Основы статистических методов контроля и теории надежности. Основы теории надежности и диагностики

Городская научно-практическая конференция

«Старт в науку»

Знаменитые теоремы (теорема Пифагора)

Секция «Созидательная сила

великих открытий в математике»

3.4 Применение в мобильной связи……………………………………………………….26

Заключение……………………………………………………………………………………………27

Список литературы…………………………………………………………………………………...29

Введение.

Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах». Причина такой популярности теоремы Пифагора триедина: это простота – красота – значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т. д.), свидетельствует о гигантском числе ее конкретных реализаций. Открытие теоремы Пифагором окружено ореолом красивых легенд.

Сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета первого (ок. 2000 до н. э.), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII в. до н. э.), и в древнеиндийском геометрическо-теологическом трактате VII – V вв. до н. э. «Сульва сутра» («Правила веревки»). В древнейшем китайском трактате «Чжоу-би суань цзинь», время создания которого точно не известно, утверждается, что в XII в. до н. э. китайцы знали свойства египетского треугольника, а к VI в. до н. э. – и общий вид теоремы. Несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто невозможно представить, что это словосочетание распадется. Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов.

По выражению известного ученого И. Кеплера, «геометрия владеет двумя сокровищами – теоремой Пифагора и золотым сечением, и если первое из них можно сравнить с мерой золота, то второе – с драгоценным камнем… ».

Теорема Пифагора – одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии.

Один американский математик, наш современник, около 20 лет собирал различные способы доказательства теоремы Пифагора, и сейчас его «коллекция » содержит около 300 различных доказательств. Это говорит о том, что древняя теорема актуальна и интересна людям до сих пор.

В школьном курсе геометрии с помощью теоремы Пифагора решаются только математические задачи. К сожалению, вопрос о практическом применении теоремы Пифагора не рассматривается.

В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой.

Объект исследования: теорема Пифагора.

Предмет исследования: различные интерпретации и способы доказательства теоремы Пифагора, ее применение при решении практических задач.

Изучая дополнительную литературу по выбранной теме, были выдвинуты гипотезы:

1) существуют другие интерпретации теоремы Пифагора;

2) теорема Пифагора применяется при решении многих практических задач.

Цель исследования: внимательно изучив формулировку теоремы Пифагора, проанализировать доказательства и используя обобщение, предложить иные интерпретации теоремы Пифагора, а также выяснить области применения теоремы Пифагора.


Для достижения цели были поставлены следующие задачи:

1. Провести анализ истории возникновения теоремы Пифагора.

2. Исследовать различные способы доказательства и рассмотреть иные интерпретации теоремы Пифагора.

3. Показать практическое применение теоремы Пифагора.

В первой главе исследовательской работы рассматриваем историю возникновения теоремы Пифагора.

Во второй главе мы рассмотрим различные способы доказательства теоремы Пифагора.

В третьей главе мы рассмотрим различные интерпретации теоремы Пифагора.

Мы рассмотрим некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Сделать это полезно еще и потому, что в современных школьных учебниках дается алгебраическое доказательство теоремы. При этом бесследно исчезает первозданная геометрическая аура теоремы, теряется та нить Ариадны, которая вела древних мудрецов к истине, а путь этот почти всегда оказывался кратчайшим и всегда красивым.

Глава 1. История возникновения теоремы Пифагора.

1.1. Биография Пифагора.

Великий ученый Пифагор родился около 570 г. до н. э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора не известно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. Среди учителей юного Пифагора традиция называет имена старца Гермодаманта и Ферекида Сиросского (хотя и нет твердой уверенности в том, что именно Гермодамант и Ферекид были первыми учителями Пифагора). Целые дни проводил юный Пифагор у ног старца Гермодаманта, внимая мелодии кифары и гекзаметрам Гомера. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера. Ферекид же был философом и считался основателем италийской школы философии. Таким образом, если Гермодамант ввел юного Пифагора в круг муз, то Ферекид обратил его ум к логосу. Ферекид направил взор Пифагора к природе и в ней одной советовал видеть своего первого и главного учителя. Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым – Фалесом. Фалес советует ему отправится за знаниями в Египет, что Пифагор и сделал.

В 548 г. до н. э. Пифагор прибыл в Навкратис – самосскую колонию, где было, у кого найти кров и пищу. Изучив язык и религию египтян, он уезжает в Мемфис. Несмотря на рекомендательное письмо фараона, хитроумные жрецы не спешили раскрывать Пифагору свои тайны, предлагая ему сложные испытания. Но влекомый жаждой к знаниям, Пифагор преодолел их все, хотя по данным раскопок египетские жрецы не многому могли его научить, т. к. в то время египетская геометрия была чисто прикладной наукой (удовлетворявшей потребность того времени в счете и в измерении земельных участков). Поэтому, научившись всему, что дали ему жрецы, он, убежав от них, двинулся на родину в Элладу. Однако, проделав часть пути, Пифагор решается на сухопутное путешествие, во время которого его захватил в плен Камбиз, царь Вавилона, направлявшийся домой. Не стоит драматизировать жизнь Пифагора в Вавилоне, т. к. великий властитель Кир был терпим ко всем пленникам. Вавилонская математика была, бесспорно, более развитой (примером этому может служить позиционная система исчисления), чем египетская, и Пифагору было чему поучится. Но в 530 г. до н. э. Кир двинулся в поход против племен в Средней Азии. И, пользуясь переполохом в городе, Пифагор сбежал на родину. А на Самосе в то время царствовал тиран Поликрат. Конечно же, Пифагора не устраивала жизнь придворного полу раба, и он удалился в пещеры в окрестностях Самоса. После нескольких месяцев притязаний со стороны Поликрата, Пифагор переселяется в Кротон. В Кротоне Пифагор учредил нечто вроде религиозно-этического братства или тайного монашеского ордена («пифагорейцы»), члены которого обязывались вести так называемый пифагорейский образ жизни. Это был одновременно и религиозный союз, и политический клуб, и научное общество. Надо сказать, что некоторые из проповедуемых Пифагором принципов достойны подражания и сейчас.

Прошло 20 лет. Слава о братстве разнеслась по всему миру. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, Килон начинает борьбу с Пифагором, воспользовавшись поджогом его дома. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор затосковал и вскоре покончил жизнь самоубийством.

1.2. История возникновения теоремы Пифагора.

Обычно открытие теоремы Пифагора приписывают древнегреческому философу и математику Пифагору. Но изучение вавилонских клинописных таблиц и древнекитайских рукописей показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетия до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

Теорему Пифагора называют еще «теоремой невесты». Дело в том, что в «Началах» Евклида она ещё именуется, как «теорема нимфы», просто её чертёж очень схожий на пчёлку или бабочку, а греки их называли нимфами. Но когда арабы переводили эту теорему, то подумали, что нимфа – это невеста. Вот так и вышла «теорема невесты». Кроме этого, в Индии, её ещё называли «правилом верёвки».

Исторический обзор возникновения теоремы начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: «Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4». В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или «натягиватели веревок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м и привяжем к ней по цветной полоске на расстоянии 3м от одного конца и 4 м от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.

Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Древней Индии уже около 18 в. до н. э.

В первом русском переводе евклидовых «Начал», сделанном, теорема Пифагора изложена так: «В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих «Начал». С другой стороны, Прокл утверждает, что доказательство в «Началах» принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Рассказывают, что в честь этого открытия Пифагор принес в жертву 100 быков.

Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой – на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

«Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку».

Глава 2. Различные способы доказательства теоремы Пифагора.

2.1. Формулировки и особенности теоремы Пифагора.

Теорема Пифагора – одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

Первоначально теорема устанавливала соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника: «В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов».

Алгебраическая формулировка: «В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов».

То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b, получаем: a2 + b2 = c2.

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Стоит отметить, что формулировка теоремы данная в школьном учебнике первоначально звучала совсем не так. Приведем переводы формулировок теоремы Пифагора из различных источников:

1. У Евклида эта теорема гласит: «В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол».

2. Латинский перевод арабского текста Аннаирици (около 900 г. н. э.), сделанный Герхардом Кремонским (начало 12 в.), гласит: «Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол».

3. В Geometria Gulmonensis (около 1400 г.) теорема читается так: «Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу».


4. В первом русском переводе евклидовых «Начал», сделанном с греческого («Евклидовых начал восемь книг, содержащие в себе основание геометрии», Санкт-Петербург, 1819), теорема Пифагора изложена так: «В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».

Теорема Пифагора является частным случаем теоремы косинусов, устанавливающей соотношение между сторонами произвольного треугольника, а также известна теорема Пифагора не только на плоскости, но и в пространстве: «Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений».

Также верно обратное утверждение (называемое теоремой обратной теореме Пифагора): «Для всякой тройки положительных чисел a, b и c, такой что a² + b² = c², существует прямоугольный треугольник с катетами a и b и гипотенузой c».

Однако, известно, что она применялась для решения различных задач задолго до Пифагора древними египтянами, вавилонянами, китайцами, индусами и другими древними народами.

Во второй главе мы рассмотрели различные способы доказательства теоремы Пифагора. Пифагором сначала был доказан лишь частный случай теоремы: им рассматривался равнобедренный прямоугольный треугольник. Чертеж, который используют для доказательства этого случая, в шутку называют «пифагоровы штаны» и добавляют: во все стороны равны.

Знакомясь с разными способами доказательства теоремы Пифагора, мы заметили, что одни из них основаны на свойстве равносоставленных фигур, другие – на дополнении до равных фигур, а третьи – на свойстве равновеликих фигур (имеющие равные площади). В этой работе мы рассмотрели лишь несколько способов доказательства знаменитой теоремы, однако их существует гораздо больше.

Изучив историю открытия теоремы Пифагора, выяснилось, что Пифагор открыл не саму теорему, а ее доказательство. Исследовав различные методы доказательства теоремы Пифагора, оказалось, что таких доказательств огромное количество и разделить их можно на следующие:

§ доказательство методом достроения

§ доказательство методом разложения

§ алгебраический метод доказательства

§ векторное доказательство

§ доказательство с помощью подобия и др..

В третьей главе мы рассмотрели несколько элементарных примеров практических задач, в которых при решении применяется теорема Пифагора.

Выяснив практическую значимость теоремы Пифагора, оказалось, что теорема имеет большое применение в повседневной жизни в разных сферах человеческой деятельности: астрономии, строительстве, мобильной связи, архитектуре.

Итак, в результате проведённого исследования мы нашли иные интерпретации теоремы Пифагора и выяснили некоторые области применения теоремы. Нами собрано и обработано много материала из литературных источников и Интернета по данной теме. Мы изучили некоторые исторические сведения о Пифагоре и его теореме, рассмотрели ряд исторических задач на применение теоремы Пифагора. В результате решения поставленных задач мы пришли к выводу, что выдвинутые нами гипотезы нашли подтверждение. Да, действительно, с помощью теоремы Пифагора можно решать не только математические задачи. Теорема Пифагора нашла своё применение в строительстве и архитектуре, мобильной связи.

Результатом нашей работы является:

§ приобретение навыка работы с литературными источниками;

§ приобретение навыка поиска нужного материала в Интернете;

§ мы научились работать с большим объёмом информации, отбирать нужную информацию.

Список литературы.

1. Алексеев. Подготовка к ЕГЭ: учебно-методическое пособие , М., 2011.

2. Болтянский и равносоставленные фигуры. М., 1956.

3. Ван-дер-Варден наука. Математика Древнего Египта, Вавилона и Греции. М., 1959.

4. Еще раз о теореме Пифагора //Учебно-методическая газета «Математика, № 4, 2005.

5. , Яценко справочник школьника. М., 2008.

6. Теорема Пифагора. М., 1960.

7. Несколько способов доказательства теоремы Пифагора // Учебно-методическая газета Математика, № 24, 2010.

8. Изучаем геометрию, М., 2007.

9. Ткачева математика. М., 1994.

10. О теореме Пифагора и способах ее доказательства Г. Глейзер, академик РАО, Москва

11. Теорема Пифагора и пифагоровы тройки глава из книги Д. В. Аносова «Взгляд на математику и нечто из нее»

12. Сайт о теореме Пифагора с большим числом доказательств, материал взят из книги В. Литцмана.

13. http://encyklopedia. *****/bios/nauka/pifagor/pifagor. html

14. http://moypifagor. *****/use. htm

15. http://moypifagor. *****/literature. htm

По мнению Ван-дер-Вардена , очень вероятно, что соотношение в общем виде было известно в Вавилоне уже около XVIII века до н. э.

Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора .

Формулировки

Основная формулировка содержит алгебраические действия - в прямоугольном треугольнике, длины катетов которого равны a {\displaystyle a} и b {\displaystyle b} , а длина гипотенузы - c {\displaystyle c} , выполнено соотношение:

.

Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры : в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида.

Обратная теорема Пифагора - утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} . Как следствие, для всякой тройки положительных чисел a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} , такой, что a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , существует прямоугольный треугольник с катетами a {\displaystyle a} и b {\displaystyle b} и гипотенузой c {\displaystyle c} .

Доказательства

В научной литературе зафиксировано не менее 400 доказательств теоремы Пифагора , что объясняется как фундаментальным значением для геометрии, так и элементарностью результата. Основные направления доказательств: алгебраическое использование соотношений элементов треугольника (таков, например, популярный метод подобия ), метод площадей , существуют также различные экзотические доказательства (например, с помощью дифференциальных уравнений).

Через подобные треугольники

Классическое доказательство Евклида направлено на установление равенства площадей между прямоугольниками, образованными из рассечения квадрата над гипотенузой высотой из прямого угла с квадратами над катетами.

Конструкция, используемая для доказательства следующая: для прямоугольного треугольника с прямым углом C {\displaystyle C} , квадратов над катетами и и квадрата над гипотенузой A B I K {\displaystyle ABIK} строится высота C H {\displaystyle CH} и продолжающий её луч s {\displaystyle s} , разбивающий квадрат над гипотенузой на два прямоугольника и . Доказательство нацелено на установление равенства площадей прямоугольника A H J K {\displaystyle AHJK} с квадратом над катетом A C {\displaystyle AC} ; равенство площадей второго прямоугольника, составляющего квадрат над гипотенузой, и прямоугольника над другим катетом устанавливается аналогичным образом.

Равенство площадей прямоугольника A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} устанавливается через конгруэнтность треугольников △ A C K {\displaystyle \triangle ACK} и △ A B D {\displaystyle \triangle ABD} , площадь каждого из которых равна половине площади квадратов A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} соответственно в связи со следующим свойством: площадь треугольника равна половине площади прямоугольника, если у фигур есть общая сторона, а высота треугольника к общей стороне является другой стороной прямоугольника. Конгруэнтность треугольников следует из равенства двух сторон (стороны квадратов) и углу между ними (составленного из прямой угла и угла при A {\displaystyle A} .

Таким образом, доказательством устанавливается, что площадь квадрата над гипотенузой, составленного из прямоугольников A H J K {\displaystyle AHJK} и B H J I {\displaystyle BHJI} , равна сумме площадей квадратов над катетами.

Доказательство Леонардо да Винчи

К методу площадей относится также доказательство, найденное Леонардо да Винчи . Пусть дан прямоугольный треугольник △ A B C {\displaystyle \triangle ABC} с прямым углом C {\displaystyle C} и квадраты A C E D {\displaystyle ACED} , B C F G {\displaystyle BCFG} и A B H J {\displaystyle ABHJ} (см. рисунок). В этом доказательстве на стороне H J {\displaystyle HJ} последнего во внешнюю сторону строится треугольник, конгруэнтный △ A B C {\displaystyle \triangle ABC} , притом отражённый как относительно гипотенузы, так и относительно высоты к ней (то есть J I = B C {\displaystyle JI=BC} и H I = A C {\displaystyle HI=AC} ). Прямая C I {\displaystyle CI} разбивает квадрат, построенный на гипотенузе на две равные части, поскольку треугольники △ A B C {\displaystyle \triangle ABC} и △ J H I {\displaystyle \triangle JHI} равны по построению. Доказательство устанавливает конгруэнтность четырёхугольников C A J I {\displaystyle CAJI} и D A B G {\displaystyle DABG} , площадь каждого из которых, оказывается, с одной стороны, равной сумме половин площадей квадратов на катетах и площади исходного треугольника, с другой стороны - половине площади квадрата на гипотенузе плюс площадь исходного треугольника. Итого, половина суммы площадей квадратов над катетами равна половине площади квадрата над гипотенузой, что равносильно геометрической формулировке теоремы Пифагора.

Доказательство методом бесконечно малых

Существует несколько доказательств, прибегающих к технике дифференциальных уравнений . В частности, Харди приписывается доказательство, использующее бесконечно малые приращения катетов a {\displaystyle a} и b {\displaystyle b} и гипотенузы c {\displaystyle c} , и сохраняющие подобие с исходным прямоугольником, то есть, обеспечивающие выполнение следующих дифференциальных соотношений:

d a d c = c a {\displaystyle {\frac {da}{dc}}={\frac {c}{a}}} , d b d c = c b {\displaystyle {\frac {db}{dc}}={\frac {c}{b}}} .

Методом разделения переменных из них выводится дифференциальное уравнение c d c = a d a + b d b {\displaystyle c\ dc=a\,da+b\,db} , интегрирование которого даёт соотношение c 2 = a 2 + b 2 + C o n s t {\displaystyle c^{2}=a^{2}+b^{2}+\mathrm {Const} } . Применение начальных условий a = b = c = 0 {\displaystyle a=b=c=0} определяет константу как 0, что в результате даёт утверждение теоремы.

Квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Вариации и обобщения

Подобные геометрические фигуры на трёх сторонах

Важное геометрическое обобщение теоремы Пифагора дал Евклид в «Началах », перейдя от площадей квадратов на сторонах к площадям произвольных подобных геометрических фигур : сумма площадей таких фигур, построенных на катетах, будет равна площади подобной им фигуры, построенной на гипотенузе.

Главная идея этого обобщения заключается в том, что площадь подобной геометрической фигуры пропорциональна квадрату любого своего линейного размера и в частности квадрату длины любой стороны. Следовательно, для подобных фигур с площадями A {\displaystyle A} , B {\displaystyle B} и C {\displaystyle C} , построенных на катетах с длинами a {\displaystyle a} и b {\displaystyle b} и гипотенузе c {\displaystyle c} соответственно, имеет место соотношение:

A a 2 = B b 2 = C c 2 ⇒ A + B = a 2 c 2 C + b 2 c 2 C {\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}\,\Rightarrow \,A+B={\frac {a^{2}}{c^{2}}}C+{\frac {b^{2}}{c^{2}}}C} .

Так как по теореме Пифагора a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , то выполнено .

Кроме того, если возможно доказать без привлечения теоремы Пифагора, что для площадей трёх подобных геометрических фигур на сторонах прямоугольного треугольника выполнено соотношение A + B = C {\displaystyle A+B=C} , то с использованием обратного хода доказательства обобщения Евклида можно вывести доказательство теоремы Пифагора. Например, если на гипотенузе построить конгруэтный начальному прямоугольный треугольник площадью C {\displaystyle C} , а на катетах - два подобных ему прямоугольных треугольника с площадями A {\displaystyle A} и B {\displaystyle B} , то оказывается, что треугольники на катетах образуются в результате деления начального треугольника его высотой, то есть сумма двух меньших площадей треугольников равна площади третьего, таким образом A + B = C {\displaystyle A+B=C} и, применяя соотношение для подобных фигур, выводится теорема Пифагора.

Теорема косинусов

Теорема Пифагора - это частный случай более общей теоремы косинусов, которая связывает длины сторон в произвольном треугольнике :

a 2 + b 2 − 2 a b cos ⁡ θ = c 2 {\displaystyle a^{2}+b^{2}-2ab\cos {\theta }=c^{2}} ,

где - угол между сторонами a {\displaystyle a} и b {\displaystyle b} . Если угол равен 90°, то cos ⁡ θ = 0 {\displaystyle \cos \theta =0} , и формула упрощается до обычной теоремы Пифагора.

Произвольный треугольник

Существует обобщение теоремы Пифагора на произвольный треугольник, оперирующее исключительно соотношением длин сторон, считается, что оно впервые было установлено сабийским астрономом Сабитом ибн Куррой . В нём для произвольного треугольника со сторонами в него вписывается равнобедренный треугольник с основанием на стороне c {\displaystyle c} , вершиной, совпадающей с вершиной исходного треугольника, противолежащей стороне c {\displaystyle c} и углами при основании, равными углу θ {\displaystyle \theta } , противолежащему стороне c {\displaystyle c} . В результате образуются два треугольника, подобных исходному: первый - со сторонами a {\displaystyle a} , дальней от неё боковой стороной вписанного равнобедренного треугольника, и r {\displaystyle r} - части стороны c {\displaystyle c} ; второй - симметрично к нему от стороны b {\displaystyle b} со стороной s {\displaystyle s} - соответствующей частью стороны c {\displaystyle c} . В результате оказывается выполнено соотношение :

a 2 + b 2 = c (r + s) {\displaystyle a^{2}+b^{2}=c(r+s)} ,

вырождающееся в теорему Пифагора при θ = π / 2 {\displaystyle \theta =\pi /2} . Соотношение является следствием подобия образованных треугольников:

c a = a r , c b = b s ⇒ c r + c s = a 2 + b 2 {\displaystyle {\frac {c}{a}}={\frac {a}{r}},\,{\frac {c}{b}}={\frac {b}{s}}\,\Rightarrow \,cr+cs=a^{2}+b^{2}} .

Теорема Паппа о площадях

Неевклидова геометрия

Теорема Пифагора выводится из аксиом евклидовой геометрии и недействительна для неевклидовой геометрии - выполнение теоремы Пифагора равносильно постулату Евклида о параллельности .

В неевклидовой геометрии соотношение между сторонами прямоугольного треугольника обязательно будет в форме, отличной от теоремы Пифагора. Например, в сферической геометрии все три стороны прямоугольного треугольника, которые ограничивают собой октант единичной сферы, имеют длину π / 2 {\displaystyle \pi /2} , что противоречит теореме Пифагора.

При этом теорема Пифагора справедлива в гиперболической и эллиптической геометрии, если требование о прямоугольности треугольника заменить условием, что сумма двух углов треугольника должна равняться третьему .

Сферическая геометрия

Для любого прямоугольного треугольника на сфере радиусом R {\displaystyle R} (например, если угол в треугольнике прямой) со сторонами a , b , c {\displaystyle a,b,c} соотношение между сторонами имеет вид :

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)} .

Это равенство может быть выведено как особый случай сферической теоремы косинусов , которая справедлива для всех сферических треугольников:

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) + sin ⁡ (a R) ⋅ sin ⁡ (b R) ⋅ cos ⁡ γ {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)+\sin \left({\frac {a}{R}}\right)\cdot \sin \left({\frac {b}{R}}\right)\cdot \cos \gamma } . ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b} ,

где ch {\displaystyle \operatorname {ch} } - гиперболический косинус . Эта формула является частным случаем гиперболической теоремы косинусов, которая справедлива для всех треугольников :

ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b − sh ⁡ a ⋅ sh ⁡ b ⋅ cos ⁡ γ {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b-\operatorname {sh} a\cdot \operatorname {sh} b\cdot \cos \gamma } ,

где γ {\displaystyle \gamma } - угол, вершина которого противоположна стороне c {\displaystyle c} .

Используя ряд Тейлора для гиперболического косинуса ( ch ⁡ x ≈ 1 + x 2 / 2 {\displaystyle \operatorname {ch} x\approx 1+x^{2}/2} ) можно показать, что если гиперболический треугольник уменьшается (то есть, когда a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} стремятся к нулю), то гиперболические соотношения в прямоугольном треугольнике приближаются к соотношению классической теоремы Пифагора.

Применение

Расстояние в двумерных прямоугольных системах

Важнейшее применение теоремы Пифагора - определение расстояния между двумя точками в прямоугольной системе координат : расстояние s {\displaystyle s} между точками с координатами (a , b) {\displaystyle (a,b)} и (c , d) {\displaystyle (c,d)} равно:

s = (a − c) 2 + (b − d) 2 {\displaystyle s={\sqrt {(a-c)^{2}+(b-d)^{2}}}} .

Для комплексных чисел теорема Пифагора даёт естественную формулу для нахождения модуля комплексного числа - для z = x + y i {\displaystyle z=x+yi} он равен длине

Не ассоциировалось бы с теоремой Пифагора. Даже те, кто в своей жизни далек от математики, продолжают сохранять воспоминания о "пифагоровых штанах" - квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора ясна: это простота - красота - значимость. В самом деле, теорема Пифагора проста, но не очевидна. Противоречие двух начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение. Она применяется в геометрии буквально на каждом шагу. Существует около пятисот различных доказательств этой теоремы, что свидетельствует о гигантском числе ее конкретных реализаций.

Исторические исследования датируют появление на свет Пифагора приблизительно 580 годом до нашей эры. Счастливый отец Мнесарх окружает мальчика заботами. Возможности дать сыну хорошее воспитание и образование у него были.

Будущий великий математик и философ уже в детстве обнаружил большие способности к наукам. У своего первого учителя Гермодамаса Пифагор получает знания основ музыки и живописи. Для упражнения памяти Гермодамас заставлял его учить песни из "Одиссеи" и "Илиады". Первый учитель прививал юному Пифагору любовь к природе и ее тайнам.

Прошло несколько лет, и по совету своего учителя Пифагор решает продолжить образование в Египте. При помощи учителя Пифагору удается покинуть остров Самос. Но пока до Египта далеко. Он живет на острове Лесбос у своего родственника Зоила. Там происходит знакомство Пифагора с философом Ферекидом - другом Фалеса Милетского. У Ферекида Пифагор учится астрологии, предсказанию затмений, тайнам чисел, медицине и другим обязательным для того времени наукам.

Затем в Милете он слушает лекции Фалеса и его более молодого коллеги и ученика Анаксимандра, выдающегося географа и астронома. Много важных знаний приобрел Пифагор за время своего пребывания в Милетской школе.

Перед Египтом он на некоторое время останавливается в Финикии, где, по преданию, учится у знаменитых сидонских жрецов.

Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой.

Двенадцать лет пробыл в вавилонском плену Пифагор, пока его не освободил персидский царь Дарий Гистасп, прослышавший о знаменитом греке. Пифагору уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ.

С тех пор как Пифагор покинул Грецию, там произошли большие изменения. Лучшие умы, спасаясь от персидского ига, перебрались в Южную Италию, которую тогда называли Великой Грецией, и основали там города-колонии Сиракузы, Агригент, Кротон. Здесь и задумывает Пифагор создать собственную философскую школу.

Довольно быстро он завоевывает большую популярность среди жителей. Пифагор умело использует знания, полученные в странствиях по свету. Со временем ученый прекращает выступления в храмах и на улицах. Уже в своем доме Пифагор учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. Пифагор развил теорию музыки и акустики, создав знаменитую "пифагорейскую гамму" и проведя основополагающие эксперименты по изучению музыкальных тонов: найденные соотношения он выразил на языке математики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определенным математическим соотношениям, идеи "гармонии мира" и "музыки сфер", впоследствии приведшие к революции в астрономии, впервые появились именно в Школе Пифагора.

Многое сделал ученый и в геометрии. Прокл так оценивал вклад греческого ученого в геометрию: "Пифагор преобразовал геометрию, придав ей форму свободной науки, рассматривая ее принципы чисто абстрактным образом и исследуя теоремы с нематериальной, интеллектуальной точки зрения. Именно он нашел теорию иррациональных количеств и конструкцию космических тел".

В школе Пифагора геометрия впервые оформляется в самостоятельную научную дисциплину. Именно Пифагор и его ученики первыми стали изучать геометрию систематически - как теоретическое учение о свойствах абстрактных геометрических фигур, а не как сборник прикладных рецептов по землемерию.

Важнейшей научной заслугой Пифагора считается систематическое введение доказательства в математику, и, прежде всего, в геометрию. Строго говоря, только с этого момента математика и начинает существовать как наука, а не как собрание древнеегипетских и древневавилонских практических рецептов. С рождением же математики зарождается и наука вообще, ибо "ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства" (Леонардо да Винчи).

Так вот, заслуга Пифагора и состояла в том, что он, по-видимому, первым пришел к следующей мысли: в геометрии, во-первых, должны рассматриваться абстрактные идеальные объекты, и, во-вторых, свойства этих идеальных объектов должны устанавливаться не с помощью измерений на конечном числе объектов, а с помощью рассуждений, справедливых для бесконечного числа объектов. Эта цепочка рассуждений, которая с помощью законов логики сводит неочевидные утверждения к известным или очевидным истинам, и есть математическое доказательство.

Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение 1 книги "Начал" , пишет: "Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка". Впрочем, более щедрые сказители одного быка превратили в одну гекатомбу, а это уже целая сотня. И хотя еще Цицерон заметил, что всякое пролитие крови было чуждо уставу пифагорейского ордена, легенда эта прочно срослась с теоремой Пифагора и через две тысячи лет продолжала вызывать горячие отклики.

Министерство образования и науки РФ

Муниципальное общеобразовательное учреждение

Леботёрская основная общеобразовательная школа

Чаинский район Томская область

РЕФЕРАТ

по теме: Пифагор и его теорема

Выполнили:

ученицы 8 класса

Пчелкина Ирина

Макарова Надежда

Руководитель:

Стасенко В.К.,

учитель математики

Введение…………………………………..…………………………………….. 3

1. Из биографии Пифагора …………………………………………………..3

2. Пифагор и пифагорийцы …………………………………………………. …4

3. Из истории создания теоремы …………………………………………….. ..5

4. Шесть доказательств теоремы ……………………………………………….6

4.1. Древнекитайское доказательство ……………………………………… 6

4.2. Доказательство Дж. Гардфилда ……………………………………… 7.

4.3 Доказательство старейшее …………………………………………….. 8.

4.4. Доказательство простейшее …………………………………………… 9

4.5 Доказательство древних …………………………………………………10

4.6. Доказательство Евклида ………………………………………………..11.

5. Применение теоремы Пифагора …………………………………………… 12

5.1. Задачи теоретические …………………………………………………..13

5.2. Задачи практические (старинные) …………………………………… 14

Заключение ………………………………………………………………………15

Список литературы …………………………………………………………… 16

ВВЕДЕНИЕ

В этом учебном году мы познакомились с интересной теоремой, известной, как оказалось с древнейших времён:

«Квадрат, построенный на гипотенузе прямоугольного треугольника равновелик сумме квадратов построенных на катетах».

Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI век до н.э). Но изучение древних рукописей показало, что это утверждение было известно задолго до рождения Пифагора.

Мы заинтересовались, почему в таком случае её связывают с именем Пифагора.

Целью нашего исследования было: узнать, кто такой был Пифагор и какое отношение он имеет к этой теореме. Изучая историю теоремы, мы решили выяснить:

o Существуют ли другие доказательства этой теоремы?

o Каково значение этой теоремы в жизни людей?

o Какую роль сыграл Пифагор в развитии математики?

1. Из биографии Пифагора

Пифагор Самосский – великий греческий учёный. Его имя знакомо каждому школьнику. Если попросят назвать одного древнего математика, то абсолютное большинство назовёт Пифагора. Его известность связана с названием теоремы Пифагора. Хотя сейчас уже мы знаем, что эта теорема была известна в древнем Вавилоне за 1200 лет до Пифагора, а в Египте за 2000 лет до него был известен прямоугольный треугольник со сторонами 3, 4, 5, мы по-прежнему называем её по имени этого древнего учёного.

Про жизнь Пифагора достоверно почти ничего не известно, но с его именем связано большое количество легенд.

Пифагор родился в 570 году до н. э на острове Самос. Отцом Пифагора был Мнесарх – резчик по драгоценным камням. Мнесарх, по словам Апулея, «славился среди мастеров своим искусством вырезать геммы», но стяжал скорее славу, чем богатство. Имя матери Пифагора не сохранилось.

Пифагор имел красивую внешность, носил длинную бороду, а на голове золотую диадему. Пифагор - это не имя, а прозвище, которое философ получил за то, что всегда говорил верно и убедительно, как греческий оракул. (Пифагор - "убеждающий речью".)

Среди учителей юного Пифагора были старец Гермодамант и Ферекид Сиросский (хотя и нет твердой уверенности в том, что именно Гермодамант и Ферекид были первыми учителями Пифагора). Целые дни проводил юный Пифагор у ног старца Гермодаманта, внимая мелодии кифары и гекзаметрам Гомера. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера.

Ферекид же был философом и считался основателем италийской школы философии. Таким образом, если Гермодамант ввел юного Пифагора в круг муз, то Ферекид обратил его ум к логосу. Ферекид направил взор Пифагора к природе и в ней одной советовал видеть своего первого и главного учителя.

Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым - Фалесом. Фалес посоветовал ему отправиться за знаниями в Египет, что Пифагор и сделал.

В 550 году до н. э Пифагор принимает решение и отправляется в Египет. Итак, перед Пифагором открывается неизвестная страна и неведомая культура. Многое поражало и удивляло Пифагора в этой стране, и после некоторых наблюдений за жизнью египтян Пифагор понял, что путь к знаниям, охраняемым кастой жрецов, лежит через религию.

Вместе с египетскими мальчиками сел за известняковые пластинки и он, возмужалый Эллин с черной курчавой бородой. Но в отличие от своих меньших сотоварищей уши бородатого Эллина были не на спине, да и голова стояла на месте. Очень скоро Пифагор далеко обогнал своих однокашников. Но школа писцов была лишь первой ступенью на пути к тайному знанию.

После одиннадцати лет обучения в Египте Пифагор отправляется на родину, где по пути попадает в Вавилонский плен. Там он знакомится с вавилонской наукой, которая была более развита, чем египетская. Вавилоняне умели решать линейные, квадратные и некоторые виды кубических уравнений. Они успешно применяли теорему Пифагора более чем за 1000 лет до Пифагора. Сбежав из плена, он не смог долго оставаться на родине из-за царившей там атмосферы насилия и тирании. Он решил переселиться в Кротон (греческая колония на севере Италии).

Именно в Кротоне начинается самый славный период в жизни Пифагора. Там он учредил нечто вроде религиозно-этического братства или тайного монашеского ордена, члены которого обязывались вести так называемый пифагорейский образ жизни.

2. Пифагор и пифагорейцы

Пифагор организовал в греческой колонии на юге Апенинского полуострова религиозно-этическое братство, типа монашеского ордена, который впоследствии назовут пифагорейским союзом. Члены союза должны были придерживаться определённых принципов: во-первых, стремиться к прекрасному и славному, во-вторых, быть полезными, в-третьих, стремиться к высокому наслаждению.

Система морально-этических правил, завещанная Пифагором своим ученикам, была собрана в своеобразный моральный кодекс пифагорейцев «Золотые

стихи», которые пользовались большой популярностью в эпоху Античности, эпоху Средневековья и эпоху Возрождения. Пифагорейская система занятий состояла из трёх разделов:

· учения о числах – арифметике,

· учения о фигурах – геометрии,

· учения о строении Вселенной – астрономии.

Система образования, заложенная Пифагором, просуществовала много веков.

Пифагорейцы учили, что Бог положил числа в основу мирового порядка. Бог – это единство, а мир – множество и состоит из противоположностей. То, что приводит противоположности к единству и соединяет всё в космос, есть гармония. Гармония является божественной и заключается в числовых выражениях. Кто до конца изучит гармонию, сам станет божественным и бессмертным.

Музыка, гармония и числа были неразрывно связаны в учении пифагорейцев. Математика и числовая мистика были фантастически перемешаны в нём. Пифагор считал, что число есть сущность всех вещей и что Вселенная представляет собой гармоническую систему чисел и их отношений.

Школа Пифагора много сделала, чтобы придать геометрии характер науки. Основной особенностью метода Пифагора было объединение геометрии с арифметикой.

Пифагор много занимался пропорциями и прогрессиями и, вероятно, подобием фигур, так как ему приписывают решение задачи: "По данным двум фигурам построить третью, равновеликую одной из данных и подобную второй".

Пифагор и его ученики ввели понятие о многоугольных, дружественных, совершенных числах и изучали их свойства. Арифметика как практика вычислений не интересовала Пифагора, и он с гордостью заявил, что "поставил арифметику выше интересов торговца".

Пифагор одним из первых считал, что Земля имеет форму шара и является центром Вселенной, что Солнце, Луна и планеты имеют собственное движение, отличное от суточного движения неподвижных звезд.

Учение пифагорейцев о движении Земли Николай Коперник воспринял как предысторию своего гелиоцентрического учения. Недаром церковь объявила систему Коперника "ложным пифагорейским учением".

В школе Пифагора открытия учеников приписывались учителю, поэтому практически невозможно определить, что сделал сам Пифагор, а что его ученики.

Споры ведутся вокруг пифагорейского союза уже третье тысячелетие, однако общего мнения так и нет. У пифагорейцев было множество символов и знаков, которые были своего рода заповедями: например, «через весы не шагай», т.е. не нарушай справедливости; огня ножом не вороши», т. е. не задевай гневных людей обидными словами.

Но главным пифагорейским символом -

символом здоровья и опознавательным знаком –

была пентаграмма или пифагорейская звезда –

звёздчатый пятиугольник, образованный диагоналями

правильного пятиугольника.

Членами пифагорейского союза были жители многих городов Греции.

В своё общество пифагорейцы принимали и женщин. Союз процветал более двадцати лет, а потом начались гонения на его членов, многие из учеников были убиты.

О смерти самого Пифагора ходило много самых разных легенд. Но учение Пифагора и его учеников продолжало жить.

3. Из истории теоремы Пифагора

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что именно Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду.

Как мы видим, история математики почти не сохранила достоверных конкретных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Многим известен сонет немецкого писателя-романиста Шамиссо:

Исторический обзор теоремы Пифагора начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:

"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4" .

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого.

Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея).

По мнению Кантора, гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Несколько больше было известно о теореме Пифагора вавилонянам. В одном тексте, относимом ко времени Хаммураби, т.е. к 2000 году до нашей эры, приводится приближенное вычисление гипотенузы прямоугольного треугольника; отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.

Геометрия у индусов была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 8 века до нашей эры. Наряду с чисто ритуальными предписаниями, существуют и сочинения геометрически теологического характера, называемые Сульвасутры. В этих сочинениях, относящихся к 4 или 5 веку до нашей эры, мы встречаемся с построением прямого угла при помощи треугольника со сторонами 15, 36, 39.

В средние века теорема Пифагора определяла границу, если не наибольших возможных, то, по крайней мере, хороших математических знаний. Характерный чертеж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора или человека в цилиндре, в те времена нередко употреблялся как символ математики.

В заключение приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков.

Евклида эта теорема гласит (дословный перевод):

"В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".

Латинский перевод арабского текста Аннариции (около 900 года до нашей эры), сделанный Герхардом Кремонским (12 век) гласит (в переводе):

«Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол»

В Geometry Culmonensis (около 1400года) теорема читается так (в переводе):

Итак, площадь квадрата, измеренного по длиной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу”

В русском переводе евклидовых «Начал», теорема Пифагора изложена так:

«В прямоугольном треугольнике квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».

Как видим, в разных странах и разных языках существуют различные варианты формулировки знакомой нам теоремы. Созданные в разное время и в разных языках, они отражают суть одной математической закономерности, доказательство которой также имеет несколько вариантов.

4. Шесть способов доказательства теоремы Пифагора

4.1. Древнекитайское доказательство

На древнекитайском чертеже четыре равных прямоугольных треугольника с катетами a , b и гипотенузой с уложены так, что их внешний контур образует квадрат со стороной a + b , а внутренний – квадрат со стороной с , построенный на гипотенузе

a 2 + 2ab +b 2 = c 2 + 2ab

a 2 +b 2 = c 2

4.2. Доказательство Дж. Гардфилда (1882 г.)

Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого.

Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту

C другой стороны, площадь трапеции равна сумме площадей полученных треугольников:

Приравнивая данные выражения, получаем:

или с 2 = a 2 + b 2

4.3. Старейшее доказательство

(содержится в одном из произведений Бхаскары).

Пусть АВСD квадрат, сторона которого равна гипотенузе прямоугольного треугольника АВЕ (АВ = с, ВЕ = а,

Пусть СК ВЕ = а, DL CK, AM DL

ΔABE = ∆BCK = ∆CDL = ∆AMD,

значит KL = LM = ME = EK = a-b.

4.4. Доказательство простейшее

4.5. Доказательство древних индусов [ 2]



Квадрат со стороной (a+b), можно разбить на части либо как на рисунке а), либо как на рисунке b). Ясно, что части 1,2,3,4 на обоих рисунках одинаковы. А если от равных (площадей) отнять равные, то и останутся равные, т.е. с 2 = а 2 + b 2 .

Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали лишь одним словом:

Смотри!

4.6. Доказательство Евклида

В течение двух тысячелетий наиболее распространенным было доказательство теоремы Пифагора, придуманное Евклидом. Оно помещено в его знаменитой книге «Начала».

Евклид опускал высоту BН из вершины прямого угла на гипотенузу и доказывал, что её продолжение делит достроенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах.

Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum- ослиный мост, или elefuga- бегство "убогих", так как некоторые "убогие" ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому "ослами", были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также "ветряной мельницей", составляли стихи вроде "Пифагоровы штаны на все стороны равны", рисовали карикатуры.

5. Применение теоремы Пифагора.

5.1. Задачи теоретические современные

1. Периметр ромба 68 см., а одна из его диагоналей равна 30 см. Найдите длину другой диагонали ромба.

2. Гипотенуза КР прямоугольного треугольника КМР равна см., а катет МР равен 4 см. Найдите медиану РС.

3. На сторонах прямоугольного треугольника построены квадраты, причем

S 1 -S 2 =112 см 2 , а S 3 =400 см 2 . Найдите периметр треугольника.

4. Дан треугольник АВС, угол С=90 0 , CD AB, AC=15 см., AD=9 см.

Найдите АВ.

5.2. Задачи практические старинные

5. Для крепления мачты нужно установить

4 троса. Один конец каждого троса должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватит ли 50 м троса для крепления мачты?

6. Задача индийского математика XII века Бхаскары

«На берегу реки рос тополь одинокий.

Вдруг ветра порыв его ствол надломал.

Бедный тополь упал. И угол прямой

С теченьем реки его ствол составлял.

Запомни теперь, что в том месте река

В четыре лишь фута была широка.

Верхушка склонилась у края реки.

Осталось три фута всего от ствола,

Прошу тебя, скоро теперь мне скажи:

У тополя как велика высота?»

7. Задача из учебника "Арифметика" Леонтия Магницкого [ 19]

"Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп.

И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать."

8. Задача из китайской "Математики в девяти книгах"

"Имеется водоем со стороной в 1 чжан = 10 чи. В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его.

Спрашивается: какова глубина воды и какова длина камыша?"

Заключение

Теорема Пифагора настолько известна, что трудно представить себе человека, не слышавшего о ней. Мы изучили ряд исторических и математических источников, в том числе информацию в Интернете, и увидели, что теорема Пифагора интересна не только своей историей, но и тем, что она занимает важное место в жизни и науке. Об этом свидетельствуют приведённые нами в данной работе различные трактовки текста этой теоремы и пути её доказательств.

Итак, теорема Пифагора - одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни смотри на прямоугольный треугольник, никак не увидишь, что между его сторонами есть простое соотношение: c 2 =a 2 +b 2 . Поэтому для её доказательства часто используют наглядность.

Заслуга же Пифагора состояла в том, что он дал полноценное научное доказательство этой теоремы.

Интересна личность самого учёного, память о котором неслучайно сохранила эта теорема. Пифагор – замечательный оратор, учитель и воспитатель, организатор своей школы, ориентированной на гармонию музыки и чисел, добра и справедливости, на знания и здоровый образ жизни. Он вполне может служить примером для нас, далёких потомков.

Литература и Интернет-ресурсы:

1. Г.И. Глейзер История математики в школе VII – VIII классы, пособие для учителей, - М: Просвещение 1982г.

2. И.Я. Демпан, Н.Я. Виленкин «За страницами учебника математики» Пособие для учащихся 5-6 классов, Москва, Просвещение 1989г.

3. И.Г. Зенкевич «Эстетика урока математики», М.: Просвещение 1981г.

4. Войтикова Н.В. «Теорема Пифагора» курсовая работа, Анжеро-Судженск, 1999г.

5. В. Литцман.Теорема Пифагора, М. 1960.

6. А.В. Волошинов «Пифагор» М. 1993.

7. Л. Ф. Пичурин «За страницами учебника алгебры» М. 1990.

8. А. Н. Земляков «Геометрия в 10 классе» М. 1986.

9. В. В. Афанасьев «Формирование творческой активности студентов в процессе решения математических задач» Ярославль 1996.

10. П. И. Алтынов «Тесты. Геометрия 7 – 9 кл.» М. 1998.

11. Газета «Математика» 17/1996.

12. Газета «Математика» 3/1997.

13. Н. П. Антонов, М. Я. Выгодский, В. В Никитин, А. И. Санкин «Сборник задач по элементарной математики». М. 1963.

14. Г. В. Дорофеев, М. К. Потапов, Н. Х. Розов «Пособие по математике». М. 1973

15. А. И. Щетников “ Пифагорейское учение о числе и величине “. Новосибирск 1997.

16. «Действительные числа. Иррациональные выражения» 8 класс. Издательство Томского университета. Томск – 1997.

17. М.С. Атанасян “Геометрия” 7-9 класс. М: Просвещение, 1991

18. www.moypifagor .narod.ru/

19. http://www.zaitseva-irina.ru/html/f1103454849.html

20. http://ru.wikipedia.org/wiki/Теорема_Пифагора

21. http://th-pif.narod.ru/history.htm

Поделитесь с друзьями или сохраните для себя:

Загрузка...