Геометрическое место точек. Теорема о геометрическом месте точек, равноудалённых от двух данных точек, в геометрической и аналитической формах

Геометрическим местом точек на плоскости называется фигура, которая состоит из всех точек плоскости, обладающих определенным свойством.

Т.1.29. Геометрическое место точек, равноудаленных от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки.

На рисунке 71 к отрезку проведен серединный перпендикуляр СС. Т.1.29 утверждает, что: а) каждая точка прямой равноудалена от А и В; б) каждая точка плоскости, равноудаленная от А и Б, лежит на прямой

Ниже перечислены несколько геометрических мест точек на плоскости.

1. Геометрическое место точек, находящихся на данном расстоянии от данной точки, есть окружность с центром в этой точке и радиусом, равным данному расстоянию.

2. Геометрическое место точек, находящихся на данном расстоянии от данной прямой, состоит из двух прямых, каждая из которых параллельна данной и отстоит от нее на данное расстояние.

3. Геометрическое место точек, равноудаленных от двух пересекающихся прямых, состоит из двух прямых, на которых лежат биссектрисы всех углов, полученных при пересечении данных прямых.

4. Геометрическое место точек, из которых отрезок виден под данным углом а и которые лежат по одну сторону от прямой А Б, есть дуга окружности с концами в точках А и Б.

Метод геометрических мест, применяемый при решении задач на построение, основан на следующем.

Пусть нам надо построить точку X, удовлетворяющую двум условиям. Геометрическое место точек, удовлетворяющих первому условию, есть фигура геометрическое место точек, удовлетворяющих второму условию, есть фигура Искомая точка X принадлежит , т. е. является их общей точкой.

Пример 1. Построить по периметру , углу Б, равному , и высоте , опущенной из вершины А.

Решение. Пусть задача решена и построен (рис. 72). Отложив на прямой отрезки получим равнобедренные треугольники

Исходя из приведенных выше рассуждений построение можно осуществить в следующей последовательности:

1) Проводим прямую и на ней откладываем отрезок

2) На расстоянии от прямой проводим прямую параллельную

3) С вершиной в точке D строим угол равный Точка

А - одна из вершин искомого треугольника.

4) Проводим серединные перпендикуляры к отрезкам Точки В и С пересечения этих серединных перпендикуляров с прямой - две другие вершины искомого треугольника.

Доказательство того, что искомый, проводим так: высота этого треугольника равна по построению, равнобедренный, - внешний угол этого треугольника, см. Т. 1. 22), по построению.

Обладающих некоторым свойством.

Примеры [ | ]

Формальное определение [ | ]

В общем случае, геометрическое место точек формулируется предикатом , аргументом которого является точка данного линейного пространства. Параметры предиката могут носить различный тип. Предикат называется детерминантом геометрического места точек. Параметры предиката называются дифференциалами геометрического места точек (не путать с дифференциалом в анализе).

Роль дифференциалов во введении видовых различий в фигуру. Количество дифференциалов может быть любым; дифференциалов может и вовсе не быть.

Если заданы детерминант , где M {\displaystyle M} - точка, - дифференциалы, то искомую фигуру A {\displaystyle A} задают в виде: « A {\displaystyle A} - геометрическое место точек M {\displaystyle M} , таких, что P (M , a , b , c , …) {\displaystyle P(M,\;a,\;b,\;c,\;\ldots)} ». Далее обычно указывается роль дифференциалов, им даются названия применительно к данной конкретной фигуре. Под собственно фигурой понимают совокупность (множество) точек M {\displaystyle M} , для которых для каждого конкретного набора значений a , b , c , … {\displaystyle a,\;b,\;c,\;\ldots } высказывание P (M , a , b , c , …) {\displaystyle P(M,\;a,\;b,\;c,\;\ldots)} обращается в тождество. Каждый конкретный набор значений дифференциалов определяет отдельную фигуру, каждую из которых и всех их в совокупности именуют названием фигуры, которая задаётся через ГМТ.

В словесной формулировке предикативное высказывание озвучивают литературно, то есть с привлечением различного рода оборотов и т. д. с целью благозвучия. Иногда, в случае простых детерминантов, вообще обходятся без буквенных обозначений.

Пример : параболу зададим как множество всех таких точек M {\displaystyle M} , что расстояние от M {\displaystyle M} до точки F {\displaystyle F} равно расстоянию от M {\displaystyle M} до прямой l {\displaystyle l} . Тогда дифференциалы параболы - F {\displaystyle F} и l {\displaystyle l} ; детерминант - предикат P (M , F , l) = (ρ (M , F) = ρ l (M , l)) {\displaystyle P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l))} , где ρ {\displaystyle \rho } - расстояние между двумя точками (метрика), ρ l {\displaystyle \rho _{l}} - расстояние от точки до прямой. И говорят: «Парабола - геометрическое место точек M {\displaystyle M} , равноудалённых от точки F {\displaystyle F} и прямой l {\displaystyle l} . Точку F {\displaystyle F} называют фокусом параболы, а прямую l {\displaystyle l} - директрисой».

Цели урока:

  • Образовательная: показать новый метод решения задач на построение геометрического места точек; Научить применять его в решении задач.
  • Развивающая: развитие наглядно- образного мышления; познавательного интереса.
  • Воспитывающая: развитие умения планировать работу, искать рациональные пути ее выполнения, способности аргументировано отстаивать свое мнение, критически оценивать результат.


Задачи урока:

  • Изучения нового материала.
  • Проверить умение учащихся решать задачи.

План урока:

  1. Определения.
  2. Пример 1.
  3. Пример 2.
  4. Пример 3.
  5. Теоретическая часть.
  6. Общии понятия.


Введение.

Древнеегипетскую и вавилонскую культуру в области математики продолжали греки. Они не только усвоили весь опыт их геометрии, но и пошли гораздо дальше. Ученые древней Греции сумели привести в систему накопленные геометрические знания и, таким образом, заложить начала геометрии как дедуктивной науки.

Греческие купцы познакомились с восточной математикой, прокладывая торговые пути. Но люди Востока почти не занимались теорией, и греки быстро это обнаружили. Они задавались вопросами: почему в равнобедренном треугольнике два угла при основании равны; почему площадь треугольника равна половине площади прямоугольника при одинаковых основаниях и высотах?

К сожалению, не сохранилось первоисточников, описывающих ранний период развития греческой математики. Только благодаря восстановленным текстам четвертого столетия до нашей эры и трудам арабских ученых, которые были богаты переводами сочинений авторов античной Греции, мы располагаем изданиями Евклида, Архимеда, Аполлония и других великий людей. Но в этих произведениях уже представлена вполне развитая математическая наука.

Математика древней Греции прошла длительный и сложный путь развития, начиная с VI столетия до н.э. и по VI век. Историки науки выделяют три периода ее развития в соответствии с характером знаний:

  1. Накопление отдельных математических фактов и проблем (6 - 5B.B. до н.э.).
  2. Систематизация полученных знаний (4 - 3 в.в. до н.э.).
  3. Период вычислительной математики (3в. до н.э. - 6 в.).

Геометрическое место точек (ГМТ).

Определения.

Геометрическое место – термин, применявшийся в старой литературе по геометрии и до сих пор применяющийся в учебной литературе, для обозначения множества точек, удовлетворяющих некоторому условию , как правило, геометрического характера. Например: геометрическое место точек, равноудаленных от двух данных точек A и B – это серединный перпендикуляр к отрезку AB. Иногда говорят и о геометрическом месте прямых и других фигур.

Название связано с представлением о линии как о «месте», на котором располагаются точки.

В геометрии траектория некоторой точки, перемещающейся в соответствии с данной формулой или условием. Например, круг является геометрическим местом точки, перемещающейся на плоскости так, что расстояние от места ее нахождения до центра остается неизменным.

Геометрическое место точек (ГМТ) - это множество точек, в которое попадают все точки, удовлетворяющие определенному условию, и только они.

Геометрическое место точек (ГМТ) - фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.

Примеры.

  • Серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов отрезка.
  • Окружность есть геометрическое место точек, равноудалённых от данной точки, называемой центром окружности.
  • Парабола есть геометрическое место точек, равноудалённых от точки (называемой фокусом) и прямой (называемой директрисой).
Пример 1.

Срединный перпендикуляр любого отрезка есть геометрическое место точек (т.е. множество всех точек), равноудалённых от концов этого отрезка. Пусть PO перпендикулярно AB и AO = OB:

Тогда, расстояния от любой точки P, лежащей на срединном перпендикуляре PO, до концов A и B отрезка AB одинаковы и равны d .

Таким образом, каждая точка срединного перпендикуляра отрезка обладает следующим свойством: она равноудалена от концов отрезка.

Пример 2.

Биссектриса угла есть геометрическое место точек, равноудалённых от его сторон.

Пример 3.

Окружность есть геометрическое место точек (т.е. множество всех точек), равноудалённых от её центра (на рис. показана одна из этих точек – А).

Хорда , проходящая через центр круга (например, BC, рис 1), называется диаметром и обозначается d или D . Диаметр – это наибольшая хорда, равная двум радиусам (d = 2 r).

Касательная . Предположим, секущая PQ (рис.2) проходит через точки K и M окружности. Предположим также, что точка M движется вдоль окружности, приближаясь к точке K. Тогда секущая PQ будет менять своё положение, вращаясь вокруг точки K. По мере приближения точки M к точке K секущая PQ будет стремиться к некоторому предельному положению АВ. Прямая AB называется касательной к окружности в точке K. Точка K называется точкой касания. Касательная и окружность имеют только одну общую точку – точку касания.

Свойства касательной.

  1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания (AB перпендикулярно OK, рис.2).
  2. Из точки, лежащей вне круга, можно провести две касательные к одной и той же окружности; их отрезки равны АВ=АС (рис.3).

Сегмент – это часть круга, ограниченная дугой ACB и соответствующей хордой AB (рис.4). Длина перпендикуляра CD, проведенного из середины хорды AB до пересечения с дугой ACB, называется высотой сегмента.

Углы в круге.

Центральный угол – угол, образованный двумя радиусами (∠AOB, рис.5). Вписанный угол – угол, образованный двумя хордами AB и AC, проведенными из их одной общей точки (∠BAC, рис.4). Описанный угол – угол, образованный двумя касательными AB и AC, проведенными из одной общей точки (∠BAC, рис.3).

Соотношения между элементами круга.

Вписанный угол (∠ABC, рис.7) равен половине центрального угла, опирающегося на ту же дугу AmC (∠AOC, рис.7). Поэтому, все вписанные углы (рис.7), опирающиеся на одну и ту же дугу (AmC, рис.7), равны. А так как центральный угол содержит то же количество градусов, что и его дуга (AmC, рис.7), то любой вписанный угол измеряется половиной дуги, на которую он опирается (в нашем случае AmC).

Все вписанные углы, опирающиеся на полукруг (∠APB, ∠AQB, …, рис.8), прямые.

Угол (∠AOD, рис.9), образованный двумя хордами (AB и CD), измеряется полусуммой дуг, заключённых между его сторонами: (AnD + CmB) / 2 .

Угол (∠AOD, рис.10), образованный двумя секущими (AO и OD), измеряется полуразностью дуг, заключённых между его сторонами: (AnD – BmC) / 2.

Угол (∠DCB, рис.11), образованный касательной и хордой (AB и CD), измеряется половиной дуги, заключённой внутри него: CmD / 2.

Угол (∠BOC, рис.12), образованный касательной и секущей (CO и BO), измеряется полуразностью дуг, заключённых между его сторонами: (BmC – CnD) / 2 .

Описанный угол (∠AOC, рис.12), образованный двумя касательными (CO и AO), измеряется полуразностью дуг, заключенных между его сторонами: (ABC – CDA) / 2 .

Произведения отрезков хорд (AB и CD, рис.13 или рис.14), на которые они делятся точкой пересечения, равны: AO · BO = CO · DO.

Квадрат касательной равен произведению секущей на её внешнюю часть (рис.12): OA 2 = OB · OD. Это свойство можно рассматривать как частный случай рис.14.

Хорда (AB, рис.15), перпендикулярная диаметру (CD), O пополам: AO = OB.

Рис. 15

Интересный факт:

Поздравляем с Пи-раздником вас.

Выражаясь научным языком, число "Пи" - это отношение длины окружности к ее диаметру. Простая вроде бы вещь, но волнует умы математиков с глубокой древности. И продолжает волновать. До такой степени, что ученые - лет 20 назад - договорились отмечать праздник этого числа. И призвали присоединиться к торжествам всю прогрессивную общественность. Она присоединяется: ест круглые Пи-роги, вы-ПИ-вает, обязательно Пи-во и издает звуки Пи при встрече.

Фанаты будут соревноваться, вспоминая знаки числа "Пи". И постараются превзойти рекорд 24-летнего китайского студента Лю Чао, который назвал по памяти без ошибок 68890 знаков. На это у него ушло 24 часа и 4 минуты.

Отправление торжеств назначено на 14 марта - дату, которая в американском написании выглядит как 3.14 - то есть, первыми тремя цифрами числа "Пи".
По легенде, о числе "Пи" знали еще вавилонские жрецы. Использовали при строительстве Вавилонской башни. Но не смогли точно вычислить его значение и от этого не справились с проектом. Сам символ числа "Пи" впервые использовал в своих трудах в 1706 году математик Уильям Джон (William Jones). Но реально он прижился после 1737 года благодаря стараниям шведского математика Леонарда Эйлера (Leonhard Euler).

Отмечать праздник придумал американский физик Ларри Шо (Larry Shaw).
На вопрос, сколько знаков в числе "Пи" после запятой, точного ответа нет. Скорее всего, их бесконечное число. А главная особенность в том, что последовательность этих знаков не повторяется. Сегодня их известно 12411 триллионов. Обследовано 500 миллиардов. И повторений не найдено.

Как считают некоторые видные физики и математики, например Дэвид Бейли, Питер Борвин и Саймон Плофе (David Bailey, Peter Borewin, Simon Plouffe), их - повторений - не найти никому и никогда. Хоть испиши знаками всю Вселенную. Да хоть сколько Вселенных... И в этом ученые видят некую скрытую мистику. Полагают, что в числе "Пи" зашифрован бесконечный первородный хаос, ставший потом гармонией. Или какая-то загадочная информация.



Вопросы:

  1. Сформулируйте определение окружности и круга?
  2. С какими новыми понятиями вы познакомились?
  3. Что называется геометрическим местом точек?
  4. Какая разница между диаметром и радиусом?
  5. Как найти радиус окружности какая описана около треугольника?

Список использованных источников:

  1. Урок на тему "Наглядная геометрия"
  2. Савин А.П. Метод геометрических мест /Факультативный курс по математике: Учебное пособие для 7-9 классов средней школы. Сост. И.Л. Никольская. – М.: Просвещение, с. 74.
  3. Смирнова И.М., Смирнов В.А. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2005, с. 84.
  4. Шарыгин И.Ф. Геометрия. 7-9 классы: Учебник для общеобразовательных учебных заведений. – М.: Дрофа, с. 76.
  5. Мазур К. И. «Решение основных конкурсных задач по математике сборника под редакцией М. И. Сканави»

Над уроком работали:

Самылина М.В.

Потурнак С.А.

Владимир ЛАГОВСКИЙ

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.

Геометрическое место точек. Срединный перпендикуляр . Биссектриса угла.

Окружность. Круг. Центр окружности. Радиус. Дуга. Секущая. Хорда.

Диаметр. Касательная и её свойства. Сегмент. Сектор. Углы в круге.

Длина дуги. Радиан. Соотношения между элементами круга.

Геометрическое местоточек этомножество всех точек,удовлетворя ющихопределённым заданным условиям.

П р и м е р 1. Срединный перпендикуляр любого отрезка есть геометрическое

место точек (т.е. множество всех точек), равноудалён ных от

концов этого отрезка. Пусть PO AB и AO = OB:

Тогда, расстояния от любой точки P, лежащей на срединном перпендикуляре PO, до концов A и B отрезка AB одинаковы и равны d .

Таким образом, каждая точка срединного перпендикуляра отрезка обладает следующим свойством: она равноудалена от концов отрезка.

П р и м е р 2. Биссектриса угла есть геометрическое место точек, равноудалённых от его сторон .

П р и м е р 3. Окружность есть геометрическое место точек (т.е. множе ство

всех точек), равноудалённых от её центра (на рис. пока зана одна

из этих точек – А).

Окружность - это геометрическое место точек (т.е. множество всех точек) на плоскости , равноудалённых от одной точки, называемой центром окружности. Отрезок, соединяющий центр окружности с какой-либо её точкой, называется радиусом и обозначается r или R . Часть плоскости, ограниченная окружностью, называется кругом . Часть окружности (

Am B , рис.39 ) называется дугой. Прямая PQ , проходящая через точки M и N окружности ( рис.39 ), называется секущей, а её отрезок MN , лежащий внутри окружности - хордой.

Хорда, проходящая через центр круга (например, BC, рис.39), называется диаметром и обозначается d или D . Диаметр – это наибольшая хорда, равная двум радиусам (d = 2 r ).

Касательная. Предположим, секущая PQ (рис.40) проходит через точки K и M окружности. Предположим также, что точка M движется вдоль окружности, приближаясь к точке K. Тогда секущая PQ будет менять своё положение, вращаясь вокруг точки K. По мере приближения точки M к точке K секущая PQ будет стремиться к некоторому предельному положению АВ. Прямая AB называется касательной к окружности в точке K. Точка K называется точкой касания. Касательная и окружность имеют только одну общую точку – точку касания.

Свойства касательной.

1) К асательная к окружности перпендикулярна к радиусу, проведенному в точку касания ( AB OK, рис.40) .

2) Из точки, лежащей вне круга, можно провести две касательные к одной и той же окружности; их отрезки равны (рис.41).

Сегмент – это часть круга, ограниченная дугой ACB и соответствующей хордой AB (рис.42). Длина перпендикуляра CD, проведенного из середины хорды AB до пересечения с дугой ACB, называется высотой сегмента.

Сектор эточасть круга,ограниченная дугой Am Bи двумя радиусами OAи OB, проведенными к концам этой дуги (рис.43).

Углы в круге. Центральный угол угол, образованный двумя радиусами ( AOB, рис.43). Вписанный угол – угол, образованный двумя хордами AB и AC, проведенными из их одной общей точки (BA C, рис.44). Описанный угол – угол, образованный двумя касательными AB и AC, проведенными из одной общей точки ( BAC, рис.41).

Длина дуги окружности пропорциональна её радиусу r и соответствующему центральному углу :

l = r

Таким образом, если мы знаем длину дуги l и радиус r , то величина соответствующего центрального угла

может быть определена их отношением: = l / r .

Эта формула является основой для определения радианного измерения углов. Так, если l = r , то = 1, и мы говорим, что угол равен 1 радиану (это обозначается: = 1 рад ). Таким образом, мы имеем следующее определение радиана как единицы измерения углов: радиан – это центральный угол ( AOB, рис.43), у которого длина дуги равна её радиусу (Am B = AO , рис.43). Итак, радианная мера любого угла – это отношение длины дуги, проведенной произвольным радиусом и заключённой между сторонами этого угла, к её радиусу. В частности, в соответствии с формулой длины дуги, длина окружности C может быть выражена следующим образом:

где определяется как отношение C к диаметру круга 2 r :

= C / 2 r .

Иррациональное число; его приближённое значение 3.1415926…

С другой стороны, 2- это круговой угол окружности, который в градусной системе измерения равен 360º. На практике часто случается, что как радиус дуги, так и угол неизвестны. В этом случае длина дуги может быть вычислена по приближённой формуле Гюйгенса:

p 2l + (2l – L ) / 3 ,

где (см. рис.42): p – длина дуги ACB ; l – длина хорды AC ; L – длина хорды AB . Если дуга содержит не более чем 60 º , относительная погрешность этой формулы не превышает 0.5%.

Соотношения между элементами круга. Вписанный угол ( ABC , рис.45) равен половине центрального угла , опирающегося на ту же дугу AmC ( AOC , рис.45) . Поэтому, все вписанные углы (рис.45), опирающиеся на одну и ту же дугу ( Am C , рис.45), равны. А так как центральный угол содержит тоже количество градусов, чтои его дуга ( Am C ,рис.45), то любой вписанный угол измеряется половиной дуги, на которую он опирается (внашем случае Am C ).

Все вписанные углы, опирающиеся на полукруг (APB, AQB, …, рис.46 ), прямые (Докажите это, пожалуйста!).

Угол (AOD, рис.47 ), образованный двумя хордами (ABи CD), измеряет ся полусуммой дуг, заключённых между его сторонами: (An D + Cm B) / 2 .

Угол (AOD, рис.48 ), образованный двумя секущими (AOи OD), измеряется полуразностью дуг, заключённых между его сторонами: (An D– Bm C ) / 2. секущей (COи BO), измеряется полуразностью дуг,заключённых между его сторонами: ( Bm CCn D ) / 2 .

Описанный угол (AOC, рис.50 ), образованный двумя касательными (COи AO), измеряется полуразностью дуг,заключенных между его сторонами: ( ABCCDA) / 2 .

Произведения отрезков хорд ( AB и CD , рис.51 или рис.52), на которые они делятся точкой пересечения, равны: AO · BO = CO · DO .

К вадрат касательной равен произведению секущей на её внешнюю часть ( рис.50 ) : OA 2 = OB · O D (докажите!). Это свойство можно рассматривать как частный случай рис.52.

Хорда (AB, рис.53), перпендикулярная диаметру (CD), делится в их точке пересечения O пополам: AO = OB.

( Попробуйте доказать это! ).

Обладающих некоторым свойством.

Энциклопедичный YouTube

    1 / 3

    ✪ Определение параболы как ГМТ

    ✪ 124. Задачи на поверхности второго порядка. Геометрическое место точек

    ✪ Сопротивление материалов. Лекция 21 (тензор напряжений, главные напряжения)

    Субтитры

    Здравствуйте, дорогие друзья! Мы сейчас будем с вами заниматься геометрией, а потом алгеброй, а потом все смешаем и назовем это математикой. Очень простой вопрос. Представьте себе, что там, где я поставил белую точку, играет музыка (одна колонка). А потом появился техник и поставил колонку еще и на место розовой точки. Причем расстояние между ними довольно большое. Если вы встанете в зеленый крестик, то для вас музыка будет доноситься из двух мест с задержкой. Из одного с большей задержкой, чем из другого. Как бы встать так, чтобы слышать музыку левым и правым ухом совершенно одинаково, синхронно? То есть встать на равных расстояниях от двух колонок. Ответ очень простой, вы, конечно, знаете, если ходили хотя бы в 7 класс. А если не ходили, можете догадаться интуитивно. Надо построить отрезок, соединяющий розовую и белую точки, и в его центре (в его серединке) изобразить перпендикуляр. Тогда любая точка вертикального на этой доске перпендикуляра одинаково удалена от розовой и от белой. Почему так? Очень просто. Здесь два одинаковых треугольника. Почему они одинаковые? Потому что у них есть общая сторона, еще две стороны отмечены равными штрихами. И прямые углы тоже, конечно, равны друг другу. Как следствие, мы имеем право поставить равные отметки на таких сторонах. Итак, мы с вами нарисовали геометрическое место точек, одинаково удаленных от двух заданных точек. А как насчет двух прямых? Давайте нарисуем пару прямых. Я нарисую две параллельные прямые для начала. Это два берега и вы хотите плыть (по какой-то причине) на равных удалениях от этих двух берегов. Как построить эту траекторию? Давайте снова построим перпендикуляр к двум параллельным прямым. Найдем его середку. А дальше, вооружившись глазомером, пытаемся изобразить зеленую линию параллельно этим двум берегам. Конечно, если мы возьмем любую точку на этой зеленой линии и опустим перпендикуляр на какой-нибудь берег, то мы можем увидеть прямоугольник. А значит, эти стороны будут равны. Прямые могут и пересекаться. И тогда вы тоже легко решите такую задачу: множество точек, одинаково удаленных от этих двух прямых - это пара биссектрисс. Все эти решения строятся циркулем и линейкой и совершенно легко проходятся на геометрии. А сейчас я вам предложу еще одно множество, которое задается не двумя одинаковыми объектами, а один объект мы возьмем из первой задачи: где-то стоит точка, а другой объект - из второй: есть прямая. Причем эта точка нам нужна надолго, поэтому мы введем ей персональное имя: мы скажем, что это точка F. Прямая тоже персонализирована и называется буквой d. Представьте себе на мгновение, что это граница пляжа: выше пляж, а ниже море. А точка F - это, например, киоск с мороженым. И вы хотите сесть так, чтобы до киоска с мороженым и до берега было равное расстояние. Тогда пример такого места совершенно очевиден: точно так же, как и здесь, и здесь, мы строим перпендикуляр из точки F на прямую d, находим его середку и вот это самое выигрышное место: вам до киоска очень мало идти и до моря очень мало идти. А как по-другому можно сесть, чтобы тоже было одинаковое расстояние и до киоска, и до берега моря? Вот пример еще один. Если мы построим квадрат с такой стороной, то тогда равенство этих сторон и перпендикуляр здесь тоже нам гарантируют, что эта точка годится. Причем ясно, что раз пряж простирается в обе стороны, то и здесь мы можем нарисовать такой же квадрат. Решение будет симметрично. Давайте запишем решение для такой задачи. Мы ищем вот что: нам нужно множество букв М (точек, обозначенных буквой М), а условие на них вот какое: (вот эта годится быть буквой М) расстояние от любой точки из этого множества до F равняется... Вместо слова "расстояние" я сейчас напишу букву "ро", потому что я хочу расстояние от точки М до прямой d. Поскольку мы ищем множество, здесь стоят фигурные скобки. И мы ищем все такие точки, обозначенные буквой М, чтобы выполнялось это равенство. Две мы уже нашли. Я имею право обвести эту точку зеленым кружочком и эту тоже. Есть ли хотя бы одна точка между ними, которая принадлежит этому множеству? Одинаково удалена и от F, и от d. Да, есть. Давайте попробуем сделать следующее. Шагнем на какую-нибудь величину влево от известной нам точки из множества. Вопрос: тогда мы получим точку из этого же множества? Посмотрим на эту фигурку, на этот четырехугольник. Это прямоугольник, поэтому здесь тоже допустим один штрих. Расстояние от полученной точки до F как связано с этим отрезком? Конечно, оно больше, здесь нельзя поставить один штрих, потому что такой наклонный отрезок - это гипотинуза в треугольнике, где катет отмечен одним штрихом. Эта точка слишком низко, слишком близка к прямой d. Значит, надо ее немножко приподнять. Приподнять настолько, чтобы она достаточно удалилась от d и немножко приблизилась к F. Как именно - пока не будем выяснять, но это возможно. Идея такая: двигаясь влево и поднимаясь вверх, мы можем получать точки, принадлежащие множеству М. И если еще допустить, что шаг может быть сколь угодно маленьким, тогда поймем, что множество это непрерывно: это линия, которую можно нарисовать движением руки, не останавливаясь и нигде не перепрыгивая. И еще мы знаем, что линия симметрична. Эта зеленая линия является изображением этого множества, обозначенного фигурными скобками. Оказывается, это парабола. Это геометрическое определение для параболы. И здесь начинаются проблемы.

Примеры

Роль дифференциалов во введении видовых различий в фигуру. Количество дифференциалов может быть любым; дифференциалов может и вовсе не быть.

Если заданы детерминант , где M {\displaystyle M} - точка, - дифференциалы, то искомую фигуру A {\displaystyle A} задают в виде: « A {\displaystyle A} - геометрическое место точек M {\displaystyle M} , таких, что P (M , a , b , c , …) {\displaystyle P(M,\;a,\;b,\;c,\;\ldots)} ». Далее обычно указывается роль дифференциалов, им даются названия применительно к данной конкретной фигуре. Под собственно фигурой понимают совокупность (множество) точек M {\displaystyle M} , для которых для каждого конкретного набора значений a , b , c , … {\displaystyle a,\;b,\;c,\;\ldots } высказывание P (M , a , b , c , …) {\displaystyle P(M,\;a,\;b,\;c,\;\ldots)} обращается в тождество. Каждый конкретный набор значений дифференциалов определяет отдельную фигуру, каждую из которых и всех их в совокупности именуют названием фигуры, которая задаётся через ГМТ.

В словесной формулировке предикативное высказывание озвучивают литературно, то есть с привлечением различного рода оборотов и т. д. с целью благозвучия. Иногда, в случае простых детерминантов, вообще обходятся без буквенных обозначений.

Пример : параболу зададим как множество всех таких точек M {\displaystyle M} , что расстояние от M {\displaystyle M} до точки F {\displaystyle F} равно расстоянию от M {\displaystyle M} до прямой l {\displaystyle l} . Тогда дифференциалы параболы - F {\displaystyle F} и l {\displaystyle l} ; детерминант - предикат P (M , F , l) = (ρ (M , F) = ρ l (M , l)) {\displaystyle P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l))} , где ρ {\displaystyle \rho } - расстояние между двумя точками (метрика), ρ l {\displaystyle \rho _{l}} - расстояние от точки до прямой. И говорят: «Парабола - геометрическое место точек M {\displaystyle M} , равноудалённых от точки F {\displaystyle F} и прямой l {\displaystyle l} . Точку F {\displaystyle F} называют фокусом параболы, а прямую l {\displaystyle l} - директрисой».

Поделитесь с друзьями или сохраните для себя:

Загрузка...