Детекторы в масс спектрометрии. Хроматографические методы и их использование в идентификации загрязнителей природных сред

Масс-спектрометрия – это способ изучения веществ, вычислением массы и числа ионов при ионизации вещества.

Навигация:

Оборудование, которым производится масс-спектрометрия, является масс-спектрометр. Он анализирует образец и предоставляет данные в виде графиков (масс-спектров).

Таким путем можно исследовать любой материал, который поддается ионизации.

Широкое применение масс-спектрометрия приобрела в таких сферах, как:

  • медицина и фармацевтика;
  • генная инженерия и биохимия;
  • химическая индустрия;
  • пищевая индустрия;
  • косметические и парфюмерные разработки;
  • лабораторная диагностика для определения веществ в криминалистике, контроле на допинги, экологии;
  • изготовление полимерных и пластиковых материалов;
  • полупроводниковая индустрия;
  • ядерная энергетика;
  • металлургическое производство;
  • нефтеперерабатывающая и нефтехимическая индустрия;
  • биология, геология, гидрология, минералогия и другие отрасли.

Пути исследования масс-спектрометрией в разных сферах различаются в зависимости от того, какие данные необходимо получить в итоге.

Масс-спектрометрией можно получить следующие данные:

  • установить структуру соединения;
  • исследование вещества на компоненты;
  • установить возраст геологической породы по обследованию состава изотопов;
  • хромато-масс-спектральный анализ для экологической сферы;
  • исследовать ионизационные процессы, ионные реакции;
  • измерять потенциал и энергию молекул.

Преимуществом метода масс-спектрометрии является то, что для исследования хватает совсем маленькое количество вещества.

Недостаток же состоит в разрушении материала, которое исследуется, т.е. анализируются продукты превращения.

Примечание. Масс-спектрометрический метод по сути не относится к спектрометрическому методу, так как отсутствует взаимодействие образца с электромагнитным излучением. Но из-за графического вида зависимости силы ионного потока от отношения массы к заряду, который похож на спектр, этот метод и получил свое название.

Очень доступно и подробно масс-спектрометрия освещается в учебных пособиях, вроде Лебедев А.Т. «Масс-спектрометрия в органической химии».

Метод масс-спектрометрии

Метод масс-спектрометрии заключается в последовательном выполнении следующих операций:

  1. Ионизация вещества, а именно лишение молекул хотя бы одного иона. Масса его ниже массы молекулы во много раз, поэтому он никак не повлияет на результат исследования.
  2. Разгон заряженных частиц в вакуумной среде в электрическом поле с последующим перемещением их в магнитное поле.
  3. Анализ перемещения частиц в магнитном поле, а именно их скорость, искривление траектории движения. Больше заряженные частицы быстрее разгоняются и лучше реагируют на магнит. Частицы с большой массой не такие управляемые из-за инерции движения.

Примечание. Вакуум необходим для свободного перемещения заряженных частиц и предотвращая превращения их в назад в незаряженные.

Ионизация образцов может производится несколькими путями и зависит от требуемой цели.

Существуют такие методы ионизации в масс-спектрометрии:

  1. Электронный удар – приспособлен для изотопного и молекулярного анализа неорганических материалов.
  2. Химическая ионизация – для изучения органических материалов.
  3. Электроспрей.
  4. Лазерное излучение.
  5. Бомбардировка пучком ионов.

Последние три метода используются для исследования веществ с крупными молекулами.

Кроме того, способ ионизации разделяется еще на несколько видов по состоянию вещества перед исследованием, а именно газ, жидкость или твердое вещество.

Газовое состояние (фаза) образца проводится такими способами ионизации:

  • электронная (изотопная масс-спектрометрия);
  • химическая;
  • электронный захват;
  • ионизация в электрическом поле.

Жидкое состояние (фаза) образца проводится такими способами ионизации в масс-спектрометрии:

  • термоспрей;
  • на открытом воздухе;
  • электроспрей;
  • химическая на открытом воздухе;
  • фотоионизация.

Твердое состояние (фаза) образца проводится такими способами ионизации:

  • прямая лазерная десорбция;
  • матрично-активированная лазерная десорбция/ионизация (МАЛДИ масс-спектрометрия);
  • масс-спектрометрия вторичных ионов (ионная масс-спектрометрия);
  • бомбардировка быстрыми атомами;
  • десорбция в электрическом поле;
  • плазменная десорбция;
  • ионизация в индуктивно-связанной плазме (масс-спектрометрия с индуктивно-связанной плазмой);
  • термоионизация (поверхностная ионизация);
  • ионизация в тлеющем разряде (искровая ионизация);
  • ионизация в процессе лазерной абляции.

Последние четыре варианта являются достаточно жесткими, но без них невозможно получить ионы в пробах с очень прочными связями.

Масс-спектрометрический гелиевый течеискатель

Очень широко практикуется метод масс-спектрометрии в гелиевых течеискателях, например, ПТИ-10, ТИ1-50 и другие.

Изучаемые системы или емкости заполняются гелием и потом с помощью масс-спектрометрического метода разыскиваются места, где через щели просачивается гелий.

Чувствительность масс-спектрометрического метода позволяет находить даже очень незначительные течи инертного газа в очень маленьком количестве, поэтому гелиевый масс-спектрометрический течеискатель является одним из самых точных и используемых приборов в промышленности.

Метод хромато-масс-спектрометрии

Метод хромато-масс-спектрометрии – это тандемная масс-спектрометрия хроматографии и масс-спектрометрии, т.е. сочетание этих двух методов.

Хроматография занимается разбиением молекул на заряженные частицы, а масс-спектрометрия анализирует их.

Существует два вида хромато-масс-спектрометрии:

  • газовая;
  • жидкостная.

Определение методом хромато-масс-спектрометрией состава органических веществ, которые чаще всего многокомпонетные, является, пожалуй, единственным доступным методом. Самым лучшим считается совокупность газовой хроматографии и ионного детектора масс-спектрометра.

Именно поэтому хромато-масс-спектрометрия получила большое потребление в медицинской практике для диагностирования и анализа заболеваний и их возбудителей, в том числе определение микробиоценоза разных органов любого сосредоточения методом хромато-масс-спектрометрии или масс-спектрометрия микробных маркеров биологических материалов (крови, моче и прочем). Микробиоценоз методом хромато-масс-спектрометрии предоставляет возможность выявить множество микробов, которые невозможно определить другими методами, даже те, которые находятся в спящем состоянии в защитных капсулах. А, следовательно, люди получают возможность воспользоваться правильным и своевременным лечением, что невозможно переоценить.

Кроме этого, хромато-масс-спектрометрия обширно применяется в фармацевтике для создания новых лекарств, химической промышленности, экологической сфере для оценки проб окружающей среды, генной инженерии, техническом контроле разных областей промышленности, лабораторных обследованиях на присутствие в крови запрещенных препаратов и прочее.

Газовая хроматография

Газовая хроматография масс-спектрометрия предусматривает добавление инертного газа-носителя (зачастую это гелий), который является подвижным элементом. Исследуемое вещество является неподвижным элементом.

Газовая масс-спектрометрия позволяет анализировать газы, жидкости и твердые вещества, у которых молекулярная масса ниже 400. Еще исследуемые вещества должны обладать требуемыми летучими, инертными и термостабильными свойствами.

Схема газового хроматографа предложена на схеме ниже.

Спектрометрический анализ

Спектрометрический анализ протекает в масс-анализаторах и детекторах масс-спектрометров.

Масс-анализаторы бывают непрерывные и импульсные. Разнятся они тем, что поступление в них ионов проводиться постоянно (непрерывно) или порциями, соответственно.

К непрерывным анализаторам принадлежат магнитный и квадрупольный, к импульсным – ионная ловушка, времяпролетный масс-анализатор и анализатор ионно-циклотронного резонанса с Фурье-преобразованием.

Основная задача анализатора - это перераспределение ионов с разными параметрами движения.

После этого ионы попадают в детектор, который регистрирует разные спектры ионов.

Чаще всего в качестве детекторов используется диодный вторично-электронный умножитель или фотоумножитель. Первый регистрирует количественные показатели различных ионов пучками электронов, второй регистрирует мерцание от бомбардировки ионами люминофора.

Существуют также другие виды детекторов, это микроканальные множители, системы типа диодных матриц и коллекторы.

Что такое масс-спектрометр

Масс-спектрометром называется вакуумное оборудование, которое способно анализировать вещество по законам перемещения заряженных частиц в магнитном и электрическом поле.

В упрощенном виде описание масс-спектрометра можно представить так: основные компоненты прибора – это ионный источник, масс-анализатор и детектор.

Ионный источник превращает обычные молекулы пробного образца в заряженные частицы и помещает их в электрическое и магнитное поле для ускорения.

Масс-анализатор делит ионы на группы по скорости движения, а именно по времени перемещения на какое-то расстояние.

Детектор регистрирует данные по относительному количеству каждой группы.

Кроме основных компонентов масс-спектрометр оснащается еще вакуумными установками с насосом и вентилятором для выработки вакуума, манометром, системой для установки пробного образца, электронной схемой, индикаторами, стабилизатором и прочим.

В зависимости от ионизации вещества, масс-спектрометры бывают статическими и динамическими.

Также существуют масс-спектрометры с двумя масс-анализаторами, т.е. тандемные спектрометры. Они используются в основном при мягких способах ионизации.

Как отличить молекулы разных соединений? Оказывается, проще всего — взвешивая их на специальных весах, которые называются масс-спектрометр

Марина Чадеева

Спортивный мир ждет очередное потрясение: в глубокой тайне был разработан новый стероид, который делает из спортсмена сверхчеловека



Принцип работы масс-спектрометров Электростатический и магнитный сектора в устройстве с двойной фокусировкой. В щели фокусируются ионы, вылетающие из источника не только в разных направлениях, но и с разными энергиями


Квадрупольный анализатор. Ионы с выбранным отношением массы (m) к заряду (z) проходят вдоль оси анализатора и попадают в детектор, а ионы с другими отношениям m/z сталкиваются со стержнями или вылетают за пределы рабочего пространства

Возможно, в скором времени знакомые всем нам пропускные устройства для проверки пассажиров станут гораздо «умнее». Представьте, проходит человек около детектора, легкое дуновение ветерка трогает его одежды — и вскоре у службы безопасности уже есть информация о том, имел ли этот пассажир дело с какими-нибудь опасными веществами. Пробные образцы таких детекторов настолько чувствительны, что способны обнаружить следы химического соединения, даже если от него осталось всего несколько молекул. А сделаны они на основе масс-спектрометра — прибора, который умеет различать молекулы по массе и определять процентное содержание каждого сорта молекул в образце вещества.

По сути, масс-спектрометр — это прецизионные электромагнитные весы, на которых можно «взвешивать» атомы с точностью до 10−31 грамма. Именно благодаря этому изобретению в двадцатых годах прошлого века были изучены изотопы всех известных химических элементов, а когда любопытство ученых было в достаточной мере удовлетворено, наступила очередь прикладных задач. В сороковые годы в лабораториях Окриджа масс-спектрометр применялся при разделении изотопов урана для первой атомной бомбы, и тогда же появились первые гражданские потребители этих приборов — нефтяные концерны. Они использовали масс-спектрометры для количественного анализа смеси органических газов.

Принцип действия

Современные масс-спектрометры несомненно точнее и совершеннее своих предшественников столетней давности, но основной принцип их работы остается неизменным, а конструкция, как и сто лет назад, включает три основных элемента: ионизатор, анализатор и детектор.

Сначала молекулы надо ионизовать, то есть лишить их хотя бы одного электрона. Поскольку электрон в тысячи (а иногда и в десятки тысяч) раз легче молекулы, ионизация практически не влияет на ее массу. После ионизатора частицы попадают в анализатор, который представляет собой вакуумную камеру с электрическими и магнитными полями. Ионы разгоняют электрическим полем, а затем направляют в магнитное поле, где траектория заряженной частицы искривляется. Все частицы движутся в одном и том же поле, а между собой они различаются электрическим зарядом и массой. Чем больше заряд, тем сильнее можно разогнать ион и тем легче повернуть его магнитом, но чем больше его масса, тем труднее это сделать из-за инерции. Какую энергию приобретет частица, какова будет ее скорость и степень искривления траектории, зависит от величины поля и отношения массы частицы к ее заряду.

Если предположить, что при ионизации с каждой молекулы удалось сорвать только по одному электрону (как чаще всего и происходит), все ионы будут однозарядными и характер их движения будет зависеть только от массы. Чем тяжелее ион, тем труднее его «повернуть» и тем меньше будет кривизна его траектории. Получится, что частицы с разными массами будут в буквальном смысле разлетаться в разные стороны.

На последнем этапе нужно зарегистрировать эти ионы каким-нибудь детектором заряженных частиц, например фотопластинкой или вторично-электронным умножителем. Поставив в подходящем месте ряд детекторов, мы увидим, что частицы с разной массой (но с одинаковым зарядом) попадут в разные детекторы. Теперь построим график: по горизонтали отложим координату детектора, зарегистрировавшего ион, а по вертикали — количество этих ионов. У нас получится масс-спектр — картинка, похожая на спектр излучения: чем больше разница в массах, тем дальше точки попадания отстоят друг от друга, а чем больше в данное место прилетает частиц, тем больше сигнал и выше соответствующий пик.

На самом деле в современных системах используется только один детектор. На него при конкретном значении поля фокусируются ионы определенной массы. Постепенно меняя величину поля, можно направлять в детектор по очереди разные ионы и регистрировать их. Компьютер вычисляет по значениям поля соответствующие массы, сравнивает с базой данных и строит масс-спектр.

Первые опыты

В ряду основателей масс-спектрометрии первым стоит имя открывателя электрона сэра Джозефа Джона Томсона. В то время, в конце позапрошлого века, многие физики активно изучали электрические разряды в газах. В первую очередь их интересовали возникавшие при этом заряженные частицы. Поставив ряд остроумных опытов, Томсон смог определить параметры отрицательно заряженных частиц (которые мы теперь знаем как электроны), а потом занялся положительно заряженными — ионами. Для изучения ионов ему пришлось собрать отдельную установку. Томсон разместил катод с отверстиями в середине стеклянной трубки, за ним — магнит, а еще дальше за трубкой — фотопластинку. Положительно заряженные ионы разных химических соединений, находившихся в трубке, летели к катоду, через отверстия попадали в магнитное поле и в итоге оставляли следы в разных местах фотопластинки. По координатам частиц на фотопластинке и известным значениям поля Томсон вычислил отношение масс ионов к их зарядам и отметил на фотографиях траектории ионов водорода, атомарного и молекулярного кислорода, углекислого и угарного газа, ртути и неона. Так началась эпоха масс-спектрометрии.

Лишний вес

После Первой мировой войны исследования Томсона продолжил его ассистент Фрэнсис Уильям Астон. Усовершенствованный прибор, который Астон назвал масс-спектрографом, позволял не только увидеть линии, соответствующие частицам с разными массами, но и обладал достаточной точностью для определения количественных соотношений между ними. Больше всего Астона и его сотрудников поразило то, что атомные веса всех легких элементов, выраженные в относительных единицах, с удивительной точностью соответствовали целым числам. Приняв массу атома кислорода за 16 единиц, для углерода получили значение 12, для азота — 14 и т. д. Для тяжелых элементов, с атомным весом более 30, это «правило целого числа» начинало слегка нарушаться, но самым странным оказалось значение атомной массы водорода — не 1, а 1,008. Причем точность масс-спектрографа была такова, что эту, на первый взгляд незначительную, разницу нельзя было списать на ошибку измерений. Первым, кто понял важность, а главное — смысл этой аномалии, был сам Астон. По его мнению, этот экспериментальный факт подтверждал не что иное, как взаимный переход массы и энергии, предсказанный теорией относительности: когда несколько протонов (ядер водорода) соединяются, образуя другой элемент, часть их массы переходит в энергию, и в итоге масса, например, гелия оказывается несколько меньше суммы масс составляющих его частиц.

«Результаты, полученные с помощью масс-спектрографа, устранили всякие сомнения в этом вопросе… — сказал Астон в своей Нобелевской лекции в 1922 году. — Мы можем быть совершенно уверены в том, что при превращении водорода в гелий определенная часть массы должна исчезнуть… Возможно, будущие исследователи откроют какой-нибудь способ освобождения этой энергии, который позволит ее использовать. Тогда человечество получит в свое распоряжение такие возможности, которые превосходят любую фантазию». Астон подкрепил свои слова цифрами. По его расчетам, сделанным на основе масс-спектрометрических измерений и теории относительности, если весь водород, содержащийся всего в 9 граммах воды, превратить в гелий, выделится энергия в размере 200 000 кВт/час, чего по современным меркам достаточно для освещения обычной городской квартиры в течение нескольких лет. Теперь-то мы точно знаем, что именно такие ядерные реакции — источник солнечной энергии, но управлять ею люди умеют только в режиме термоядерной бомбы, иначе говоря, пока еще вовсе не умеют.

Так эксперименты с газоразрядными лампами позволили физикам сделать далеко идущие выводы о фундаментальных свойствах материи, а заодно создать замечательный прибор — масс-спектрометр.

Квадрупольные масс-спектрометры

С появлением новых способов детектирования вместе с фотопластинками постепенно ушло в прошлое и придуманное Астоном название — масс-спектрограф. На смену пришли современные масс-спектрометры, которые в большинстве своем сохранили в качестве основного элемента магнитное поле. Масс-спектрометры с магнитом остаются непревзойденными по чувствительности, и, несмотря на огромные размеры и высокие энергозатраты, им нет альтернативы там, где нужна высокая точность. Поиски более компактного и экономного решения привели в середине 50-х годов профессора Вольфганга Пола и его сотрудников из университета Бонна к созданию масс-спектрометра без магнитного поля — квадрупольного анализатора с переменным электрическим полем. Такой анализатор состоит из четырех стержней, на пары противоположных стержней подается радиочастотное переменное напряжение и дополнительно — постоянное напряжение между парами. В зависимости от величин напряжения и частоты к детектору между стержнями движутся только ионы с определенным отношением массы к заряду, а остальные вылетают наружу. Конструкция оказалась действительно компактной и очень практичной.

Миниатюрный квадрупольный масс-спектрометр был изготовлен специально для обеспечения безопасности астронавтов международной космической станции, в том числе и при работе в открытом космосе. Это устройство размером с коробку для обуви и весом 2,3 кг может непрерывно контролировать утечки аммиака, азота, ракетного топлива, кислорода, воды и разных других веществ.

Кто быстрее

Еще до квадруполя, в 1946 году, сотрудник университета Пенсильвании Уильям Стефенс придумал другой способ сортировки молекул по массе без магнита — времяпролетный масс-спектрометр. В нем остался только небольшой участок электрического поля для разгона ионов,

а основную часть занимало бесполевое пространство. Принцип действия этого прибора был замечательно прост: тяжелые ионы труднее разогнать из-за их инерции, а следовательно, они, имея меньшую скорость после разгона и двигаясь медленнее в дрейфовом пространстве без поля, прилетают к детектору позже легких. Если считать, что все ионы заряжены одинаково, время в пути будет прямо пропорционально квадратному корню из массы. Сначала в детектор прилетят легкие ионы, затем те, что потяжелее, и в последнюю очередь — самые тяжелые. Такой прибор оказался проще (хотя и имел меньшую точность, чем магнитный) и дешевле, а к тому же обладал огромным быстродействием, поскольку весь спектр ионов в широком диапазоне масс регистрировался за один проход и не нужно было тратить время на постепенное изменение поля.

С помощью времяпролетного масс-спектрометра в 1985 году был открыт целый класс новых веществ — фуллерены. К тому времени уже было известно, что в парах углерода присутствуют кластеры — молекулы, состоящие из разного числа атомов углерода (до 24). Благодаря масс-спектрометрам удалось различить эти кластеры и определить их массы. Когда от паров перешли к изучению углеродной плазмы, направляемой в поток гелия, на масс-спектрах стали видны молекулы из большего числа атомов, в том числе С60 и С70. А при определенных режимах создания плазмы пик, соответствующий С60, стал в несколько раз выше всех остальных, что свидетельствовало об устойчивости этого соединения. Так были обнаружены необычные молекулы в форме футбольного мяча, состоящие из 60 атомов углерода, за что первооткрывателям фуллеренов в 1996 году была присуждена Нобелевская премия по химии.

Деликатный подход

Поистине безграничная сфера применения масс-спектрометрии — анализ сложных органических веществ, без которого немыслима современная медицина и биология. Однако это стало возможным только после появления новых методов ионизации. Ведь для масс-спектрометрического анализа нужно получить свободные ионы, а значит, испарить вещество. Большинство биологических молекул не выносит такого насилия над собой и распадается под действием высоких температур, сопровождающих процесс испарения. Поэтому для них изобрели более деликатные способы превращения в свободные ионы. Один из них — ионизация электрораспылением. Раствор вещества под давлением поступает в металлический капилляр, на который подано высокое напряжение (3−4 кВ). Из узкого носика капилляра выдавливаются капли, которые, будучи сильно заряженными, распадаются, теряя по пути молекулы растворителя, а напряжение подбирается таким образом, что в масс-спектрометр попадают в основном ионы биомолекул. Второй метод, под названием «матрично-активированная лазерная десорбция/ионизация», еще более хитрый. Изучаемый образец наносится на матрицу из специально подобранного вещества, способного эффективно поглощать лазерное излучение. При стремительном нагреве этого «бутерброда» лазерным импульсом молекулы образца ионизуются, не успевая распасться на части.

Благодаря новым способам ионизации масс-спектрометрия биомолекул с использованием сравнительно простых и дешевых квадрупольных и времяпролетных масс-спектрометров стала широко применяться на практике — при разработке новых лекарственных препаратов, определении следов психотропных и наркотических веществ, исследованиях ДНК, белков и прочих субстанций. Существуют целые банки данных, с помощью которых можно идентифицировать органическое вещество по его составляющим, обнаруженным в масс-спектрометре.

Очень плодотворным оказалось сочетание масс-спектрометрии и другого физико-химического метода, предназначенного для разделения и анализа смесей — хроматографии. Сначала с помощью хроматографа выделяют компоненты смеси и затем по отдельности направляют их на вход масс-спектрометра. Подобными устройствами оснащены лаборатории допинг-контроля. С помощью хромато-масс-спектрометров определяют содержание анаболических стероидов, анальгетиков, диуретиков, стимуляторов и кортикостероидов. Как бы ни старался спортсмен, для которого медаль дороже собственного здоровья, скрыть употребление анаболиков, ему это не удастся сделать — современный масс-спектрометр способен найти в крови или моче даже миллиардную долю этих запрещенных препаратов. Правда, здесь идет своеобразная борьба: кто-то синтезирует новые средства для допинга, а кто-то пытается их обнаружить, и без такого инструмента, как масс-спектрометр, последними, скорее всего, эта гонка была бы проиграна.

На все случаи жизни

В наше время различные применения масс-спектрометрии вышли далеко за рамки уникальных проектов, а чтобы описать многочисленные конструкции масс-анализаторов и способы ионизации, не хватило бы и целого номера журнала. Портативные хромато-масс-спектрометры есть на вооружении американской армии в Ираке. Они позволяют обнаружить незначительные следы реагентов химического оружия и используются для предварительного анализа окружающей обстановки. Высокоточные приборы для масс-спектрального анализа приобретают таможенные службы — это способ тщательно контролировать состав нефтепродуктов и определять происхождение нефти буквально с точностью до скважины, поскольку изотопный состав уникален для каждого месторождения.

Современный масс-спектрометр может занимать экспериментальный зал или помещаться в небольшой коробке на столе, содержать сверхпроводящий магнит или обходиться вовсе без магнитного поля. Чувствительность этих приборов поражает воображение. Достаточно миллиграмма органического загрязнителя на тонну воды, чтобы масс-спектрометр усомнился в ее качестве, а неорганической примеси — и того меньше. Парадоксально, но высокая чувствительность может сама стать источником проблем: например, при проверке пассажиров ничтожные следы наркотиков, случайно попавшие на денежные купюры, могут быть обнаружены на руках совершенно добропорядочного гражданина! Впрочем, это задача уже другого сорта, и, имея в своем распоряжении такой замечательный инструмент, как масс-спектрометр, человек наверняка сможет ее решить.

Хромато-масс-спектрометрия — аналитический метод, основанный на сочетании возможностей хроматографа и масс-спектрометра, использующийся для количественного и качественного определения отдельных компонентов в сложных смесях. В этой статье будут рассмотрены основные вопросы, касающиеся сути хромато-масс-спектрометрии и ее особенностей:

Прибор, с помощью которого проводится исследование, получил название хромато-масс-спектрометра или ХМС. Проходя через хроматограф, проба разделяется на компоненты, а масс-спектрометр отвечает за их идентификацию и анализ. В зависимости от особенностей исследуемого состава и требований к точности результата, используется одна из двух методик: или высокоточная жидкостная хроматография, или газовая хроматография с масс-спектрометрическим детектированием ГХ-МС.

Исследуемый состав вводится в испаритель хроматографа и моментально переводится в газообразную форму, смешивается с инертным газом-носителем и под давлением подается в колонку. Проходя через хроматографическую колонку, проба разделяется на компоненты, которые подаются в МС и пропускаются через спектрометрическую составляющую устройства.

Для получения спектра, молекулы компонентов пробы ионизируются, специальный датчик считывает изменение ионного тока, на основании чего записывается хроматограмма. Программное обеспечение для обработки хроматограмм позволяет сверить полученные пики с зарегистрированными ранее, и тем самым, проводя их точное качественное и количественное определение. Одновременно с этим делается снимок масс-спектра, дающий представление о строении компонентов, в том числе и не идентифицированных ранее.

Хромато-масс-спектрометрия была разработана в 50-х годах прошлого века, а первый прибор собран и протестирован в 60-х годах.

Эффективность и результативность хромато-масс-спектрометрии задается чувствительностью ХМС, которые постоянно совершенствуются, что позволяет расширять применение системы ГХ-МС.

Высокую точность показывает селективное детектирование. Его суть сводится к записи показаний не по всему объему поступающего ионного тока, а по максимальным для предполагаемых молекул ионам. Это удешевляет метод и позволяет обнаруживать минимальное содержание заданного вещества в любых составах. Поэтому хромато-масс-спектрометрия активно применяется в медицине и фармакологии для поиска конкретных маркеров: например, гормонов или наркотиков в биологических жидкостях.

Высокой чувствительностью обладает хромато-масс-спектрометр с МСД ISQ. Особенности применяемого в нем детектора заключаются в:

  • использовании специальных материалов, обеспечивающих высокий ионный выход в любых рабочих режимах;
  • системе автоматической обработки сигнала посредством возможностей ПО;
  • системе автоматической настройки МС;
  • системе автоматической диагностики МС;
  • сочетании высококачественных электродов с цифровой системой детектирования, позволяющим повысить скорость сканирования;
  • специальной системе подавления шумов от остаточного гелия.

Высокая чувствительность и широкая сфера применения хроматомасс-спектрометра, вполне оправдывает его цену.

На качество результата влияет еще и скорость записи масс-спектра, которая должна быть значительно выше, чем построение хроматографического пика. Если скорость снижается, появляются пиковые наложения и искажения результата анализа.

Этот параметр зависит от установленного масс-анализатора. Оптимальной в настоящее время является квадрупольная система, функционирующая по следующему принципу. Поток проходит через четыре магнита, создающих высокочастотное поле. Попадая в него, частицы с определенным отношением массы и заряда попадают в уловитель, все остальные «отсеиваются».

МС через равные промежутки времени сканирует спектры анализируемых веществ. Затем каждый статистический снимок обрабатывается, и суммарная величина дает представление о совокупности спектров в каждый момент времени. На большинстве современных МС (например, на агрегатах с МСД ISQ, о которых рассказывалось выше), установлен именно этот тип анализаторов.

Оборудование для масс-хроматографии отличается своими параметрами и возможностями. Чтобы подобрать технику, отвечающую потребностям современного пользователя, необходимо учитывать следующие параметры:

  • используемый источник ионизации (электронный удар, химическая ионизация);
  • чувствительность наиболее распространенных МС позволяют достичь 10-9…10-12 г на разных режимах сканирования;
  • возможность сканирования: желательно, чтобы хромато-масс-спектрометр поддерживал селективный поиск по указанным группам частиц (режим SIM) , а также выполнял полное сканирование в заданном диапазоне (режим Full scan).

Большое значение для хромато-масс-спектрометрии приобретает программное обеспечение, поставляющееся в комплекте. Оно определяет возможность построения хроматограммы в режиме реального времени, контроль над стабильностью заданных параметров, автоматическое получение отчетности в удобной для специалиста форме. От ПО зависит, насколько удобен в работе хромато-масс-спектрометр. Дополнительно разработчики предлагают набор библиотек, в которых содержатся спектры для различных промышленных и научных сфер: медицины и фармакологии (гормоны, наркотики, лекарственные препараты), нефтедобывающей отрасли (углеводороды), экологии (пестициды и другие органические загрязнители) и др.

Подбирая хромато-масс-спектрометр, необходимо учитывать все спецификации. Тогда приобретенное устройство будет полностью отвечать потребностям пользователя.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Масс-спектрометрия ОФС.1.2.1.1.0008.15

Вводится впервые

Метод масс-спектрометрии – метод качественного и количественного анализа лекарственных средств, основанный на прямом измерении отношений массы к числу элементарных положительных или отрицательных зарядов ионов (m / z ) в газовой фазе, полученных из испытуемого вещества. Заряд может быть обусловлен присоединением или потерей электрона, протона, катиона или аниона в зависимости от условий ионизации и состава образца. Данное отношение выражается в атомных единицах массы (а.е.м.) или в дальтонах (Да). Ионы, образовавшиеся в ионном источнике прибора, ускоряются и перед попаданием в детектор разделяются с помощью масс-анализатора. Эти процессы происходят в камере, в которой насосная система поддерживает вакуум от 10 -3 до 10 -6 Па. Сигнал, отвечающий иону, представлен несколькими пиками, соответствующими статистическому распределению различных изотопов этого иона. Такой сигнал называется изотопным профилем (для небольших молекул), а отдельный пик, представляющий наиболее распространенный изотоп для атома, — моноизотопным пиком . Результирующий масс-спектр является графиком зависимости количества различных ионов от отношения m/z . При анализе сложных молекул возникает необходимость в двух и более последовательных масс-анализаторах для расшифровки молекулярной структуры. В приборе МС/МС (MS n) (тандемный масс-спектрометр ) масс-анализаторы выстраивают последовательно друг за другом. Из ионов, разделенных в первом масс-анализаторе, отбирают неидентифицированные по своему строению частицы (родительские ионы ) и разбивают их на более мелкие фрагменты столкновением с атомами инертного газа (диссоциация, активированная соударением, — CID) или лазерным излучением. Этот процесс реализуется перед вторым масс-анализатором, при помощи которого анализируют продукты распада (дочерние ионы) .

Масс-спектрометрический анализ дает важную качественную и количественную (с использованием внешнего или внутреннего стандартов) информацию (определение молекулярных масс, структуры фрагментов определяемых молекул) с пределом обнаружения от пикомоль [пмоль (10 -12)] до фемтомоль [фмоль (10 -15)].

Разновидности метода отличаются способом ввода образца в прибор, механизмом образования ионов (типом ионного источника ) и способом разделения ионов по отношению массы к заряду (типом масс-анализатора ).

Технические характеристики масс-спектрометров

Важнейшими техническими характеристиками масс-спектрометров являются скорость сканирования, чувствительность, динамический диапазон, разрешение.

Скорость сканирования

Масс-анализатор пропускает ионы с определенным соотношением массы и заряда (m / z ) в определенное время (кроме многоколлекторных приборов, ионно-циклотронного резонанса, орбитальной ловушки ионов). Для того чтобы проанализировать все ионы по отношению m / z , масс-анализатор должен сканировать все значения, нужные для пропускания к детектору всех интересующих ионов. Скорость развертывания поля называется скоростью сканирования, которая должна быть максимальна (соответственно, время сканирования должно быть как можно меньше), поскольку масс-спектрометр должен зарегистрировать сигнал за время выхода хроматографического пика, которое может составлять несколько секунд. При этом чем больше масс-спектров будет измерено за время выхода хроматографического пика, тем точнее будет описан хроматографический пик, и тем меньше будет вероятность пропустить его максимальное значение.

Самым медленным масс-анализатором является магнит, минимальное время сканирования которого, без особой потери чувствительности, составляет доли секунды. Квадрупольный масс-анализатор может разворачивать спектр за десятые доли секунды, ионная ловушка и линейная ионная ловушка — быстрее, а масс-спектрометр ионно-циклотронного резонанса — медленнее.

Любое сканирование во всех перечисленных типах масс-анализаторов является компромиссным – с увеличением скорости сканирования понижается чувствительность, т.к. меньше времени тратится на запись сигнала на каждое массовое число. Для типичных методов анализа скорости сканирования квадрупольного анализатора или ионной ловушки оказывается достаточно для получения удовлетворительных результатов. В то же время для высокопроизводительного анализа сложных молекулярных систем желательно использовать времяпролетный масс-спектрометр, который способен записывать масс-спектры со скоростью 40000 спектров в секунду.

Разрешение

Разрешение или разрешающая способность масс-спектрометра определяется как возможность масс-анализатора разделять ионы с близкими массами. Очень важно определить массы ионов максимально точно, это позволяет вычислить атомный состав иона или идентифицировать молекулу путем сравнения с базой данных, сократив число возможных кандидатов с тысяч и сотен до единиц или одного единственного. Для магнитных масс-анализаторов, в которых расстояние между пиками масс-спектра не зависит от масс ионов, разрешение представляет собой величину равную M/ΔM. Эта величина, как правило, определяется по 10 %-й высоте пика. Таким образом разрешение 1000 означает, что пики с массами 100,0 а.е.м. и 100,1 а.е.м. отделяются друг от друга, то есть не накладываются вплоть до 10 % высоты.

Для анализаторов, в которых расстояние между пиками меняется в рабочем диапазоне масс (чем больше масса, тем меньше расстояние), таких как квадрупольные анализаторы, ионные ловушки, времяпролетные анализаторы, разрешение (M/ΔM) имеет другой смысл: оно характеризует конкретную массу. Поэтому эти масс-анализаторы характеризуют по ширине пиков – величине, остающейся постоянной во всем диапазоне масс. Ширина пиков измеряется на уровне 50 % их высоты. Для таких приборов ширина пика на полувысоте, равная 1, является неплохим показателем и означает, что такой масс-анализатор способен различить номинальные массы, отличающиеся на атомную единицу массы практически во всем его рабочем диапазоне.

Номинальной массой или массовым числом называют ближайшее к точной массе иона целое число в шкале атомных единиц массы. Например, масса иона водорода Н + равна 1,00787 а.е.м., а его массовое число равно 1. Масс-анализаторы, которые измеряют номинальные массы, называют анализаторами низкого разрешения. Масс-спектрометры с двойной фокусировкой (магнитной и электростатической), ионно-циклотронного резонанса относятся к приборам среднего или высокого разрешения. Типичным разрешением для магнитного спектрометра является величина, превышающая 60000, а работа на уровне разрешения 10000 – 20000 является рутинной. На масс-спектрометре ионно-циклотронного резонанса при анализе образца с массой около 500 а.е.м. можно легко достичь разрешения 500000, что позволяет проводить измерения масс ионов с точностью до четвертого – пятого знака после запятой. Разрешения в несколько тысяч можно добиться при использовании времяпролетных масс-анализаторов; однако, исследуя образцы с большой молекулярной массой, для которых этот тип приборов имеет преимущество перед другими анализаторами, этого разрешения хватает лишь для того, чтобы измерить массу иона с точностью ± десятки а.е.м.

Разрешение масс-анализатора тесно связано с другой важной характеристикой — точностью измерения массы иона. Например, массы молекулярных ионов азота (N 2 +) и углерода монооксида (СО +) составляют 28,00615 и 27,99491 а.е.м. соответственно, оба иона характеризуются массовым числом 28. Эти ионы будут регистрироваться масс-спектрометром порознь при разрешении 2500, а измеренное точное значение массы покажет, какой из этих газов регистрируется. Измерение точной массы доступно на приборах с двойной фокусировкой, на времяпролетных масс-спектрометрах (в низкомолекулярном диапазоне) и на масс-спектрометрах ионно-циклотронного резонанса.

Динамический диапазон

Динамический диапазон — соотношение максимального и минимального детектируемых сигналов. При анализе смеси, содержащей 99,99 % одного соединения или какого-либо элемента и 0,01 % какой-либо примеси, диапазон линейности должен быть четвертого порядка. Масс-спектрометры для анализа органических соединений характеризуются динамическим диапазоном в 5 – 6 порядков, а масс-спектрометры для элементного анализа – 9 – 12 порядков.

Чувствительность

Чувствительность является одной из важнейших характеристик аналитических приборов. Обычно рассматривают связанный с чувствительностью параметр – минимальное определяемое количество вещества или порог обнаружения. Типичная величина порога обнаружения хорошего хроматомасс-спектрометра, используемого для анализа органических соединений, составляет 1∙10 -12 г при вводе 1 микролитра раствора.

Пределы обнаружения неорганических веществ методом ICP/MS (ИСП/МС – масс-спектрометрия с индуктивно-связанной плазмой) составляют 1∙10 -15 (одна доля на квадриллион).

Область применения метода

Установление подлинности лекарственных веществ

Фрагментированный масс-спектр является «отпечатком пальцев» химического строения. Поэтому идентичность масс-спектров однозначно свидетельствует об идентичности молекул, особенно в сочетании с использованием библиотек масс-спектров и хроматографических данных. Масс-спектр высокого разрешения позволяет определять атомный состав молекулы (брутто-формулу) по точной массе.

Количественное определение фармацевтических субстанций и примесей в лекарственных формах

Количественный анализ проводится с использованием стандартных образцов в комбинации с традиционными хроматографическими методиками, причем не требуется точного воспроизведения условий хроматографирования, поскольку пик на хроматограмме идентифицируют по масс-спектру, а интегрирование по площадям пиков избранных ионов или пиков избранных реакций образования конкретного иона, как правило, позволяет количественно определять компонент при неполном разделении пиков на хроматограмме.

Идентификация примесей и установление неизвестной структуры

Масс-спектр позволяет определить молекулярную массу соединения по молекулярному иону, а во многих случаях выяснить, из каких фрагментов состоит молекула, что в сочетании с применением библиотек спектров и данными спектроскопии ЯМР дает возможность однозначно установить химическую структуру.

Количественное определение следовых количеств веществ в фармакокинетике и метаболомике

Избирательность в режимах SIM (мониторинг избранных ионов) и SRM (мониторинг избранных реакций) наряду с очень высокой чувствительностью позволяет использовать комбинацию ВЭЖХ и масс-спектрометрию для определения анализируемых веществ на фоне таких сложных многокомпонентных смесей, как биологические жидкости или растительные экстракты.

Количественное определение более 70 элементов с пределами измерения от 10 до 0,1 ррt ( parts per trillion ) методом масс-спектрометрии с индуктивно связанной плазмой.

Оборудование

Масс-спектрометр состоит из следующих блоков, имеющих несколько разновидностей: системы ввода образца, ионного источника, масс-анализатора, детектора и системы обработки данных.

Система ввода образца

Первой стадией анализа является ввод образца испытуемого вещества в прибор без существенного нарушения вакуума.

Наиболее применимы системы ввода, позволяющие анализировать компоненты смеси, разделяемые при помощи соответствующего прибора, соединенного с масс-спектрометром.

Газовая хроматография/масс-спектрометрия (ГХ/МС) ( GC / MS ).

При использовании подходящих капиллярных колонок возможно непосредственное введение конца колонки в ионный источник прибора без применения сепаратора.

Применяется для анализа химических соединений, имеющих температуру кипения примерно до 400 ºС.

Жидкостная хроматография/масс-спектрометрия (ЖХ/МС) (LC/MS) .

Такая комбинация приборов особенно эффективна при анализе нелетучих полярных соединений либо термолабильных веществ. В связи с трудностью получения ионов в газовой фазе при данном методе требуется применение специальных интерфейсов: электроспрей (ESI), термоспрей (TSI), химическая ионизация при атмосферном давлении (APCI), фотоионизация при атмосферном давлении (APPI) и др., которые представляют собой самостоятельные методы ионизации и будут рассмотрены ниже.

Сверхкритическая флюидная хроматография/масс-спектрометрия

Этот метод ввода образца заключается в том, что подвижная фаза, обычно состоящая из находящегося в сверхкритическом состоянии углерода диоксида, переходит в газообразное состояние после прохождения через нагретую заслонку, находящуюся между колонкой и ионным источником.

Капиллярный электрофорез/масс-спектрометрия ( CE / MS )

Элюент вводится в ионный источник, в некоторых случаях после добавления дополнительного растворителя, при этом скорость потока может достигать нескольких миллилитров в минуту. Ограничениями данного метода являются малые количества вводимого образца и необходимость использовать летучие буферные растворы.

Устройства для прямого ввода образца

Образец вводится в прибор через вакуумный шлюз при помощи клапана, штанги, транспортера или автосамплера, испаряется термически или в процессе десорбции с поверхности непосредственно в ионном источнике. При таком способе ввода необходимо использовать чистые образцы или иметь в виду, что полученный масс-спектр может представлять собой спектр смеси нескольких соединений.

Ионный источник

Электронная ионизация ( EI )

Образец испытуемого вещества, находящийся в газообразном состоянии, ионизируют потоком электронов, энергия которых (обычно 70 эВ) больше энергии ионизации образца. При этом, кроме молекулярного иона М + , образуются осколочные ионы меньшей массы, характерные для данной молекулярной структуры. Главным ограничением данного способа является необходимость испарения образца, что делает невозможным исследование полярных, термолабильных или высокомолекулярных соединений. Электронная ионизация может быть использована в газовой хроматографии в сочетании с масс-спектрометрией и лишь в отдельных случаях – в жидкостной хроматографии.

Химическая ионизация ( CI )

При этом способе ионизации используется газ-реагент (метан, изобутан, аммиак, азота монооксид, азота диоксид или кислород). В спектре присутствуют ионы типа (М+Н) + , (М–Н) — , а также ионные комплексы, образованные аналитом с используемым газом-реагентом. Фрагментация при химической ионизации проявляется в меньшей степени, чем при ионизации электронным ударом.

Для термолабильных веществ используют разновидность данного метода ионизации, при которой образец, нанесенный на проволоку, очень быстро испаряется вследствие эффекта Джоуля – Томсона (десорбционная химическая ионизация).

Бомбардировка быстрыми атомами ( FAB ) или ионизация бомбардировкой быстрыми ионами (вторично-ионная масс-спектрометрия – SIMS).

Образец, растворенный в вязкой матрице (глицерин или м -нитробензиловый спирт), наносят на металлическую поверхность, ионизируют потоком нейтральных атомов (аргон или ксенон) или обладающими большой кинетической энергией ионами цезия. Наблюдаются ионы (М+Н) + и (М–Н) — типов или ионные комплексы, образованные средой (матрицей) и образцом. Данный тип ионизации хорошо подходит для полярных, термолабильных соединений, позволяя получать спектры молекул с массой до 10000 Да. Важно, чтобы образец был равномерно распределен в матрице, в противном случае качество спектра сильно ухудшается, а попытки количественного анализа смесей приводят к непредсказуемым результатам. Известен проточный вариант FAB, который может быть использован для жидкостной хроматографии, однако скорость потока подвижной фазы должна быть очень низкой (менее 10 мкл/мин).

Полевая десорбция и полевая ионизация

Образец испаряют около вольфрамового проволочного эмиттера, покрытого микроиглами (полевая ионизация) или помещают на эту проволоку (полевая десорбция).

Электрическое поле (напряжение около 10 кВ), образуемое эмиттером, ионизирует образец. Энергия, переносимая при данных способах ионизации, составляет всего доли эВ, т.е. избыточная энергия молекулярного иона значительно ниже, чем при других способах ионизации. Кроме того, другие электроны ионизирующейся молекулы не возбуждаются, и М+ оказывается в основном (невозбужденном) электронном состоянии, и спектр зачастую представляет собой единственный пик, принадлежащий молекулярному иону.

Матричная лазерная десорбционная ионизация (MALDI)

Образец, смешанный с соответствующей средой (матрицей) и помещенный на металлическую подложку, ионизируют короткими лазерными импульсами с длиной волны от УФ- до ИК-диапазона (продолжительность импульсов может составлять от пикосекунды до нескольких наносекунд). В качестве матрицы обычно используются УФ-поглощающие органические соединения (2,5-дигидроксибензойная, синаповая кислоты, 2,6-дигидроксиацетофенон и др.). Данный способ ионизации применяется, главным образом, при анализе соединений с очень большой молекулярной массой (более 100000 Да).

Индуктивно связанная плазма ( ICP )

Образец, растворенный в сильной минеральной кислоте (азотная кислота, хлористоводородная кислота, плавиковая кислота, царская водка и т.д.), подается в зону горения аргоновой плазмы, где при температуре в несколько тысяч градусов происходит распад образца на атомы с ионизацией. Метод применяется для определения более 70 элементов. Ввиду наличия молекулярных интерференций оптимально использовать приборы высокого разрешения или комбинированные масс-анализаторы с камерой соударений. Изотопные интерференции, как правило, могут быть разрешены математическими методами.

Электроспрей (электрораспыление) ( ESI )

Образец, находящийся в растворе, вводится в источник через капилляр, на конце которого имеется потенциал порядка 5 кВ. На выходе из капилляра образуется аэрозоль из заряженных капель с высоким поверхностным зарядом. Испарение молекул растворителя из образующихся микрокапель приводит к образованию в газовой фазе однозарядных (М+Н) + , (М–Н) — или многозарядных ионов (М+nН) + n , (М–nН) — n . Скорость потока подвижной фазы при данном виде ионизации может меняться от нескольких нл/мин до 1 – 2 мл/мин. Такой способ ионизации применяют для полярных соединений. Использование электроспрея особенно эффективно для установления структуры полипептидов, белков и нуклеиновых кислот с молекулярными массами до 1000000 Да и выше. Очень хорошо электроспрей сочетается с жидкостной хроматографией и капиллярным электрофорезом.

Химическая ионизация при атмосферном давлении ( APCI )

Ионизацию образца проводят при атмосферном давлении в зоне коронного разряда, помещенной на пути подвижной фазы, которая распыляется как вследствие тепловых эффектов, так и благодаря использованию потока азота. Образуются однозарядные ионы (М+Н) + или (М–Н) — . Метод хорошо зарекомендовал себя для анализа сравнительно небольших полярных и неполярных молекул с массой менее 1200 Да. Возможность использования высоких скоростей потока подвижной фазы (до 2 мл/мин) делает этот способ ионизации идеальным для сочетания с жидкостной хроматографией.

Фотоионизация при атмосферном давлении ( APPI )

В ионном источнике APPI используют криптоновую лампу, которая излучает фотоны с энергией 10,0 и 10,6 эВ. Эти фотонные энергии достаточны для ионизации большинства анализируемых соединений, в то время как для ионизации типичных растворителей (вода, метанол, ацетонитрил и т.д.) для обращенно-фазовой жидкостной хроматографии с масс-спектрометрическим детектированием необходимо излучение с большей энергией. Использование низкоэнергетичных фотонов в качестве источника ионизации приводит к получению масс-спектров, свободных от «химического шума», а также гарантирует минимальную фрагментацию ионов, позволяя идентифицировать протонированные ионы или радикальные катионы.

Кроме перечисленных разновидностей ионных источников существует целый ряд менее распространенных способов ионизации, таких как термоспрей, плазменная десорбция, лазерная абляция и др.

Масс-спектрометрия DART

Масс-спектрометрия DART (Direct Analysis in Real Time) – быстрый метод получения спектров низкомолекулярных соединений в режиме on-line непосредственно во время анализа, практически не требующий пробоподготовки. Метод позволяет проводить сверхбыструю идентификацию компонентов любых твердых или жидких объектов. Процедура анализа сводится к тому, что объект вносят пинцетом (в случае твердых образцов) или палочкой (в случае жидких объектов) в ионный источник DART, где происходит испарение вещества и его ионизация с последующей регистрацией ионов масс-спектрометром. При этом образуются очень простые спектры, обычно содержащие протонированные молекулярные ионы низкомолекулярных компонентов пробы. Метод масс-спектрометрии DART применим для отслеживания полноты протекания реакций органического синтеза новых лекарственных веществ, прямого анализа компонентов смесей, разделенных на пластинке ТСХ, с ее поверхности, обнаружение фальсификатов при анализе фармацевтических субстанций и лекарственных препаратов.

Масс-анализатор

Двойная фокусировка

Принцип действия всех масс-анализаторов основан на физических законах движения заряженных частиц, согласно которым траектория заряженных частиц в магнитном поле искривляется, а радиус кривизны зависит от массы частиц. Именно в регистрирующем устройстве ионы распределяются по массам. Для увеличения разрешения на пути ионов устанавливают дополнительно электростатический анализатор. Магнитные масс-спектрометры имеют высокое разрешение, что позволяет использовать их при исследовании органических соединений с высоким разрешением, при анализе изотопных соотношений, элементном анализе на предельной чувствительности.

Квадрупольный анализатор

Устройство анализатора указанного типа основано на принципе квадруполя, который представляет собой 4 стержня, на которые попарно в противоположной полярности подается определенная комбинация постоянного и радиочастотного переменного электрического напряжения. Ионы, перемещающиеся параллельно осям этих стержней, попадают в гиперболическое поле. Возможность пропускания ионов зависит от соотношения m/z и напряжения радиочастотного поля. Изменяя напряжение поля сканируют все значения m/z в рабочем диапазоне прибора (обычно от 1 до 2000). Некоторые приборы сканируют до 4000 а.е.м.

Квадрупольные масс-спектрометры не требуют использования высоких напряжений порядка тысячи вольт, в отличие от магнитных масс-спектрометров. Это позволяет упростить конструкцию, поскольку для создания вакуума в приборе требуются меньшие размеры вакуумной камеры.

Времяпролетный анализатор (Time o f Flight, TOF)

В таких анализаторах ионы распределяются по массе в бесполевом пространстве, а не за счет закономерностей движения заряженных частиц в поле (магнитном или электростатическом). Ионы из источника разгоняются электрическим полем, приобретая достаточно большую кинетическую энергию, и попадают в бесполевое пространство. На входе в это пространство все ионы имеют одинаковую кинетическую энергию и, в соответствии с формулой E = mv 2 /2, будут двигаться с разными скоростями. В зависимости от массы ионы в разное время достигнут детектора. Регистрация ионов и измерение времени при попадании в детектор позволяет рассчитать их массу.

На основе времяпролетного масс-анализатора сконструированы очень быстрые (и чувствительные) масс-спектрометры.

Времяпролетный масс-анализатор, в отличие квадрупольного анализатора, позволяет регистрировать широкий диапазон масс и измерять массы очень больших молекул, а наиболее подходящим способом ионизации оказался описанный выше метод MALDI (ионизация лазерной десорбцией при содействии матрицы).

Времяпролетные масс-анализаторы используют, в основном, благодаря их простоте, быстродействию и относительно невысокой стоимости.

Квадрупольная ионная ловушка

Развитие квадрупольных анализаторов привело к созданию «ионной ловушки».

В квадрупольной ионной ловушке ионы фиксируются внутри квадруполя за счет запирающих потенциалов на входном и выходном концах ловушки. Затем при наложении изменяемой резонансной радиочастоты ионы выводятся из ловушки в соответствии с величиной m/z и регистрируются электронным умножителем. Такой механизм позволяет значительно увеличить популяцию захваченных ловушкой ионов, что ведет к расширению динамического диапазона и к улучшению чувствительности.

Ионная ловушка позволяет удерживать ионы, которые необходимы для установления строения, не акцентируясь на остальных фрагментах молекулы, при этом процесс фрагментации можно повторять многократно, до 10 – 15 раз (общепринятое обозначение MS n).

Ионно-циклотронный резонанс

Ионы, подвергнутые действию сильного магнитного поля, движутся по круговым траекториям с частотами, которые могут быть непосредственно связаны с величинами m/z для этих ионов посредством Фурье-преобразования. Анализаторы такого типа обладают очень высокой разрешающей способностью (до 1000000 и выше), а также позволяют получать МС n спектры.

Недостатком масс-анализаторов на основе ионно-циклотронного резонанса является необходимость использования очень низкого давления (порядка 10 -7 Па) и применение сверхпроводящих магнитов, работающих при температуре жидкого гелия 4,2 К.

Орбитальная ловушка ионов

В орбитальной ловушке ионов (Orbitrap) не используют магнитные поля (масс-спектрометр с двойной фокусировкой или ионно-циклотронного резонанса) или радиочастоты (квадрупольные ионные ловушки). Принцип работы масс-анализаторов этого типа основан на электростатической аксиально-гармонической орбитальной ловушке ионов, которая использует симметричное статическое электрическое поле между внешним и внутренним электродами специальной формы.

По аналогии с масс-анализаторами на основе ионно-циклотронного резонанса в спектрометре с орбитальной ионной ловушкой ион детектируют по наведенному значению тока на внешних электродах; частоты, соответствующие различным m/z , выделяют с помощью алгоритма Фурье-преобразования, а затем конвертируют в масс-спектр.

Орбитальная ловушка характеризуется также большей емкостью ионов. Большая емкость пространственного заряда по сравнению с ионно-циклотронной и квадрупольной ловушками позволяет достичь большей точности измерения массы (разрешение порядка 100000 на полувысоте пика), более широкого динамического диапазона и диапазона отношений величин m/z .

Обнаружение сигнала и обработка данных

Ионы, разделенные анализатором, преобразуются в электрические сигналы детектирующими системами, в частности, электронным умножителем, фотоумножителем или цилиндром Фарадея. Контроль различных физических параметров, требуемых для согласованной работы всех систем прибора, обработка данных, включая калибровку, визуализацию спектров, автоматические количественные расчеты, архивирование данных, создание и использование библиотек масс-спектров, осуществляются компьютером с соответствующим программным обеспечением.

Регистрация спектров

Различают три основных способа регистрации спектров: по полному ионному току (TIC); мониторинг избранного иона (SIM) или нескольких ионов (MIM); селективная регистрация избранных реакций распада иона (SRM) или нескольких ионов (MRM).

Регистрация по полному ионному току и по диссоциации, инициированной соударением, позволяют получать масс-спектры, однозначно связанные со строением конкретной молекулы.

На основе полученных таким образом спектров созданы библиотеки (базы данных), позволяющие определять структуру молекулы по эталонным спектрам.

Селективная регистрация ионов позволяет определять малые концентрации аналита на фоне сложной матрицы, а также приводит к огромному выигрышу в чувствительности: время, которое тратится на запись полного масс-спектра, при селективной регистрации используется для записи только одного или нескольких ионов.

Регистрация избранных реакций является еще более избирательным методом определения искомого соединения в сложной смеси.

Данный метод принципиально отличается от рассмотренных выше спектроскопических методов. Структурная масс-спектрометрия основана на разрушении органической молекулы в результате ионизации тем или иным способом.

Образующиеся ионы сортируются по величинам их отношения масса/заряд (m/z), затем регистрируется число ионов для каждого значения этого отношения в виде спектра. На рис. 5.1. представлена общая схема типичного масс-спектрометра.

Рис. 5.1. Блок-схема типичного масс-спектрометра

Для ведения пробы в масс-спектрометр обычно применяют какой-либо вид хроматографии, хотя во многих приборах есть возможность для прямого ввода образца в ионизационную камеру. Во всех масс-спектрометрах имеются устройства для ионизации пробы и разделения ионов по величине m/z. После разделения нужно детектировать ионы и измерять их количество. Типичный коллектор ионов состоит из коллимирующих щелей, которые направляют в коллектор в данный момент только ионы одного вида, где они детектируются, а сигнал детектирования усиливается электронным умножителем. Современные масс-спектрометры укомплектованы специализированным программным обеспечением: компьютеры контролируют накопление, хранение и визуализацию данных.

В настоящее время стала обычной практика объединения масс-спектрометра с газовым (ГХ-МС) или жидкостным (ЖХ-МС) хроматографом.

Все масс-спектрометры подразделяются на два класса: приборы низкого (единичного) и высокого разрешения (R). Спектрометры низкого разрешения – приборы, на которых можно разделить целые массы до m/z 3000 (R = 3000/(3000-2990) = 3000). На таком приборе соединения C 16 H 26 O 2 и С 15 Н 24 NO 2 неразличимы, поскольку прибор будет фиксировать и в первом и во втором случае массу 250.

Приборы высокого разрешения (R = 20000) смогут различить соединения C 16 H 26 O 2 (250.1933) и С 15 Н 24 NO 2 (250.1807), в этом случае R = 250.1933/(250.1933 – 250.1807) = 19857.

Таким образом, на приборах низкого разрешения можно устанавливать структурную формулу вещества, однако зачастую для этой цели дополнительно необходимо привлекать данные других методов анализа (ИК-, ЯМР-спектроскопия).

Приборы высокого разрешения могут измерять массу иона с точностью, достаточной для определения атомного состава, т.е. определять молекулярную формулу исследуемого вещества.

В последнее десятилетие происходило быстрое развитие и совершенствование масс-спектрометров. Не обсуждая их устройство, отметим, что они подразделяются по типам в зависимости от 1) способа ионизации, 2) метода разделения ионов. В общем, способ ионизации не зависит от метода разделения ионов и наоборот, хотя имеются исключения. Более полная информация по данным вопросам изложена в литературе [Сайнсб. Лебедев].

В данном пособии будут рассмотрены масс-спектры, полученные ионизацией электронным ударом.

5.2. Масс-спектры с ионизацией электронным ударом

Электронный удар (ЭУ, electron impact, EI) – наиболее распространенный метод ионизации в масс-спектрометрии. Преимуществом этого метода является возможность использования поисковых систем и баз данных (метод ЭУ был исторически первым методом ионизации, основные базы экспериментальных данных получены на приборах с ЭУ).

Молекула вещества пробы в газовой фазе подвергается бомбардировке электронов с высокой энергией (обычно 70 эВ) и выбрасывает электрон, образуя катион-радикал, называемый молекулярным ионом :

М + e → М + (молекулярный ион) + 2e

Наименьшая энергия бомбардирующих (ионизующих) электронов, при которой возможно образование из данной молекулы иона, называется энергией (или, менее удачно, «потенциалом») ионизации вещества (U e).

Энергия ионизации является мерой прочности, с какой молекула удерживает наименее сильно связанный с ней электрон.

Как правило, для органических молекул энергия ионизации составляет 9-12 эВ, поэтому бомбардировка электронами с энергией 50 эВ и выше сообщает избыточную внутреннюю энергию возникающему молекулярному иону. Эта энергия частично рассеивается за счет разрыва ковалентных связей.

В результате такого разрыва происходит распад молекулярного иона на частицы меньшей массы (фрагменты). Такой процесс называется фрагментацией .

Фрагментация происходит избирательно, является высоковоспроизводимой и характеристичной для данного соединения . Более того, процессы фрагментации предсказуемы, и именно они обуславливают широкие возможности масс-спектрометрии для структурного анализа. По-сути, структурный анализ методом масс-спектрометрии заключается в идентификации осколочных ионов и ретроспективном восстановлении структуры исходной молекулы, исходя из направлений фрагментации молекулярного иона. Так, например, метанол образует молекулярный ион по схеме:

О
дна точка – оставшийся нечетный электрон; когда заряд локализован на отдельном атоме, знак заряда указывается на этом атоме.

Многие из этих молекулярных ионов распадаются за время 10 -10 – 10 -3 с и дают ряд осколочных ионов (первичная фрагментация):

Если некоторые из молекулярных ионов имеют достаточно большое время жизни, то они достигают детектора и регистрируются в виде пика молекулярного иона. Поскольку заряд исходного иона равен единице, отношение m / z для этого пика дает молекулярную массу исследуемого вещества.

Таким образом, масс-спектр – это представление относительных концентраций положительно заряженных осколков (включая молекулярный ион) в зависимости от их масс .

В специальной литературе приводятся таблицы наиболее часто встречающихся фрагментных ионов, где указана структурная формула иона и его значение m/z [Преч, Гордон, Сильверстейн].

Высота наиболее интенсивного в спектре пика принимается за 100%, а интенсивности других пиков, включая пик молекулярного иона, выражаются в процентах от максимального пика.

В определенных случаях самым интенсивным может быть и пик молекулярного иона. В общем случае: интенсивность пика зависит от устойчивости образующегося иона .

В масс-спектрах часто присутствует серия пиков фрагментных ионов, различающихся на гомологическую разность (СН 2), т.е. 14 а.е.м. Гомологические серии ионов характерны для каждого класса органических веществ, а потому они несут важную информацию о структуре исследуемого вещества.

Поделитесь с друзьями или сохраните для себя:

Загрузка...