Хром и его соединения кратко. Сульфат хрома (III): состав и молярная масса

Содержание статьи

ХРОМ – (Chromium) Cr, химический элемент 6(VIb) группы Периодической системы. Атомный номер 24, атомная масса 51,996. Известно 24 изотопа хрома с 42 Cr по 66 Cr. Изотопы 52 Cr, 53 Cr, 54 Cr являются стабильными. Изотопный состав природного хрома: 50 Cr (период полураспада 1,8·10 17 лет) – 4,345%, 52 Cr – 83,489%, 53 Cr – 9,501%, 54 Cr – 2,365%. Основные степени окисления +3 и +6.

В 1761 профессор химии Петербургского университета Иоганн Готтлоб Леман (Johann Gottlob Lehmann) у восточного подножия Уральских гор на Березовском руднике обнаружил замечательный красный минерал, который при измельчении в порошок давал яркую желтую окраску. В 1766 Леман привез образцы минерала в Петербург. Обработав кристаллы соляной кислотой, он получил белый осадок, в котором обнаружил свинец. Леман назвал минерал сибирским красным свинцом (plomb rouge de Sibérie), теперь известно, что это был крокоит (от греческого «krokos» – шафран) – природный хромат свинца PbCrO 4 .

Немецкий путешественник и естествоиспытатель Петер Симон Паллас (Peter Simon Pallas) (1741–1811) возглавил экспедицию Петербургской Академии наук в центральные регионы России и в 1770 побывал на Южном и Среднем Урале, в том числе на Березовском руднике и, подобно Леману, заинтересовался крокоитом. Паллас писал: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Несмотря на редкость и трудность доставки крокоита с Березовского рудника в Европу (на это уходило почти два года), использование минерала в качестве красящего вещества было оценено по достоинству. В Лондоне и Париже конца 17 в. все знатные особы ездили на каретах, покрашенных мелко растертым крокоитом, кроме того, лучшие образцы сибирского красного свинца пополняли коллекции многих минералогических кабинетов Европы.

В 1796 образец крокоита попал к профессору химии Парижской минералогической школы Никола Луи Вокелену (Nicolas-Louis Vauquelin) (1763–1829), который проанализировал минерал, но не нашел в нем ничего кроме оксидов свинца, железа и алюминия. Продолжая исследования сибирского красного свинца, Вокелен прокипятил минерал с раствором поташа и после отделения белого осадка карбоната свинца получил желтый раствор неизвестной соли. При обработке его солью свинца образовывался желтый осадок, солью ртути – красный, а при добавлении хлорида олова раствор становился зеленым. Разлагая крокоит минеральными кислотами, он получил раствор «кислоты красного свинца», упаривание которой давало рубиново-красные кристаллы (сейчас понятно, что это был хромовый ангидрид). Прокалив их с углем в графитовом тигле, обнаружил после реакции множество сросшихся серых игольчатых кристаллов неизвестного до того времени металла. Вокелен констатировал высокую тугоплавкость металла и его устойчивость по отношению к кислотам.

Вокелен назвал новый элемент хромом (от греческого crwma – цвет, окраска) ввиду множества образуемых им разноцветных соединений. На основании своих исследований Вокелен впервые констатировал, что изумрудная окраска некоторых драгоценных камней объясняется примесью в них соединений хрома. Например, природный смарагд представляет собой окрашенный в глубокий зеленый цвет берилл, в котором алюминий частично замещен хромом.

Скорее всего, Вокеленом был получен не чистый металл, а его карбиды, о чем свидетельствует игольчатая форма полученных кристаллов, но Парижская Академия наук тем не менее зарегистрировала открытие нового элемента, и сейчас Вокелен справедливо считается первооткрывателем элемента № 24.

Юрий Крутяков

ОПРЕДЕЛЕНИЕ

Хром - двадцать четвертый элемент Периодической таблицы. Обозначение - Cr от латинского «chromium». Расположен в четвертом периоде, VIB группе. Относится к металлам. Заряд ядра равен 24.

Хром содержится в земной коре в количестве 0,02% (масс.). В природе он встречается главным образом в виде хромистого железняка FeO×Cr 2 O 3 .

Хром представляет собой твердый блестящий металл (рис. 1), плавящийся при 1890 o С; плотность его 7,19 г/см 3 . При комнатной температуре хром стоек и к воде, и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Рис. 1. Хром. Внешний вид.

Атомная и молекулярная масса хрома

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии хром существует в виде одноатомных молекул Cr, значения его атомной и молекулярной масс совпадают. Они равны 51,9962.

Изотопы хрома

Известно, что в природе хром может находиться в виде четырех стабильных изотопов 50 Cr, 52 Cr, 53 Cr и 54 Cr. Их массовые числа равны 50, 52, 53 и 54 соответственно. Ядро атома изотопа хрома 50 Cr содержит двадцать четыре протона и двадцать шесть нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы хрома с массовыми числами от 42-х до 67-ми, среди которых наиболее стабильным является 59 Cr с периодом полураспада равным 42,3 минуты, а также один ядерный изотоп.

Ионы хрома

На внешнем энергетическом уровне атома хрома имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

В результате химического взаимодействия хром отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Cr 0 -2e → Cr 2+ ;

Cr 0 -3e → Cr 3+ ;

Cr 0 -6e → Cr 6+ .

Молекула и атом хрома

В свободном состоянии хром существует в виде одноатомных молекул Cr. Приведем некоторые свойства, характеризующие атом и молекулу хрома:

Сплавы хрома

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали обладают повышенной твердостью. Хром входит в состав нержавеющих кислотоупорных, жаропрочных сталей.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Оксид хрома (VI) массой 2 г растворили в воде массой 500 г. Рассчитайте массовую долю хромовой кислоты H 2 CrO 4 в полученном растворе.
Решение Запишем уравнение реакции получения хромовой кислоты из оксида хрома (VI):

CrO 3 + H 2 O = H 2 CrO 4 .

Найдем массу раствора:

m solution = m(CrO 3) + m (H 2 O) = 2 + 500 = 502 г.

n (CrO 3) = m (CrO 3) / M (CrO 3);

n (CrO 3) = 2 / 100 = 0,02 моль.

Согласно уравнению реакции n(CrO 3) :n(H 2 CrO 4) = 1:1, значит,

n(CrO 3) = n(H 2 CrO 4) = 0,02 моль.

Тогда масса хромовой кислоты будет равна (молярная масса - 118 г/моль):

m (H 2 CrO 4) = n (H 2 CrO 4) × M (H 2 CrO 4);

m (H 2 CrO 4) = 0,02 × 118 = 2,36 г.

Массовая доля хромовой кислоты в растворе составляет:

ω = m solute / m solution × 100%;

ω (H 2 CrO 4)=m solute (H 2 CrO 4)/ m solution × 100%;

ω (H 2 CrO 4)= 2,36 / 502 × 100% = 0,47 %.

Ответ Массовая доля хромовой кислоты равна 0,47 %.

Хром (Cr), химический элемент VI группы периодической системы Менделеева. Относится к переходным металлом с атомным номером 24 и атомной массой 51,996. В переводе с греческого, название металла означает «цвет». Такому названию металл обязан разнообразной цветовой гамме, которая присуща его различным соединениям.

Физические характеристики хрома

Металл обладает достаточной твердостью и хрупкостью одновременно. По шкале Мооса твердость хрома оценивается в 5,5. Этот показатель означает, что хром имеет максимальную твердость из всех известных на сегодня металлов, после урана, иридия, вольфрама и бериллия. Для простого вещества хрома характерен голубовато-белый окрас.

Металл не относится к редким элементам. Его концентрация в земной коре достигает 0,02% масс. долей. В чистом виде хром не встречается никогда. Он содержится в минералах и рудах, которые являются главным источником добычи металла. Хромит (хромистый железняк, FeO*Cr 2 O 3) считается основным соединением хрома. Еще одним достаточно распространенным, однако менее важным минералом, является крокоит PbCrO 4 .

Металл легко поддается плавке при температуре 1907 0 С (2180 0 К или 3465 0 F). При температуре в 2672 0 С - закипает. Атомная масса металла составляет 51,996 г/моль.

Хром является уникальным металлом благодаря своим магнитным свойствам. В условиях комнатной температуры ему присуще антиферромагнитное упорядочение, в то время, как другие металлы обладают им в условиях исключительно пониженных температур. Однако, если хром нагреть выше 37 0 С, физические свойства хрома изменяются. Так, существенно меняется электросопротивление и коэффициент линейного расширения, модуль упругости достигает минимального значения, а внутреннее трение значительно увеличивается. Такое явление связано с прохождением точки Нееля, при которой антиферромагнитные свойства материала способны изменяться на парамагнитные. Это означает, что первый уровень пройден, и вещество резко увеличилось в объеме.

Строение хрома представляет собой объемно-центрированную решетку, благодаря которой металл характеризуется температурой хрупко-вязкого периода. Однако, в случае с данным металлом, огромное значение имеет степень чистоты, поэтому, величина находится в пределах -50 0 С - +350 0 С. Как показывает практика, раскристаллизированный металл не имеет никакой пластичности, но мягкий отжиг и формовка делают его ковким.

Химические свойства хрома

Атом имеет следующую внешнюю конфигурацию: 3d 5 4s 1 . Как правило, в соединениях хром имеет следующие степени окисления: +2, +3, +6, среди которых наибольшую устойчивость проявляет Сr 3+ .Кроме этого существуют и другие соединения, в которых хром проявляет совершенно иную степень окисления, а именно: +1, +4, +5.

Металл не отличается особой химической активностью. Во время нахождения хрома в обычных условиях, металл проявляет устойчивость к влаге и кислороду. Однако, данная характеристика не относится к соединению хрома и фтора - CrF 3 , которое при воздействии температур, превышающих 600 0 С, взаимодействует с парами воды, образуя в результате реакции Сr 2 О 3 , а также азотом, углеродом и серой.

Во время нагревания металлического хрома, он взаимодействует с галогенами, серой, кремнием, бором, углеродом, а также некоторыми другими элементами, в результате чего получаются следующие химические реакции хрома:

Cr + 2F 2 = CrF 4 (с примесью CrF 5)

2Cr + 3Cl 2 = 2CrCl 3

2Cr + 3S = Cr 2 S 3

Хроматы можно получить, если нагреть хром с расплавленной содой на воздухе, нитратами или хлоратами щелочных металлов:

2Cr + 2Na 2 CO 3 + 3O 2 = 2Na 2 CrO 4 + 2CO 2 .

Хром не обладает токсичностью, чего нельзя сказать о некоторых его соединениях. Как известно, пыль данного металла, при попадании в организм, может раздражать легкие, через кожу она не усваивается. Но, поскольку в чистом виде он не встречается, то его попадание в человеческий организм является невозможным.

Трехвалентный хром попадает в окружающую среду во время добычи и переработки хромовой руды. В человеческий организм попадание хрома вероятно в виде пищевой добавки, используемой в программах по похудению. Хром с валентностью, равной +3, является активным участником синтеза глюкозы. Ученые установили, что излишнее употребление хрома особого вреда человеческому организму не наносит, поскольку не происходит его всасывание, однако, он способен накапливаться в организме.

Соединения, в котором участвует шестивалентный металл, являются крайне токсичными. Вероятность их попадания в человеческий организм появляется во время производства хроматов, хромирования предметов, во время проведения некоторых сварочных работ. Попадание такого хрома в организм чревато серьезными последствиями, так как соединения, в которых присутствует шестивалентный элемент, представляют собой сильные окислители. Поэтому, могут вызвать кровотечение в желудке и кишечнике, иногда с прободением кишечника. При попадании таких соединений на кожу возникают сильные химические реакции в виде ожогов, воспалений, возникновения язв.

В зависимости от качества хрома, которое необходимо получить на выходе, существует несколько способов производства металла: электролизом концентрированных водных растворов оксида хрома, электролизом сульфатов, а также восстановлением оксидом кремния. Однако, последний способ не очень популярен, так как при нем на выходе получается хром с огромным количеством примесей. Кроме того, он также является экономически невыгодным.

Характерные степени окисления хрома
Степень окисления Оксид Гидроксид Характер Преобладающие формы в растворах Примечания
+2 CrO (чёрный) Cr(OH)2 (желтый) Основный Cr2+ (соли голубого цвета) Очень сильный восстановитель
Cr2O3 (зелёный) Cr(OH)3 (серо-зеленый) Амфотерный

Cr3+ (зеленые или лиловые соли)
- (зелёный)

+4 CrO2 не существует Несолеобразующий -

Встречается редко, малохарактерна

+6 CrO3 (красный)

H2CrO4
H2Cr2O7

Кислотный

CrO42- (хроматы, желтые)
Cr2O72- (дихроматы, оранжевые)

Переход зависит от рН среды. Сильнейший окислитель, гигроскопичен, очень ядовит.

Хром (лат. Cromium), Cr, химический элемент VI группы периодической системы Менделеева, атомный номер 24, атомная масса 51,996; металл голубовато-стального цвета.

Природные стабильные изотопы: 50 Cr (4,31%), 52 Cr (87,76%), 53 Cr (9,55%) и 54 Cr (2,38%). Из искусственных радиоактивных изотопов наиболее важен 51 Cr (период полураспада T ½ = 27,8 суток), который применяется как изотопный индикатор.

Историческая справка. Хром открыт в 1797 году Л. Н. Вокленом в минерале крокоите - природном хромате свинца РbCrО 4 . Название Хром получил от греческого слова chroma - цвет, краска (из-за разнообразия окраски своих соединений). Независимо от Воклена Хром был открыт в крокоите в 1798 году немецким ученым М. Г. Клапротом.

Распространение Хрома в природе. Среднее содержание Хрома в земной коре (кларк) 8,3·10 -3 % . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены Хромом (2·10 -4 %). Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10 -2 %, в кислых - 2,5·10 -3 %, в осадочных породах (песчаниках) - 3,5·10 -3 %, глинистых сланцах - 9·10 -3 % . Хром - сравнительно слабый водный мигрант; содержание Хрома в морской воде 0,00005 мг/л.

В целом Хром - металл глубинных зон Земли; каменные метеориты (аналоги мантии) тоже обогащены Хромом (2,7·10 -1 %). Известно свыше 20 минералов Хрома. Промышленное значение имеют только хромшпинелиды (до 54% Сr); кроме того, Хром содержится в ряде других минералов, которые нередко сопровождают хромовые руды, но сами не представляют практическое ценности (уваровит, волконскоит, кемерит, фуксит).

Физические свойства Хрома. Хром - твердый, тяжелый, тугоплавкий металл. Чистый Хром пластичен. Кристаллизуется в объемноцентрированной решетке, а = 2,885Å (20 °С); при 1830 °С возможно превращение в модификацию с гранецентрированной решеткой, а = 3,69Å.

Атомный радиус 1,27 Å; ионные радиусы Cr 2+ 0,83Å, Cr 3+ 0,64Å, Cr 6+ 0,52 Å. Плотность 7,19 г/см 3 ; t пл 1890 °С; t кип 2480 °С. Удельная теплоемкость 0,461 кдж/(кг·К) (25°С); термический коэффициент линейного расширения 8,24·10 -6 (при 20 °С); коэффициент теплопроводности 67 вт/(м·К) (20 °С); удельное электросопротивление 0,414 мком·м(20 °С); термический коэффициент электросопротивления в интервале 20-600 °С составляет 3,01·10 -3 . Хром антиферромагнитен, удельная магнитная восприимчивость 3,6·10 -6 . Твердость высокочистого Хрома по Бринеллю 7-9 Мн/м 2 (70-90 кгс/см 2).

Химические свойства Хрома. Внешняя электронная конфигурация атома Хрома 3d 5 4s 1 . В соединениях обычно проявляет степени окисления +2, +3, +6, среди них наиболее устойчивы Сr 3+ ; известны отдельные соединения, в которых Хром имеет степени окисления +1, +4, +5. Хром химически малоактивен. При обычных условиях устойчив к кислороду и влаге, но соединяется с фтором, образуя CrF 3 . Выше 600 °С взаимодействует с парами воды, давая Сr 2 О 3 ; азотом - Cr 2 N, CrN; углеродом - Сr 23 С 6 , Сr 7 С 3 , Сr 3 С 2 ; серой - Cr 2 S 3 . При сплавлении с бором образует борид СrВ, с кремнием - силициды Cr 3 Si, Cr 2 Si 3 , CrSi 2 . Со многими металлами Хром дает сплавы. Взаимодействие с кислородом протекает сначала довольно активно, затем резко замедляется благодаря образованию на поверхности металла оксидной пленки. При 1200 °С пленка разрушается и окисление снова идет быстро. Хром загорается в кислороде при 2000 °С с образованием темно-зеленого оксида Хрома (III) Сr 2 О 3 . Помимо оксида (III), известны других соединения с кислородом, например CrO, СrО 3 , получаемые косвенным путем. Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата Хрома и выделением водорода; царская водка и азотная кислота пассивируют Хром.

С увеличением степени окисления возрастают кислотные и окислительные свойства Хром Производные Сr 2+ - очень сильные восстановители. Ион Сr 2+ образуется на первой стадии растворения Хрома в кислотах или при восстановлении Сr 3+ в кислом растворе цинком. Гидрат закиси Сr(ОН) 2 при обезвоживании переходит в Сr 2 О 3 . Соединения Сr 3+ устойчивы на воздухе. Могут быть и восстановителями и окислителями. Сr 3+ можно восстановить в кислом растворе цинком до Сr 2+ или окислить в щелочном растворе до СrО 4 2- бромом и других окислителями. Гидрооксид Сr(ОН) 3 (вернее Сr 2 О 3 ·nН 2 О) - амфотерное соединение, образующее соли с катионом Сr 3+ или соли хромистой кислоты НСrО 2 - хромиты (например, КСrО 2 , NaCrO 2). Соединения Сr 6+ : хромовый ангидрид СrО 3 , хромовые кислоты и их соли, среди которых наиболее важны хроматы и дихроматы - сильные окислители. Хром образует большое число солей с кислородсодержащими кислотами. Известны комплексные соединения Хрома; особенно многочисленны комплексные соединения Сr 3+ , в которых Хром имеет координационное число 6. Существует значительное число переоксидных соединений Хрома

Получение Хрома. В зависимости от цели использования получают Хром различной степени чистоты. Сырьем обычно служат хромшпинелиды, которые подвергают обогащению, а затем сплавляют с поташом (или содой) в присутствии кислорода воздуха. Применительно к основному компоненту руд, содержащему Сr 3 +, реакция следующая:

2FeCr 2 О 4 + 4K 2 CO 3 + 3,5О 2 = 4К 2 СrО 4 + Fе 2 О 3 + 4СО 2 .

Образующийся хромат калия К 2 СrО 4 выщелачивают горячей водой и действием H 2 SO 4 превращают его в дихромат К 2 Сr 2 О 7 . Далее действием концентрированного раствора H 2 SО 4 на К 2 Сr 2 О 7 получают хромовый ангидрид С 2 О 3 или нагреванием К 2 Сr 2 О 7 с серой - оксид Хрома (III) С 2 О 3 .

Наиболее чистый Хром в промышленного условиях получают либо электролизом концентрированных водных растворов СrО 3 или Сr 2 О 3 , содержащих H 2 SO 4 , либо электролизом сульфата Хрома Cr 2 (SO 4) 3 . При этом Хром выделяется на катоде из алюминия или нержавеющей стали. Полная очистка от примесей достигается обработкой Хрома особо чистым водородом при высокой температуре (1500-1700 °С).

Возможно также получение чистого Хрома электролизом расплавов CrF 3 или СrCl 3 в смеси с фторидами натрия, калия, кальция при температуре около 900 °С в атмосфере аргона.

В небольших количествах Хром получают восстановлением Сr 2 О 3 алюминием или кремнием. При алюминотермическом способе предварительно подогретую шихту из Сr 2 О 3 и порошка или стружек Аl с добавками окислителя загружают в тигель, где реакцию возбуждают поджиганием смеси Na 2 O 2 и Аl до тех пор, пока тигель заполнится Хромом и шлаком. Силикотермически Хром выплавляют в дуговых печах. Чистота получаемого Хрома определяется содержанием примесей в Сr 2 О 3 и в Аl или Si, используемых для восстановления.

В промышленности в больших масштабах производятся сплавы Хрома - феррохром и силикохром.

Применение Хрома. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.

Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr 3+ - примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO 4 , ZnCrO 4 , SrCrO 4 - как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.

Соединения Хром (особенно производные Cr 6 +) токсичны.

Хром в организме. Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. Среднее содержание Хрома в растениях - 0,0005% (92-95% Хрома накапливается в корнях), у животных - от десятитысячных до десятимиллионных долей процента. В планктонных организмах коэффициент накопления Хрома огромен - 10 000-26 000. Высшие растения не переносят концентрации Хрома выше 3-10 -4 моль/л. В листьях он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. У животных Хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Основной источник поступления Хрома в организм животных и человека - пища. Снижение содержания Хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

Отравления Хромом, и его соединениями встречаются при их производстве; в машиностроении (гальванические покрытия); металлургии (легирующие добавки, сплавы, огнеупоры); при изготовлении кож, красок и т. д. Токсичность соединений Хрома зависит от их химические структуры: дихроматы токсичнее хроматов, соединения Cr (VI) токсичнее соединений Cr(II), Cr(III). Начальные формы заболевания проявляются ощущением сухости и болью в носу, першением в горле, затруднением дыхания, кашлем и т. д.; они могут проходить при прекращении контакта с Хромом. При длительном контакте с соединениями Хрома развиваются признаки хронические отравления: головная боль, слабость, диспепсия, потеря в весе и других. Нарушаются функции желудка, печени и поджелудочной железы. Возможны бронхит, бронхиальная астма, диффузный пневмосклероз. При воздействии Хрома на кожу могут развиться дерматит, экзема. По некоторым данным, соединения Хрома, преимущественно Cr(III), обладают канцерогенным действием.

Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome ) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей .

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO 4.

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO 4 . В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства .

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см 3 , его температура плавления составляет +1875 0 С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr 2 O 3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr

В данном процессе обычно используют два оксида – Cr 2 O 3 и CrO 3

Химические свойства.

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700 о C. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2
2Cr + 6HCl = 2CrCl 3 + 3H 2

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

Хром при высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:

Cr + 2HF = CrF 2 + H 2
2Cr + N2 = 2CrN
2Cr + 3S = Cr 2 S 3
Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования.

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

24 Cr IS 2 2S 2 2P 6 3S 2 3P 6 3d 5 4S 1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S 2 . Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d 5 . Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6.

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl 2 + H 2 O

На воздухе при нагревании свыше 100 0 С CrO превращается в Cr 2 O 3 .

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например H 2), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II):

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl

Cr(OH) 2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl 2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II):

4Cr(OH) 2 + 2H 2 O + O 2 = 4Cr(OH) 3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr 2 O 3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2

Cr 2 O 3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O

Гидроксид хрома также является амфотерным соединением:

Cr(OH) 3 + HCl = CrCl 3 + 3H 2 O
Cr(OH) 3 + NaOH = NaCrO 2 + 2H 2 O

Безводный CrCl 3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr 2 (SO 4) 3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr 2 (SO 4) 3 *18H 2 O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO 4) 2 *12H 2 O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0 С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K 2 CrO 4 и зеленый Cr 2 O 3 .
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO 2 , а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl 2 и H 2 O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl 3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl 3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра H 2 O 2 . Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать, добавить к нему CH 3 COOH, а затем Pb(NO 3) 2 ?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr 2 (SO 4) 3 , IMH 2 SO 4 и KMnO 4 . Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 2-3 капли раствора H 2 O 2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты H 2 CrO 6:

Cr 2 O 7 2- + 4H 2 O 2 + 2H + = 2H 2 CrO 6 + 3H 2 O

Обратите внимание на на быстрое разложение H 2 CrO 6:

2H 2 CrO 6 + 8H+ = 2Cr 3+ + 3O 2 + 6H 2 O
синий цвет зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора H 2 O 2 и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость H 2 CrO 6 в органической и водных фазах.
  2. При взаимодействии CrO 4 2- и ионами Ba 2+ выпадает желтый осадок хромата бария BaCrO 4 .
  3. Нитрат серебра образует с ионами CrO 4 2- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите 5- 6 капель раствора K 2 Cr 2 O 7 , во вторую – такой же объем раствора K 2 CrO 4 , а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома

  1. Смесь CuSO 4 и K 2 Cr 2 O 7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (NH 4) 2 Cr 2 O 7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al 2 O 3 (4,75г) с добавкой Cr 2 O 3 (0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO 4 * 3NH 3 * 5H 2 O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr 2 O 3 и 2г Na 2 CO 3 и 2,5г KNO 3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr 2 O 7 2- -- Cr 2 O 3 -- CrO 2 - -- CrO 4 2- -- Cr 2 O 7 2-

a) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 Oб) Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
в) 2NaCrO 2 + 3Br 2 + 8NaOH = 6NaBr +2Na 2 CrO 4 + 4H 2 O
г) 2Na 2 CrO 4 + 2HCl = Na 2 Cr 2 O 7 + 2NaCl + H 2 O

2. Cr(OH) 2 -- Cr(OH) 3 -- CrCl 3 -- Cr 2 O 7 2- -- CrO 4 2-

а) 2Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
б) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O
в) 2CrCl 3 + 2KMnO 4 + 3H 2 O = K 2 Cr 2 O 7 + 2Mn(OH) 2 + 6HCl
г) K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O

3. CrO -- Cr(OH) 2 -- Cr(OH) 3 -- Cr(NO 3) 3 -- Cr 2 O 3 -- CrO - 2
Cr 2+

а) CrO + 2HCl = CrCl 2 + H 2 O
б) CrO + H 2 O = Cr(OH) 2
в) Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
г) Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O
д) 4Сr(NO 3) 3 = 2Cr 2 O 3 + 12NO 2 + O 2
е) Cr 2 O 3 + 2 NaOH = 2NaCrO 2 + H 2 O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 1450 0 С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si 4 O 10 (OH) 2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки.

Пабло Пикассо обращался к геологам нашей страны с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr 2 O 3 * (2-3) H 2 O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Поделитесь с друзьями или сохраните для себя:

Загрузка...