитывать и другие факторы, в первую очередь такими факторами являются рельеф, склонность к оползням и обвалам.

35,37. Стало ясным, что Тектонические движения весьма разнообразны как по форме проявления, так и по глубине зарождения, а также, очевидно, по механизму и причинам возникновения. По др. принципу Тектонические движения были разделены ещё М. В. Ломоносовым на медленные (вековые) и быстрые .

Быстрые движения связаны с землетрясениями и, как правило, отличаются высокой скоростью, на несколько порядков превышающей скорость медленных движений. Смещения земной поверхности во время землетрясений составляют несколько м, иногда более 10 м. Однако такие смещения проявляются эпизодически и в сумме дают эффект, не намного превышающий эффект медленных движений.

Современные колебательные движения - это медленное воздымание или опускание отдельных блоков с разными скоростями и величиной перемещений. Наибольшее поднятие установлено на Аляске. Здесь на горе, на высоте 1500 м, обнаружены раковины современных моллюсков. Изучение таких движений проводится с помощью повторного нивелирования по одним и тем же профилям. Это дает возможность определить скорость движения данного участка.Современные движения земной коры по виду и темпу подразделяют на несколько типов: медленные или вековые движения отдельных участков земной коры, развивающиеся на протяжении, по крайней мере нескольких столетий; сейсмические колебания - толчки различной силы и длительности, особенно интенсивные и частые в орогенических областях, но охватывающие и области платформ; периодические колебания, связанные с гравитационным воздействием окружающих Землю космических тел, прежде всего Луны и Солнца (Лунно-Солнечные приливы); сложные колебания поверхности Земли, связанные с сезонными изменениями метеорологических условий. Поля тектонических напряжений в настоящее время связывают с первым из указанных типов движений.

Современные медленные движения земной коры имеют вертикальные и горизонтальные составляющие, скорости которых различны и зависят, главным образом, от тектонического типа региона, строения и местоположения участка земной коры. Данные непосредственных измерений и наблюдений в нашей стране и за рубежом свидетельствуют о приуроченности высоких горизонтальных напряжений к зонам тектонических поднятий земной коры, причём уровень горизонтальных напряжений тем выше, чем выше скорость поднятий. Поскольку районам поднимающихся блоков литосферы свойственна повышенная сейсмичность, между степенью тектонической напряжённости и сейсмичностью существует тесная связь. Медленные движения земной коры, направленные вниз, неизбежно должны сменяться движениями вверх, и наоборот. Они охватывают всю земную кору. Такие радиальные движения находят подтверждение во многих геологических явлениях. Медленные тангенциальные движения земной коры распространены не менее широко, и их существование тоже не вызывает сомнений.

36. Складчатые и разрывные дислокации пластов. Земная кора обладает различной подвижностью. На поверхности Земли постоянно возникают горные системы и океанические впадины. Осадочные породы первоначально залегают горизонтально. Тектонические движения (сейсмические явления, землетрясения, вулканизм) выводят пласты из горизонтального положения, нарушают первичную форму залегания. Эти нарушения получили название дислокации (или вторичные формы залегания). Дислокации в зависимости от вида тектонических движений разделяют на складчатые (не разрывные) и разрывные. Складчатые дислокации формируются без разрыва сплошности слоев. К ним относятся моноклиналь, складка и антиклиналь.

Моноклиналь – наиболее простая форма связанных тектонических нарушений в слоистых горных породах, связанная с наклонным залеганием слоев, которые однообразно падают в одном направлении (от 5 и более градусов).

Флексура – моноклинальное и горизонтальное залегание слоев нарушается коленообразным изгибом, обусловленным возведением на породы тангенциальных тектонических сил.

Складки – тектонические нарушения представляют собой волнообразные изгибы слоев горных пород, среди которых выделяют выпуклые (антиклинали – замок расположен вверху, крылья – внизу) и вогнутые (синклинали – замок расположен внизу. А крылья – вверху). Разрывные дислокации образуются в результате интенсивных тектонических движений, сопровождающиеся разрывом сплошности пород и смещением слоев относительно друг друга. Амплитуда смещения может быть от нескольких сантиметров до километров при ширине трещин до нескольких метров. К разрывным дислокациям относятся сбросы, взбросы, грабены, горсты, сдвиги и надвиги.

Сбросы – разрывные нарушения, когда подвижная часть земной коры опустилась вниз по отношению к неподвижной.

Взброс – разрывное нарушение, когда подвижная часть земной коры поднялась в результате тектонического движения по отношению к неподвижной.

Грабен – когда подвижный участок земной коры опустился по отношению к двум неподвижным участкам в результате тектонического движения.

Горст – обратное грабену движение. Сдвиг – представляет собой разрывное нарушение, в котором происходит горизонтальное смещение горных пород по простиранию.

Надвиг – обратное сдвигу перемещение.

С инженерно-геологической точки зрения наиболее благоприятными местами строительства являются горизонтальное залегание горных пород, где присутствует большая их мощность, однородность состава. Фундаменты зданий и сооружений располагаются в однородной грунтовой среде, при этом создается равномерная сжимаемость слоев под весом сооружения и создается наибольшая их устойчивость. Наличие дислокации резко изменяет и усложняет инженерно-геологические условия строительства – нарушается однородность грунтов основания фундамента сооружений, образуются зоны дробления (разрывы), снижается прочность пород, по трещинам разрывов происходят смещения, нарушается режим подземных вод. Это вызывает неравномерную сжимаемость грунтов и деформацию самого сооружения вследствие неравномерной осадки различных его частей.

38. Суть и инженерно-геологические основы микросейсмического районирования Сейсмические (от греч. «сейсмос» - колебание) процессы возникают в результате разрядки внутренних напряжений Земли. Они относятся к категории наиболее опасных геологических процессов. На поверхности земной коры сейсмические процессы проявляются в виде землетрясений (на суше) и моретрясений (на дне океанов). Землетрясения – внезапные подземные толчки и быстрые упругие колебания земной поверхности. По происхождению различают землетрясения вулканические, связанные с извержением вулканов, денудационные (обвальные и провальные), техногенные, возникающие в результате подземных взрывов и других видов деятельности человека. Однако наиболее распространенными и разрушительными являются тектонические (95% всех землетрясений в мире), связанные с внутренней энергией Земли. Наука, которая всесторонне изучает землетрясения, называется сейсмологией. Основной объем наблюдений выполняется на сейсмических станциях, оснащенных весьма чувствительными приборами для записи колебаний грунта – сейсмографами. Землетрясения исключительно опасны не только прямым воздействием, но негативными последствиями в виде оползней, обвалов, снежных лавин, селей, цунами и других неблагоприятных процессов. Сейсмическое микрорайонирование основано на уточнении (корректировка на 1 – 2 балла) данных ОСР (общего сейсмического районирования) на конкретных застраиваемых территорий. Корректировка балльности производится в зависимости от грунтовых, геоморфологических и тектонических условий участка предполагаемого строительства. Повышают на 1 – 2 балльность при строительстве на участках с сильно расчлененным рельефом, на берегах рек и склонах оврагов, в местах развития опасных геологических процессов (карста, оползней и др.) при высоком залегании уровня грунтовых вод. Карст (нем. Karst) (карстовые явления) , явления связанные с растворением природными водами горных пород (гипса, каменной соли и др.). Карст характеризуется комплексом подземных (пещеры, полости, ходы, естественные колодцы) и поверхностных (воронки и др.)форм рельефа, своеобразием циркуляции и режима подземных вод, речной сети и озер. Крайне опасны участки вблизи тектонических разрывов. Повышают балльность и при строительстве на рыхлых песках и водонасыщенных глинистых грунтах. Наиболее благоприятные грунты при строительстве в сейсмических районах – прочные скальные, крупнообломочные с небольшим содержанием песчано – глинистого заполнителя и многолетнемерзлые в твердомерзлом состоянии. На строительных площадках, сложенных этими грунтами, балльность снижают на 1 балл в сравнении с балльностью, указанной на сейсмических картах. В равнинных и холмистых районах, для которых отсутствуют карты сейсмического микрорайонирования, сейсмичность площадки строительствауточняют с помощью таблицы № 1. (СНиП 11 – 7 – 81*, изд. 2000г.)

39. Выветривание - процесс разрушения и химического изменения горных пород вследствие перепадов температуры, химического и механического воздействия атмосферы, воды и живых организмов. Это совокупность физических, химических и биохимических процессов преобразования горных пород и слагающих их минералов в приповерхностной части земной коры. Происходит за счет действия различных факторов - влияния колебаний температуры, воздействия атмосферы, воды и живых организмов на горные породы. Если горные породы длительное время находятся вблизи от поверхности или непосредственно на поверхности Земли, то в результате их преобразований образуется кора выветривания. В процессе выветривания различные промежуточные и конечные продукты разложения могут растворяться и выноситься приповерхностными водами. Их миграция осуществляется в виде взвесей, коллоидных и истинных растворов. Механическое выветривание . При механическом выветривании, раздробление пород происходит вследствие тектонических процессов, деятельности воды, льда, ветра под влиянием силы тяжести и других причин.

Химическое выветривание связано с тем, что многие минералы, оказавшись у поверхности Земли, вступают в различные химические реакции. Объем их при этом увеличивается, и горная порода разрушается. Основными факторами этого типа выветривания являются атмо­сферная и грунтовая вода, свободные кислород и угле­кислота, растворенные в воде органические и некоторые минераль­ные кислоты. К процессам химического выветривания относятся окисление, гидратация, растворение и гидролиз. Химическое разложение протекает одновременно с механиче­ским раздроблением.

Физическое (морозное) выветривание протекает под влиянием колебаний температуры, вследствие чего минералы, слагающие породы, испытывают попеременно то сжатие, то расширение. Это приводит к образованию трещин и в конечном итоге к разрушению пород. Особенно активно физическое выветривание в районах с континентальным климатом, где отмечается существенная разница суточных и сезонных температур. Биологическое выветривание производят живые организмы (бактерии, грибки, вирусы, роющие животные, низшие и высшие растения и т.д.)

  • установление возраста, строения, мощности и состава коры выветривания выделение в ней ослабленных зон;
  • оценка скорости выветривания разных пород в различных условиях];
  • оценка выветрелости пород на разных участках и в частях разреза коры выветривания

Выветривание , более активное в свежеобнаженных горных породах, сократит срок длительной устой­чивости их в откосах каналов и карьеров, в выемках железных шос­сейных дорог, в стенках подземных горных выработок. Это обстоятельство обязывает при инженерно-геологических изыс­каниях изучать все геологические процессы, происходящие на иссле­дуемой территории, независимо от того, катастрофический или нека­тастрофический характер развития они имеют.

40. В процессе фильтр вода соверш разрушит рабо­ту. Из пород вымыв составляющ их частицы. Это сопро­вож оседанием поверхн земли, образован провалов, воронок и т. д.. Этот процесс выноса частиц, а не его последствия, назыв суффозией (от лат. подкапывание). Явлен, связан с выщелачив-ем горн пород (известня­ков, доломитов, гипса и т. д.) и образов при этом пустот (ка­налов, пещер и др.), сопровож-ся различ провалами земной поверхн, получ названкарстовый процесс или карст . Для карстового процесса главн явл раствор пород и вынос из них вещ-в в растворен­ виде. Оч важным услов развит карста явл степень во­допрониц пород. Чем более водопрониц порода, тем интенсив развив процесс растворен. Наил услов в этом отношен создаются в трещинов породах, особенно при налич трещин шир не менее 1 мм, так как это обеспеч свобод циркуляц воды. Суффозия и карст отриц сказыв на устойчив зданий и сооруж, что вынуждает активно бороться с ней. При этом использ следующ способы: 1. Прорезка фундам-и зданий слоя суффозионного гр. 2. Прекращ фильтр воды в суффозион слое различ способами (дрениров длля осуш пород, их водозащитой или гидроизоляц и др.) 3. Упрочнение ослаблен суффозией гр их цементацией, силикатизацией, уплотнением, глинезацией и др. 4. Примен особых видов фунд-в, напр свайных или отсыпка грунтовых подушек из песка и др. Выбор того или иного приема строительства завис от геологич строения площадки, типа и вида гр оснований, конструкц объекта и технич возможност строит организ. Обвалы. Это резкое обруш кр масс гор пород с их опрокидыв и дроблен. Обвалы возник на крутых склонах (более 45-50 град) и обрывах ест. форм рельефа (склоны речных долин, ущелья, побережья морей), а также в строител котлованах, траншеях, карьерах. При кр обвалах, как это бывает в горах, масса обломков устремл вниз по склону, увлекая за собой попутный рых материал, падает в долины, разруш здания, дороги, засып русла рек. Наиб. часто обвалы быв связ с трещинов пород, избыточ увлажнен пород, землетряс и др. В бол случ обвалы проявл в периоды дождей, таяния снега, весенних оттепелей. На участках, где возмож кр обвалы, строит провод опасно. Борьба с мал обвалами обыч сводит к предупрежд их возникнов. Одним из наибол распространен способов, как и в случ с лавинами, явл искусствен обрушен склонов при помощи взрывов небольш мощн или путем забивки клиньев в трещ обвалоопасн породы. Способ «клинования» более предпочтит т. к. он безопаснее взрывного, ибо неверно расчит по силе взрыв может сам вызвать кр обвал. Оползни. Это скользящ смещ гор пород на склонах под действ гравитации и при участии поверхност или подземн вод. Они разруш здания и сооруж на самих склонах и ниже их. Борьба с оползнями во многих случ явл чрезвыч сложной, дорогостоящ и зачастую не эффек. Противооползнев мероприят подразд на 2 вида: 1. Активные, способ воздейств на основн прич оползня путем полного пересеч или некот ослаблен ее действ, в частности, снятие перенапряж грунтов толщи за счет разгрузки любого вида. 2. Пассивные, направлен на закреплен гр люб способами. Осыпи. На крутых склонах, особенно в гор районах, где развиты скал породы, активно действ процессы физич выветрив. породы растрескив и обломки скатыв вниз по склонам до места, где склон выпокаживается. Этот процесс назыв осыпанием. Мощность осыпей у подножья склонов различ и колебл от нескольк м до десятков м. Осыпи значит ослож строит. Обломоч материал засып сооруж, полезн площадки. С небольш щебен. осыпями борьба вед довольно простыми сп-ми, кот свод к уборке той части обломоч материала, кот располож выше сооруж по склону. Этот сп-б достаточно трудоемок. Из инж-х сооруж для борьбы с осыпями примен соскальзывающ осыпи, устраив галереи и тоннели для дорог. На особо опасных участках организ службу наблюден.

41 . В районах вечной мерзлоты наблюд ряд явлен, связан­ с резкими изменен t воздуха и гор пород. Их назыв морозн явлен. К ним от­носят пучение, образование наледей, термокарста, солифлюкцион процессы, марей и т. д. Пучением назыв увелич объема глин и пылеватых пород, а иногда и мелких песков при промерзан деятельного слоя. Это выраж в поднятии поверхн земли. При неравномер­ поднятии возник небольш бугры. Пучение явл след­ств появлен в породах кристаллов, линз и прослоев льда за счет имеющейся в них воды или вследств притяг влаги к промерзающ участкам со стороны грунтов вод или из сильно увлажнен пород. Процесс пучения может протек в течение одной зимы (сезон­ное пучение) или ряда лет (многолетнее пучение). Сезон пучение связ с породами деятельн слоя, а многолетн, кроме того, со слоями, залегающ ниже зоны сезон промерзания. Все виды пучения могут быть прич поврежд сооруже­н. Деформац зданий проявл как в период пучения гр, так и при их оттаивании, всл-ие неравномер осадки. В процессе пучения часто возник кр бугры пучения. Их формиров протек ряд лет и объясн 2 прич: 1. промерзанием надмерзлотной воды и образов значител кол-ва льда в деятел слое. 2. напором воды и грунтов массы, кот подним снизу и вспучив верх­ние мерзлые пласты пород. Бугры, образовав за счет внедр воды, назыв гидролакколитами. Такие многолет бугры пучения по высоте мог достиг де­сятков м. После протаивания льдистого ядра на месте бугров образ западины, озера. Поднимающ бугры пучения вызы­в значител разруш сооруж, располож на их поверхн. Наледи . В зимн время по мере промерз деятел слоя уменьш сечен талого слоя. Это привод к возникнов напора воды и появлен трещ в мерзлых породах, ч/з кот вода выбрасыв на поверхн, где и замер. За счет притока воды из глубины кол-во льда может длител время нарастать: это грунтов наледи. Кроме того, при глуб промерз рек образ реч наледи. Вода вылив ч/з трещ и растек по поверх льда, реки и прибреж уч-в, образуя мощ пласты слоист льда. Для строит наибол опасны грунтов наледи. Вода мо­жет проник в подвалы зданий, подзем каналы и при замерз разруш их. Наледи наруш нормал эксплуат транспорт коммуникаций. Термокарст . Это процесс вытаивания подземн льда в резул измен температурного режима, например при потеплен климата. В резуль образ полости, возник осадки по­верхн и даже провальные формы рельефа. На склонах возник оплывины, особен в подошве мерзлых пород вследств их оттаивания в теплое время года. Оттаявший грунт медлен течет по кровле мерзлого слоя под действ силы тяжести, создавая потоки, сплывы, террасовидные уступы и т. д. Это явлен назыв солифлюкцией. Основ прич этого процесса это переход пород в текучую консистенцию вследств переувлажнен при оттаивании. Движ талых, водонасыщ масс гр при уклоне 2-5° имеет хар-р вязкого течен, захватывающ больш площади скло­нов, но на небольш глуб 0,2-0,5 м. При уклонах поверх­ности 7-10° уже образ сплывы, близкие по хар-ру к оползням. Часто смещения происход по небольш ложбинам, образуя так называемые земляные потоки. Солифлюкционные про­цессы способствуют развитию осыпей, курумов и т. п. Мари представ собой заболочен низинные уч, воз­никающ при оттаивании верхнего слоя мерзлой породы. В основании марей леж мерзлый гр. На этих болотах разви­в кочки, медлен нараст слой мало разложивш торфа. При проектиров на вечномерзлых породах рекоменд предусматрив возможность строит-ва по следующ вари­антам: 1. Без учета вечномерзлого состоян грунтов, т. е. строить как на талых породах (скальные и полускальные породы без кр включ льда и др пород, кот при оттаивании не дают осадки). 2. С сохранен вечномерзлого состоян гр в течение всего периода эксплуат сооружен (строят неотаплив помещ, либо приним меры, исключающ поступлен теп­ла в мерзлый грунт); метод целесообразен при сильно льдистых породах, дающих при оттаивании недопустимо большую осадку. 3. С допущ оттаивания мерзл гр при строител и эксплуат сооруж, конструк кот приспособ к восприят значит и неравномерн осадков (обломоч породы, не выдавливающ из-под фундаментов). 4. С предпостроечным оттаиванием и упрочнен гр еще до возвед фундамен. Этот м-д наиб целесообразен при налич сыпуче-мерзлых пород со значител включен льда, а также на уч с несплошным распростр мерзлых пород. Для уплотнен и отвода воды из оттаявшего гр примен трамбование, дренажи, электросушение и т. д. От пучения гр примен общее осуш территор, уве­лич нагрузки на фундамент, противопучинные обратные засып­ки, например, галькой, отделенной от гр в стенках котлована дощатыми огражден, электрохимич обработк гр введен в него хлористого кальция и т. д. От наледей успешно примен мерзлотные пояса в виде канав глубин в 3/4 мощн деятел слоя. Породы под откосами и дном канав промерз и созд препятств для движ грун­товых вод. Наледи при этом могут возник лишь за пределами защища сооруж. Против речных наледей вдоль берега отсып земляные валы. Несм на приним меры, здания и сооруж в облас­ти вечной мерзлоты нередко получ деформации. Прич де­формаций-неравномерные осадки всл-вие оттаивания гр и реже пучение. Только тщат выполн всех видов изыскательских, проектн и строител работ, а также правил эксплуат зданий и сооружен могут обеспеч им необ­ходим устойчив и длител существов без каких-либо существен деформаций.

42. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ЯВЛЕНИЯ - процессы, возникающие в природной обстановке под воздействием строительства и эксплуатации различных инженерных сооружений. К типичным И.-т. я. относятся: 1) при поверхностном строительстве (дорож ное, аэродромное и др.) - деформация дорожного полотка во время замерзания и оттаивания (дорожные пучины, образование колеи); 2) при глубоком (более 2 м) промышленном, гражданском, гидротехническом, железнодорожном строительстве - сжатие пород (осадки, проса.ч ка), деформация откосов (осыпи, оползни, обвалы), изменение режима грунтовых вод, выщелачивание пород; 3) при глубинном строительстве (десятки - сотня метров от поверхности земли) - проходке туннелей метро, разработке полезных ископаемых - горное давление, стреляние, запучивание выработок, сдвижение дневной поверхности, изменение режима подземных вод с прорывом их в выработки, газовыделение и т. д.).

Процессы, возникшие в результате деятельности человека, получили название инженерно-геологических (антропогенных) процессов - процессы и явления понимаются процессы и явления, возникшие в результате взаимодействия инженерных сооружений с геологической средой.Совокупность геологических и инженерно-геологических процессов и порождаемых ими явлений характеризует геодинамическую обстановку . Этот термин может быть применен в любой территории независимо от се размеров: к целому региону, имеющему народнохозяйственное значение, к району строительства крупного сооружения или непосредственно к самой строительной площадке. Инженерно-геологические процессы, так же как и геологические процессы, могут стать опасными и угрожать сохранности сооружений, если они не были своевременно учтены или если их прогноз выл дан неправильно. Для нормальной эксплуатации и сохранности сооружений необходим правильный количественный прогноз возможного развития инженерно-геологических процессов и что недоучет влияния этих процессов крайне опасен и очень часто вызывает разрушение сооружений.

45. Регион инж геол – раздел ИГ, кот заним изуч инжен-геол усл крупной территор, закономерности их формирования и распространения, а также прогноза изменений под влиянием прир биологических и инженер-геол условий. Главной задачей является прогноз изменений инженерно-геологических условий на длительный период, а также районирование территорий с одинаковыми инженерными условиями. Инженерно-геологические условия являются одинаковыми для тех территорий, которые имеют одну и ту же или близкую историю развития и строения и находятся в одних и тех же районах и климатических зонах. Региональная инженерная геология изучает закономерности формирования и распространения инженерно-геологических условий. Под инженерно-геологическими условиями территории обычно понимается совокупность геологических факторов, определяющих характер инженерно-­хозяйственного освоения территории. К ним относятся: геологическое строение (и горные породы), рельеф, гидрогеологические условия, геологические и инженерно-геологические процессы. Инженерно-геологиче­ские процессы возникают в результате деятельности человека, и поэто­му в настоящее время инженерно-геологичес­кие условия формируются не только под влиянием процессов, происхо­дящих в природе, но и в результате инженерной и хозяйственной дея­тельности человека. Сейчас уже можно говорить о взаимосвязи между инженерно-геологическими условиями и деятельностью человека. От ин­женерно-геологических условий во многом зависит инженерная и хозяй­ственная деятельность человека, а она, в свою очередь, может приве­сти к изменению инженерно-геологических условий. Такая постановка вопроса помогает лучше понять всю значимость вопросов, которыми за­нимается региональная инженерная геология. Из нее также вытекает, что одной из главных задач инженерной геологии является прогноз из­менения инженерно-геологических условий территории под влиянием деятельности человека. Инженерно-геологические условия оказываются одинаковыми на тех территориях, которые имеют одну и ту же или близкую историю геологического развития и находятся в одних и тех же природно-климатических зонах. Если сравниваемые территории имеют разную историю геологического развития или расположены в различных природно-климатических зонах, то их инженерно-геологические условия не могут быть одинаковыми, они будут разными. Отсюда следует, что понять современные инженерно-геологические условия можно только при изучении истории геологического развития интересующей нас территории, особенно в новейшее время. Региональная инженерная геология при изучении территорий должна опираться на историческую геологию. В частности, при анализе истории геологического развития территории необходимо уделять большое внимание вопросам тектоники, палеогидрогеологии, изменениям, которые происходили в новейшее время вплоть до голоцена.

В том случае, если на интересующую территорию имеются карты необходимого масштаба – геологическая, гидрогеологическая, геоморфологическая и др., а история геологического развития территории хорошо изучена, то стоящие перед региональной инженерной геологией задачи значительно облегчаются. В этом случае необходимо объединить имеющиеся сведения общегеологического характера с теми специальными сведениями, которые были получены для данной территории в двух других разделах инженерной геологии – в грунтоведении и инженерной геодинамике. Иначе говоря, в этом случае инженерно-геологические особенности и свойства горных пород, развитых на интересующей нас территории, и действующей на ней геологические процессы должны быть рассмотрены в зависимости от геологического строения рельефа, гидрогеологических и ландшафтно-климатических условий. Причем все это рассмотрение должно быть проведено в историческом плане, когда одновременно учитываются тектоника и палеоклимат, процессы денудации и аккумуляции и т.д.

Более сложные задачи возникают перед региональной инженерной геологией, когда инженерно-геологическому изучению подлежат недостаточно изученные территории, для которых отсутствуют геологические и другие карты необходимого масштаба. В этом случае инженерам геологам самим приходится проводить дополнительное геологическое изучение территории наряду с изучением своих специальных вопросов.

46. Инженерно-геологическое районирование территории проводится по комплексу геологических факторов (рельеф, строение и свойства горных пород, гидрогеологические условия, развитие современных геодинамических процессов и т.д.). На картах инженерно-геологического районирования выделяются участки по степени их пригодности для хозяйственного освоения, по устойчивости к воздействию опасных природных явлений. Такое ранжирование территорий позволяет обеспечить высокое качество и надежность создаваемых объектов, а также их оптимальное инвестирование. Глубина, до которой характеризуется поверхностная часть земной коры при инженерно-геологическом изучении, определяется глубиной проникновения в земную кору человека. В настоящее время увеличивается глубина заложения фундаментов, строительства тоннелей, карьеров при разработке полезных ископаемых, глубина шахт и других сооружений и, следовательно, увеличивается глубина региональных инженерно-геологических исследований. Можно сказать, что глубина региональных инженерно-геологических исследований определяется тем, что мы понимаем под геологической средой. При этом, конечно, исходя из того, для решения каких практических задач эти исследования проводятся. Но во всех случаях обязательно надо учитывать перспективу дальнейшего использования данной территории.

При инженерно-геологическом изучении территории помимо ранее перечисленных факторов, которые обычно называют региональными, изучают также зональные инженерно-геологические факторы. Под зональными инженерно-геологическими факторами понимают те законо­мерности развития геологических процессов и изменений состояния горных пород, залегающих в поверхностной части земной коры, которые связаны с климатом, и в первую очередь с тепло- и влагообменом поверхности изучаемой территории. Этим в основном обусловливается не только состояние пород в современной коре выветривания, но и глуби­на залегания и состав грунтовых вод, их фазовое состояние. Для учета зональных инженерно-геологических факторов необходимо знать исто­рию (развития территории в антропогене и ее современное состояние).

При инженерно-геологических исследованиях конкретных территорий является обязательные изучение как региональных факторов, яв­ляющихся ведущими, так как они определяют основные, главные инженерно-геологические особенности территории, которые создаются на протяжении всей истории ее геологического развития, так и зональных фак­торов.

При оценке какого-либо региона в связи с его народнохозяйствен­ным освоением геолог, работающий (в области инженерной геологии, должен заранее с какими геологическими процессами столкнутся на его территории строители и другие специалисты и какие изменения в характере геологических процессов будут происходить при освоении данного региона в намеченном направлении.

При разработке проектов отдельных, как правило, крупных инже­нерных сооружении возникают более конкретные задачи, которые па своей сложности не уступают первой: надо дать прогноз неблагоприят­ного воздействия на проектируемый объект геологических процессов, развитых в районе. При этом прогноз должен даваться во времени и в пространстве и предусматривать возможную интенсивность сущест­вующих и вновь возникших геологических процессов.

Лишь при наличии такого прогноза и уче­та инженерно-геологических особенностей грунтов возможны правиль­ное рациональное проектирование сооружений, их сохранность и нор­мальная эксплуатация, безопасность людей.

Поделитесь с друзьями или сохраните для себя:

Загрузка...