Function graph. Functions and their graphs 3 x 1 2 graph

1. Linear fractional function and its graph

A function of the form y = P(x) / Q(x), where P(x) and Q(x) are polynomials, is called a fractional rational function.

You are probably already familiar with the concept of rational numbers. Similarly rational functions are functions that can be represented as a quotient of two polynomials.

If a fractional rational function is a quotient of two linear functions - polynomials of the first degree, i.e. view function

y = (ax + b) / (cx + d), then it is called fractional linear.

Note that in the function y = (ax + b) / (cx + d), c ≠ 0 (otherwise the function becomes linear y = ax/d + b/d) and that a/c ≠ b/d (otherwise the function is constant). The linear-fractional function is defined for all real numbers, except for x = -d/c. Graphs of linear-fractional functions do not differ in form from the graph you know y = 1/x. The curve that is the graph of the function y = 1/x is called hyperbole. With an unlimited increase in x in absolute value, the function y = 1/x decreases indefinitely in absolute value and both branches of the graph approach the abscissa axis: the right one approaches from above, and the left one approaches from below. The lines approached by the branches of a hyperbola are called its asymptotes.

Example 1

y = (2x + 1) / (x - 3).

Solution.

Let's select the integer part: (2x + 1) / (x - 3) = 2 + 7 / (x - 3).

Now it is easy to see that the graph of this function is obtained from the graph of the function y = 1/x by the following transformations: shift by 3 unit segments to the right, stretch along the Oy axis by 7 times and shift by 2 unit segments up.

Any fraction y = (ax + b) / (cx + d) can be written in the same way, highlighting the “whole part”. Consequently, the graphs of all linear-fractional functions are hyperbolas shifted along the coordinate axes in various ways and stretched along the Oy axis.

To plot a graph of some arbitrary linear-fractional function, it is not at all necessary to transform the fraction that defines this function. Since we know that the graph is a hyperbola, it will be enough to find the lines to which its branches approach - the hyperbola asymptotes x = -d/c and y = a/c.

Example 2

Find the asymptotes of the graph of the function y = (3x + 5)/(2x + 2).

Solution.

The function is not defined, when x = -1. Hence, the line x = -1 serves as a vertical asymptote. To find the horizontal asymptote, let's find out what the values ​​of the function y(x) approach when the argument x increases in absolute value.

To do this, we divide the numerator and denominator of the fraction by x:

y = (3 + 5/x) / (2 + 2/x).

As x → ∞ the fraction tends to 3/2. Hence, the horizontal asymptote is the straight line y = 3/2.

Example 3

Plot the function y = (2x + 1)/(x + 1).

Solution.

We select the “whole part” of the fraction:

(2x + 1) / (x + 1) = (2x + 2 - 1) / (x + 1) = 2(x + 1) / (x + 1) - 1/(x + 1) =

2 – 1/(x + 1).

Now it is easy to see that the graph of this function is obtained from the graph of the function y = 1/x by the following transformations: a shift of 1 unit to the left, a symmetric display with respect to Ox, and a shift of 2 unit intervals up along the Oy axis.

Domain of definition D(y) = (-∞; -1)ᴗ(-1; +∞).

Range of values ​​E(y) = (-∞; 2)ᴗ(2; +∞).

Intersection points with axes: c Oy: (0; 1); c Ox: (-1/2; 0). The function increases on each of the intervals of the domain of definition.

Answer: figure 1.

2. Fractional-rational function

Consider a fractional rational function of the form y = P(x) / Q(x), where P(x) and Q(x) are polynomials of degree higher than the first.

Examples of such rational functions:

y \u003d (x 3 - 5x + 6) / (x 7 - 6) or y \u003d (x - 2) 2 (x + 1) / (x 2 + 3).

If the function y = P(x) / Q(x) is a quotient of two polynomials of degree higher than the first, then its graph will, as a rule, be more complicated, and it can sometimes be difficult to build it exactly, with all the details. However, it is often enough to apply techniques similar to those with which we have already met above.

Let the fraction be proper (n< m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x) / Q(x) \u003d A 1 / (x - K 1) m1 + A 2 / (x - K 1) m1-1 + ... + A m1 / (x - K 1) + ... +

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 + p t x + q t) m1 + ... + (M m1 x + N m1) / (x 2 + p t x + q t).

Obviously, the graph of a fractional rational function can be obtained as the sum of graphs of elementary fractions.

Plotting fractional rational functions

Consider several ways to plot a fractional-rational function.

Example 4

Plot the function y = 1/x 2 .

Solution.

We use the graph of the function y \u003d x 2 to plot the graph y \u003d 1 / x 2 and use the method of "dividing" the graphs.

Domain D(y) = (-∞; 0)ᴗ(0; +∞).

Range of values ​​E(y) = (0; +∞).

There are no points of intersection with the axes. The function is even. Increases for all x from the interval (-∞; 0), decreases for x from 0 to +∞.

Answer: figure 2.

Example 5

Plot the function y = (x 2 - 4x + 3) / (9 - 3x).

Solution.

Domain D(y) = (-∞; 3)ᴗ(3; +∞).

y \u003d (x 2 - 4x + 3) / (9 - 3x) \u003d (x - 3) (x - 1) / (-3 (x - 3)) \u003d - (x - 1) / 3 \u003d -x / 3 + 1/3.

Here we used the technique of factoring, reduction and reduction to a linear function.

Answer: figure 3.

Example 6

Plot the function y \u003d (x 2 - 1) / (x 2 + 1).

Solution.

The domain of definition is D(y) = R. Since the function is even, the graph is symmetrical about the y-axis. Before plotting, we again transform the expression by highlighting the integer part:

y \u003d (x 2 - 1) / (x 2 + 1) \u003d 1 - 2 / (x 2 + 1).

Note that the selection of the integer part in the formula of a fractional-rational function is one of the main ones when plotting graphs.

If x → ±∞, then y → 1, i.e., the line y = 1 is a horizontal asymptote.

Answer: figure 4.

Example 7

Consider the function y = x/(x 2 + 1) and try to find exactly its largest value, i.e. the highest point on the right half of the graph. To accurately build this graph, today's knowledge is not enough. It is obvious that our curve cannot "climb" very high, since the denominator quickly begins to “overtake” the numerator. Let's see if the value of the function can be equal to 1. To do this, you need to solve the equation x 2 + 1 \u003d x, x 2 - x + 1 \u003d 0. This equation has no real roots. So our assumption is wrong. To find the largest value of the function, you need to find out for which largest A the equation A \u003d x / (x 2 + 1) will have a solution. Let's replace the original equation with a quadratic one: Ax 2 - x + A \u003d 0. This equation has a solution when 1 - 4A 2 ≥ 0. From here we find the largest value A \u003d 1/2.

Answer: Figure 5, max y(x) = ½.

Do you have any questions? Don't know how to build function graphs?
To get the help of a tutor - register.
The first lesson is free!

site, with full or partial copying of the material, a link to the source is required.

The function y=x^2 is called a quadratic function. The graph of a quadratic function is a parabola. The general view of the parabola is shown in the figure below.

quadratic function

Fig 1. General view of the parabola

As can be seen from the graph, it is symmetrical about the Oy axis. The axis Oy is called the axis of symmetry of the parabola. This means that if you draw a straight line parallel to the Ox axis above this axis on the chart. Then it intersects the parabola at two points. The distance from these points to the y-axis will be the same.

The axis of symmetry divides the graph of the parabola, as it were, into two parts. These parts are called the branches of the parabola. And the point of the parabola that lies on the axis of symmetry is called the vertex of the parabola. That is, the axis of symmetry passes through the top of the parabola. The coordinates of this point are (0;0).

Basic properties of a quadratic function

1. For x=0, y=0, and y>0 for x0

2. The quadratic function reaches its minimum value at its vertex. Ymin at x=0; It should also be noted that the maximum value of the function does not exist.

3. The function decreases on the interval (-∞; 0] and increases on the interval )

Share with friends or save for yourself:

Loading...